ON PROPERTY \mathscr{B} OF FAMILIES OF SETS

BY
H. L. ABBOTT

A family \mathscr{F} of sets is said to have property \mathscr{B} if there exists a set B such that $B \cap F \neq \varnothing$ and $B \neq F$ for every $F \in \mathscr{F}$. Such a B will be called suitable with respect to \mathscr{F}. It is known (see [3]) that for each positive integer n there exists a family \mathscr{F} of sets satisfying the following conditions:
(a) $|F|=n$ for each $F \in \mathscr{F}$
(b) $|F \cap G| \leq 1$ for $F, G \in \mathscr{F}, F \neq G$
(c) \mathscr{F} does not have property \mathscr{B}.

The proof of this result uses probabilistic methods. A simple constructive proof is given in [2]. Let us call $\mathscr{F} n$-critical if, in addition to (a), (b) and (c), it also satisfies:
(d) Every proper subfamily of \mathscr{F} has property \mathscr{B}.

It can be deduced from results of Erdǒs and Hajnal ([3] Theorem 12.9) or Lovász ([4], pp. 65-67) that for every n, arbitrarily large n-critical families exist. The proofs of these results are quite complicated. In this note we establish the existence of arbitrarily large n-critical families by means of a simple construction. In addition, we answer a question which was raised in [1].

Theorem. If $n>1$ and there exists an n-critical family of size m, then there exists an n-critical family of size $n m+1$.

Proof. Let $\mathscr{F}_{i}, i=1,2, \ldots, n$, be n-critical families with $\left|\mathscr{F}_{i}\right|=m$. We suppose that $F \cap G=\varnothing$ if $F \in \mathscr{F}_{i}, G \in \mathscr{F}_{k}$ and $i \neq k$. For each j let $F_{j} \in \mathscr{F}_{j}$ and $a_{j} \in F_{j}$. Let $a \notin \bigcup_{i=1}^{n}\left(\bigcup_{F \in \mathscr{F}_{i}} F\right)$. Let $\mathscr{F} *$ be the family consisting of the following sets:
(i) $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
(ii) $\{a\} \cup\left(F_{j} \sim\left\{a_{j}\right\}\right) j=1,2, \ldots, n$.
(iii) The sets in $\bigcup_{j=1}^{n} \mathscr{F}_{j}$ excluding $F_{1}, F_{2}, \ldots, F_{n}$.

Note that $|\mathscr{F} *|=n m+1$. We now show that $\mathscr{F} *$ is n-critical. Condition (a) obviously holds and one can easily verify (b). It remains to verify (c) and (d).

To establish (c), suppose that \mathscr{F}^{*} has property \mathscr{B} and let B be suitable with respect to $\mathscr{F}{ }^{*}$. Since \mathscr{F}_{j} is n-critical, we must have $B \supseteq F_{j}$ or $B \cap F_{j}=\varnothing$ for each j. It cannot occur that $B \supseteq F_{j}$ for all j since this implies $B \supseteq\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Also, we cannot have $B \cap F_{j}=\varnothing$ for all j since this gives $B \cap\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\varnothing$. Thus $B \supseteq F_{j}$ for $j=1,2, \ldots, r$ and $B \cap F_{j}=\varnothing$ for $j=r+1, \ldots, n$, say. This
implies, however, that if $a \in B, B \supseteq\{a\} \cup\left(F_{1} \sim\left\{a_{1}\right\}\right)$, while, if $a \notin B, B \cap(\{a\} \cup$ $\left(F_{r+1} \sim\left\{a_{r+1}\right\}\right)=\varnothing$. This is a contradiction. Hence \mathscr{F}^{*} does not have property \mathscr{B} and (c) holds.

Finally, we must establish (d). This is slightly more involved. We have to show that every proper subfamily of \mathscr{F}^{*} has property \mathscr{B}. Clearly it suffices to consider only those families \mathscr{F} obtained from \mathscr{F}^{*} by deleting a single set F. We consider three cases. In each case we exhibit a set B which is suitable with respect to $\mathscr{F}=$ $\mathscr{F} * \sim\{F\}$.

Case (i) $F=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
Let $B_{j} \subseteq \mathscr{F}_{j}$ be suitable with respect to $\mathscr{F}_{j} \sim\left\{F_{j}\right\}$. Then either $B_{j} \supseteq F_{j}$ or $B_{j} \cap$ $F_{j}=\varnothing$, since otherwise \mathscr{F}_{j} would have property \mathscr{B}. There is no loss of generality in assuming that $B_{j} \supseteq F_{j}$ since otherwise we may replace B_{j} by its complement in $\cup \mathscr{F}_{j}$. It is now easy to check that $B=\bigcup_{j=1}^{n} B_{j}$ is suitable with respect to \mathscr{F}.

Case (ii) $F=\{a\} \cup\left(F_{i} \sim\left\{a_{i}\right\}\right)$ for some i.
Let B_{j} be suitable with respect to $\mathscr{F}_{j} \sim\left\{F_{j}\right\}$ and suppose as in case (i) that $B_{j} \supseteq F_{j}$. Let \bar{B}_{i} denote the complement of B_{i} in $\cup \mathscr{F}_{i}$. Then $B=\left(\bigcup_{j \neq i} B_{j}\right) \cup \bar{B}_{i}$ is suitable with respect to \mathscr{F}.

Case (iii) $F \in \mathscr{F}_{i} \sim\left\{F_{i}\right\}$ for some i.
For $j \neq i$ let B_{j} be suitable with respect to $\mathscr{F}_{j} \sim\left\{F_{j}\right\}$ and suppose $B_{j} \supseteq F_{j}$. Let B_{i} be suitable with respect to $\mathscr{F}_{i} \sim\{F\}, B_{i} \supseteq F$. Then if $a_{i} \in B_{i}, B=\{a\} \cup$ $\left(\cup_{j \neq i} \bar{B}_{j}\right) \cup B_{i}$ is suitable with respect to \mathscr{F}, while if $a_{i} \notin B_{i}, B=\bigcup_{j=1}^{n} B_{j}$ is suitable.

This completes the proof of the theorem.
In [1] the following question was considered. Let $n \geq 3$ and $N \geq 2 n-1$. Denote by $m(N, n)$ the least integer for which there exists a family \mathscr{F} of $m(N, n)$ sets satisfying (a), (c), (d) and the condition $|\cup \mathscr{F}|=N$. It was shown in [1] that there exist constants α_{n} and β_{n} such that $\alpha_{n} \leq m(N, n) / N \leq \beta_{n}$ and it was asked whether $\operatorname{limit}_{N \rightarrow \infty}(m(N, n) / N)$ exists. This question can now be answered affirmatively as follows. For $j=1,2, \ldots, n$ let $N_{j} \geq 2 n-1$ and let \mathscr{F}_{j} be a family of sets satisfying (a), (c), (d) and the condition $\left|\cup \mathscr{F}_{j}\right|=N_{j}$. Let \mathscr{F}^{*} be constructed as in the proof of the theorem. One can then show that $\mathscr{F} *$ has properties (a), (c) and (d) and hence that

$$
\begin{equation*}
m\left(1+\sum_{j=1}^{n} N_{j}, n\right) \leq 1+\sum_{j=1}^{n} m\left(N_{j}, n\right) \tag{1}
\end{equation*}
$$

The proof parallels closely the proof of the theorem, so we do not present the details here. It follows easily from (1) and Fekete's Lemma [5] that $\operatorname{limit}_{N \rightarrow \infty}(m(N, n) /$ N) exists.

Acknowledgement. This paper was written while the author was on sabbatical leave at the Massachusetts Institute of Technology. He wishes to express his thanks to M.I.T. for its hospitality.

References

1. H. L. Abbott and D. Hanson, On a combinatorial problem of Erdös, Can. Math. Bull. 12 (1969), 823-830.
2. H. L. Abbott, An application of Ramsey's theorem to a problem of Erdös and Hajnal, Can. Math. Bull. 8 (1965), 515-518.
3. P. Erdös and A. Hajnal, On chromatic numbers of graphs and set systems, Acta Math. Acad. Sci. Hung. 17 (1966), 61-99.
4. L. Lovász, On the chromatic number of finite set systems, Acta Math. Acad. Sci. Hung. 19 (1968), 59-67.
5. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzgahligen Koeffizienten, Math. Zeit. 17 (1923) 228-249.

University of Alberta
Edmonton, Canada
and
Massachusetts Institute of Technology
Cambridge, Mass. 02139
U.S.A.

