Canad. Math. Bull. Vol. 18 (1), 1975

ON PROPERTY 3 OF FAMILIES OF SETS

BY

H. L. ABBOTT

A family \mathscr{F} of sets is said to have property \mathscr{B} if there exists a set B such that $B \cap F \neq \emptyset$ and $B \Rightarrow F$ for every $F \in \mathscr{F}$. Such a B will be called suitable with respect to \mathscr{F} . It is known (see [3]) that for each positive integer n there exists a family \mathscr{F} of sets satisfying the following conditions:

- (a) |F| = n for each $F \in \mathscr{F}$
- (b) $|F \cap G| \leq 1$ for $F, G \in \mathcal{F}, F \neq G$
- (c) \mathcal{F} does not have property \mathcal{B} .

The proof of this result uses probabilistic methods. A simple constructive proof is given in [2]. Let us call \mathscr{F} *n*-critical if, in addition to (a), (b) and (c), it also satisfies:

(d) Every proper subfamily of \mathcal{F} has property \mathcal{B} .

It can be deduced from results of Erdős and Hajnal ([3] Theorem 12.9) or Lovász ([4], pp. 65–67) that for every n, arbitrarily large n-critical families exist. The proofs of these results are quite complicated. In this note we establish the existence of arbitrarily large n-critical families by means of a simple construction. In addition, we answer a question which was raised in [1].

THEOREM. If n > 1 and there exists an n-critical family of size m, then there exists an n-critical family of size nm+1.

Proof. Let \mathscr{F}_i , i=1, 2, ..., n, be *n*-critical families with $|\mathscr{F}_i|=m$. We suppose that $F \cap G = \emptyset$ if $F \in \mathscr{F}_i$, $G \in \mathscr{F}_k$ and $i \neq k$. For each j let $F_j \in \mathscr{F}_j$ and $a_j \in F_j$. Let $a \notin \bigcup_{i=1}^n (\bigcup_{F \in \mathscr{F}_i} F)$. Let \mathscr{F}^* be the family consisting of the following sets:

(i) $\{a_1, a_2, \ldots, a_n\}$

- (ii) $\{a\} \cup (F_j \sim \{a_j\}) j = 1, 2, \ldots, n.$
- (iii) The sets in $\bigcup_{j=1}^{n} \mathscr{F}_{j}$ excluding $F_{1}, F_{2}, \ldots, F_{n}$.

Note that $|\mathcal{F}^*| = nm+1$. We now show that \mathcal{F}^* is *n*-critical. Condition (a) obviously holds and one can easily verify (b). It remains to verify (c) and (d).

To establish (c), suppose that \mathscr{F}^* has property \mathscr{B} and let B be suitable with respect to \mathscr{F}^* . Since \mathscr{F}_j is *n*-critical, we must have $B \supseteq F_j$ or $B \cap F_j = \emptyset$ for each j. It cannot occur that $B \supseteq F_j$ for all j since this implies $B \supseteq \{a_1, a_2, \ldots, a_n\}$. Also, we cannot have $B \cap F_j = \emptyset$ for all j since this gives $B \cap \{a_1, a_2, \ldots, a_n\} = \emptyset$. Thus $B \supseteq F_j$ for $j=1, 2, \ldots, r$ and $B \cap F_j = \emptyset$ for $j=r+1, \ldots, n$, say. This implies, however, that if $a \in B$, $B \supseteq \{a\} \cup (F_1 \sim \{a_1\})$, while, if $a \notin B$, $B \cap (\{a\} \cup (F_{r+1} \sim \{a_{r+1}\}) = \emptyset$. This is a contradiction. Hence \mathscr{F}^* does not have property \mathscr{B} and (c) holds.

Finally, we must establish (d). This is slightly more involved. We have to show that every proper subfamily of \mathscr{F}^* has property \mathscr{B} . Clearly it suffices to consider only those families \mathscr{F} obtained from \mathscr{F}^* by deleting a single set F. We consider three cases. In each case we exhibit a set B which is suitable with respect to $\mathscr{F} = \mathscr{F}^* \sim \{F\}$.

Case (i) $F = \{a_1, a_2, ..., a_n\}$

Let $B_j \subseteq \mathscr{F}_j$ be suitable with respect to $\mathscr{F}_j \sim \{F_j\}$. Then either $B_j \supseteq F_j$ or $B_j \cap F_j = \emptyset$, since otherwise \mathscr{F}_j would have property \mathscr{B} . There is no loss of generality in assuming that $B_j \supseteq F_j$ since otherwise we may replace B_j by its complement in $\cup \mathscr{F}_j$. It is now easy to check that $B = \bigcup_{j=1}^n B_j$ is suitable with respect to \mathscr{F} .

Case (ii) $F = \{a\} \cup (F_i \sim \{a_i\})$ for some *i*.

Let B_i be suitable with respect to $\mathscr{F}_i \sim \{F_i\}$ and suppose as in case (i) that $B_j \supseteq F_j$. Let \tilde{B}_i denote the complement of B_i in $\bigcup \mathscr{F}_i$. Then $B = (\bigcup_{i \neq i} B_i) \cup \tilde{B}_i$ is suitable with respect to \mathscr{F} .

Case (iii) $F \in \mathcal{F}_i \sim \{F_i\}$ for some *i*.

For $j \neq i$ let B_j be suitable with respect to $\mathscr{F}_i \sim \{F_j\}$ and suppose $B_j \supseteq F_j$. Let B_i be suitable with respect to $\mathscr{F}_i \sim \{F\}$, $B_i \supseteq F$. Then if $a_i \in B_i$, $B = \{a\} \cup (\bigcup_{i \neq i} \bar{B}_i) \cup B_i$ is suitable with respect to \mathscr{F} , while if $a_i \notin B_i$, $B = \bigcup_{i=1}^n B_i$ is suitable.

This completes the proof of the theorem.

In [1] the following question was considered. Let $n \ge 3$ and $N \ge 2n-1$. Denote by m(N, n) the least integer for which there exists a family \mathscr{F} of m(N, n) sets satisfying (a), (c), (d) and the condition $| \cup \mathscr{F} | = N$. It was shown in [1] that there exist constants α_n and β_n such that $\alpha_n \le m(N, n)/N \le \beta_n$ and it was asked whether limit_{N\to\infty}(m(N, n)/N) exists. This question can now be answered affirmatively as follows. For $j=1, 2, \ldots, n$ let $N_j \ge 2n-1$ and let \mathscr{F}_j be a family of sets satisfying (a), (c), (d) and the condition $| \cup \mathscr{F}_j | = N_j$. Let \mathscr{F}^* be constructed as in the proof of the theorem. One can then show that \mathscr{F}^* has properties (a), (c) and (d) and hence that

(1)
$$m\left(1+\sum_{j=1}^{n}N_{j},n\right) \leq 1+\sum_{j=1}^{n}m(N_{j},n).$$

The proof parallels closely the proof of the theorem, so we do not present the details here. It follows easily from (1) and Fekete's Lemma [5] that $\lim_{N\to\infty} (m(N, n)/N)$ exists.

ACKNOWLEDGEMENT. This paper was written while the author was on sabbatical leave at the Massachusetts Institute of Technology. He wishes to express his thanks to M.I.T. for its hospitality.

https://doi.org/10.4153/CMB-1975-024-0 Published online by Cambridge University Press

REFERENCES

1. H. L. Abbott and D. Hanson, On a combinatorial problem of Erdös, Can. Math. Bull. 12 (1969), 823-830.

2. H. L. Abbott, An application of Ramsey's theorem to a problem of Erdös and Hajnal, Can. Math. Bull. 8 (1965), 515-518.

3. P. Erdös and A. Hajnal, On chromatic numbers of graphs and set systems, Acta Math. Acad. Sci. Hung. 17 (1966), 61-99.

4. L. Lovász, On the chromatic number of finite set systems, Acta Math. Acad. Sci. Hung. 19 (1968), 59-67.

5. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzgahligen Koeffizienten, Math. Zeit. 17 (1923) 228-249.

UNIVERSITY OF ALBERTA Edmonton, Canada and

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS. 02139 U.S.A.