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Recurrent Geodesics in

Flat Lorentz 3-Manifolds

Virginie Charette, William M. Goldman and Catherine A. Jones

Abstract. Let M be a complete flat Lorentz 3-manifold M with purely hyperbolic holonomy Γ. Recur-

rent geodesic rays are completely classified when Γ is cyclic. This implies that for any pair of periodic

geodesics γ1, γ2, a unique geodesic forward spirals towards γ1 and backward spirals towards γ2.

1 Introduction

This note concerns the dynamical properties of geodesics in a flat Lorentz 3-manifold

M. We assume M is geodesically complete, that is, M is the quotient A
2,1/Γ of 3-

dimensional Minkowski spacetime A
2,1 by a discrete group Γ of affine isometries

acting properly on A
2,1.

A recurrent geodesic ray is a nonproper affine map from R
+ into M. We mainly

focus on the case when Γ is cyclic. This basic example already displays rich and

interesting behavior. Theorem 3.3 implies that recurrent geodesics lie in one of two

codimension-one submanifolds of M, which intersect in the unique periodic (and

birecurrent) geodesic.

Section 2 develops preliminaries on Minkowski space and its isometries. We de-

scribe a measure of signed Lorentzian distance, called the Margulis invariant, which

we use to classify recurrent rays. We define what it means for a geodesic to be recur-

rent and spiralling.

Section 3 is devoted to the particular case of cylinders: quotients of spacetime

by cyclic hyperbolic groups 〈γ〉. By means of a 〈γ〉-invariant function, we show in

Lemma 3.1 that recurrent geodesic rays must lie in one of two codimension-one sub-

manifolds. Not every geodesic ray in those submanifolds is recurrent: Theorem 3.3

provides a characterization of recurrent geodesic rays in cylinders. The notion of a

geodesic ray spiralling towards a periodic geodesic is introduced.

The most interesting examples are Margulis spacetimes, when Γ is a free purely

hyperbolic discrete subgroup of the isometry group of A
2,1, that is, a Schottky group.

Drumm [2, 3] showed that every noncocompact discrete subgroup of SO(2, 1) ad-

mits proper affine deformations. Non-periodic birecurrent geodesics can only be

found when the rank of the fundamental group is greater than one. We discuss how

Theorem 3.3 extends to Margulis spacetimes in Section 4.

Some of the results in this paper first appeared in [1].
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2 Geometry of Minkowski Spacetime

2.1 Minkowski 2 + 1-Spacetime

Let R
2,1 denote a three-dimensional real vector space equipped with the standard

symmetric bilinear form of signature (2, 1):

B(x, y) = x1 y1 + x2 y2 − x3 y3,

where x = (x1, x2, x3) and y = (y1, y2, y3). A vector v ∈ R
2,1 is spacelike (resp.

timelike, lightlike) if B(v, v) > 0 (resp. B(v, v) < 0, B(v, v) = 0). (Lightlike vectors

are also called null.)

Denote by A
2,1 the affine space modeled on R

2,1: for every p ∈ A
2,1, the tangent

space

A
2,1
p = {q − p : q ∈ A

2,1}

is endowed with the bilinear form B( · , · ). Clearly, A
2,1
p

∼= R
2,1.

We adopt the following convention to distinguish vectors from points in affine

space: vectors in R
2,1 will be written in bold face x, y, v etc., whereas points in A

2,1

will be denoted p, q, etc.

Any line in A
2,1 can be described as p + Rv, where p ∈ A

2,1 and v ∈ R
2,1. Two

lines p + Rv, q + Rw are parallel if v = kw for some k 6= 0; we also say that the line is

parallel to v. The line p + Rv is called spacelike, timelike or lightlike according to the

causal character of v.

The set of non-spacelike vectors, with the origin removed, has two connected

components. A choice of component is a time orientation on R
2,1. We will adopt the

standard time orientation: a non-spacelike vector v = (v1, v2, v3) is future-pointing if

v3 > 0 and past-pointing otherwise.

The Lorentz-orthogonal plane of v ∈ R
2,1 at p is the set of all vectors based at p

which are Lorentz-orthogonal to v:

p + v
⊥

= {q ∈ A
2,1 : B(q − p, v) = 0}

= {p + x : B(x, v) = 0, x ∈ R
2,1}.

2.2 Isometries

An affine isometry of A
2,1 is an affine transformation γ whose linear part preserves the

bilinear form B( · , · ). Thus the linear part of an affine isometry of A
2,1 lies in O(2, 1).

The isometry group of A
2,1 is denoted Isom(A

2,1). The connected component of

the identity of O(2, 1), denoted SO(2, 1)0, consists of those linear isometries which

preserve orientation and time orientation.

An affine isometry is said to be hyperbolic if its linear part is hyperbolic: that is, it

is an element of SO(2, 1)0 which has three real distinct eigenvalues.

If g ∈ SO(2, 1)0 is hyperbolic, then its eigenvalues are λ < 1 < λ−1, for some

positive λ ∈ R. The λ- and λ−1-eigendirections are lightlike and the 1-eigendirection

is spacelike.
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Let g ∈ SO(2, 1)0 be a hyperbolic isometry with smallest eigenvalue λ < 1. Set

x+(g), x−(g) to be future-pointing eigenvectors of λ−1, λ, respectively, normalized

so that ‖x±(g)‖ = 1, where ‖ · ‖ denotes Euclidean length.

Choose x0(g) to be the unique spacelike 1-eigenvector satisfying B(x0(g), x0(g))

= 1, such that the null frame

{x
0(g), x

−(g), x
+(g)}

is a positively oriented basis. For hyperbolic γ ∈ Isom(A
2,1) with linear part g, set:

{x
0(γ), x

−(γ), x
+(γ)} = {x

0(g), x
−(g), x

+(g)}.

The following facts are well known:

Lemma 2.1 Let γ ∈ Isom(A
2,1) be hyperbolic. Then there exists a line Cγ ⊂ A

2,1,

parallel to x0(γ), which is invariant under the action of γ. Moreover, γ acts by transla-

tion on Cγ . Furthermore, Cγ is the unique γ-invariant line if and only if γ acts freely on

A
2,1.

Proof Since γ is affine, it acts on N , the space of lines parallel to x0(γ). Observe that

N is isomorphic to the Lorentz-orthogonal plane x0(γ)⊥, which, in turn, is isomor-

phic to two-dimensional Minkowski space. The eigenvalues of the induced action of

γ each differ from 1, so this action has a fixed point.

Let Cγ ⊂ A
2,1 be the line parallel to x0(γ) corresponding to this fixed point in N ;

clearly, Cγ is invariant under the action of γ: if p ∈ Cγ ,

(1) γ(p) = p + αx
0(γ),

where α ∈ R. Any other point q on Cγ can be written as p + tx0(γ), for some t ∈ R.

Since x0(γ) is fixed by γ,

γ(q) = γ
(

p + tx0(γ)
)

= γ(p) + tx0(γ) = q + αx
0(γ).

Thus γ acts by translation on Cγ .

Finally, γ fixes a point p if and only if the line p + Rx0(γ) is pointwise fixed, so Cγ

is the unique γ-invariant line if and only if γ acts freely.

2.3 Margulis’s Invariant

In his construction of properly discontinuous affine groups, Margulis [4, 5] intro-

duced the following invariant.

Definition 2.2 For a hyperbolic isometry γ ∈ Isom(A
2,1), set α(γ) to be the pa-

rameter α in (1).

Since α(γ) represents the displacement of γ along Cγ , the proof of Lemma 2.1

implies:

Lemma 2.3 Let γ ∈ Isom(A
2,1) be a hyperbolic isometry. Then γ acts freely on A

2,1 if

and only if α(γ) 6= 0.
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2.4 Stable and Unstable Planes

Definition 2.4 Let γ ∈ Isom(A
2,1) be hyperbolic and let p ∈ Cγ . The planes

E+

γ = p + 〈x0(γ), x
+(γ)〉 = p + x

+(γ)⊥

E−

γ = p + 〈x0(γ), x
−(γ)〉 = p + x

−(γ)⊥,

are the weak-unstable plane and the weak-stable plane of γ respectively.

Note that E+

γ = E−

γ−1 , E+

γ ∩ E−
γ = Cγ , and E±

γ is γ-invariant.

Consider the orbit of a point q in A
2,1, under the action of γ. We can write

q = p + k+
x

+(γ) + k−x
−(γ),

where p ∈ Cγ and k± ∈ R. Thus for every n,

γn(q) = p + nα(γ)x0(γ) + k+λ−n
x

+(γ) + k−λn
x
−(γ).

If k+
= 0, the orbit converges towards Cγ as n increases. When k+ 6= 0, the se-

quence approaches E+

γ , but eventually leaves every compact set intersecting the weak-

unstable plane. When n → −∞, γ(q) approaches Cγ if k− = 0 and approaches E−
γ

otherwise.

2.5 Geodesics

Let M = A
2,1/Γ, where Γ < Isom(A

2,1) acts properly on A
2,1. Then M is a complete

Lorentz manifold and its fundamental group is isomorphic to Γ. Let π : A
2,1 → M

denote the quotient projection.

A geodesic in M is a nonconstant affine map l : R → M, that is, the composition

π ◦ l̃ where l̃ : R → A
2,1 is a nonconstant affine map. The reverse of a geodesic l is the

geodesic −l defined by

−l(t) := l(−t).

A geodesic ray in M is a nonconstant affine map l : R
+ → M, that is, the composition

π ◦ l̃ where l̃ : R
+ → A

2,1 is a nonconstant affine map. The forward ray of a geodesic l

is the restriction of l to R
+ and the backward ray of l is the forward ray of −l.

A geodesic ray l is parallel to a line (respectively vector or ray), if it can be lifted to

a line in A
2,1 that is parallel to the line (respectively, vector or ray).

2.6 Periodic Geodesics

A geodesic l is periodic if for some T > 0, and all t > 0,

(2) l(t + T) = l(t).

The smallest positive T satisfying (2) is the period of l. Let l : R → M be a peri-

odic geodesic with period T. The restriction of l to [0, T] determines an element
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γl ∈ π1

(

M; l(0)
)

. The cylinder associated to l is the quotient Ml := A
2,1/〈γl〉, which

is the total space of a covering space Ml → M.

In particular, if π1

(

M, l(0)
)

is cyclic and the linear holonomy is purely hyperbolic,

then M is a cylinder.

We will often identify a periodic geodesic with its image, which is an immersed S1

in M.

2.7 Recurrence

The following conditions are equivalent:

• l : R
+ → M is a proper map: for every compact K ⊂ M, the inverse image

l−1(K) ⊂ R
+ is compact;

• For every increasing sequence tk → +∞, the sequence l(tk) has no accumulation

point;
• l is not periodic and the image l(R

+ ∪ {0}) is closed.

A geodesic ray l is recurrent if the mapping l : R
+ → M is not proper. Equivalently,

its image l(R
+) has compact closure in M.

A geodesic is also said to be recurrent if its forward ray or its backward ray is

recurrent. For example, a periodic geodesic is recurrent.

A geodesic ray r spirals towards a periodic geodesic l if for every neighborhood N

of l, there exists T = T(N) > 0 such that r(t) ∈ N for t > T. In particular, such a

geodesic is recurrent.

A geodesic l is birecurrent if both its forward ray and its backward ray are recurrent.

A geodesic l bispirals if both its forward ray and backward ray spiral towards periodic

geodesics.

3 Cylinders

We now classify recurrent geodesic rays in cylinders. Let M = A
2,1/〈γ〉, where γ is a

hyperbolic affine isometry of A
2,1.

The stable surface M−
= π(E−

γ ) and the unstable surface M+
= π(E+

γ ) are each

diffeomorphic to an annulus to which M deformation retracts. Similarly M+, M−

each deformation retract to the core geodesic M0
= M+ ∩ M−, which is the unique

periodic geodesic in M.

Lemma 3.1 A recurrent geodesic ray R
+ → M lies in either M+ or M−.

Proof Let p be an arbitrary point on the invariant line Cγ . For every point q ∈ A
2,1,

write

q = p + k0
x

0(γ) + k−x
−(γ) + k+

x
+(γ)

where k−, k+, k0 ∈ R and {x−(γ), x+(γ), x0(γ)} is the null frame associated to γ.

Then

γ(q) = p +
(

k0 + α(γ)
)

x
0(γ) + λk−x

−(γ) + λ−1k+
x

+(γ)
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and

B
(

γ(q) − p, x
±(γ)

)

= B
(

γ(q − p), x
±(γ)

)

= λ±1
B

(

q − p, x
±(γ)

)

.

Thus the quadratic function f̃ : A
2,1 → R given by

(3) f̃ (q) = B
(

q − p, x
−(γ)

)

B
(

q − p, x
+(γ)

)

is independent of the choice of p ∈ Cγ , and is 〈γ〉-invariant. Define f : M → R as

f := π ◦ f̃ .

Suppose that l : R
+ → M is a recurrent geodesic ray. Write l = π ◦ l̃ where

l̃ : R
+ → A

2,1(4)

t 7→ q + tv

is a lift of l in A
2,1. Then

(5) ( f ◦ l)(t) = ( f̃ ◦ l̃)(t) = a + bt + ct2

where p is an arbitrary point on Cγ and

a = f (l(0)),

b = B
(

q − p, x
+(γ)

)

B
(

v, x
−(γ)

)

+ B
(

q − p, x
−(γ)

)

B
(

v, x
+(γ)

)

,

c = B
(

v, x
+(γ)

)

B
(

v, x
−(γ)

)

.

Unless c = 0, the function f ◦ l : R
+ → R in (5) is quadratic and is unbounded as

t → +∞. If c = 0 but b 6= 0, then f ◦ l is a nonconstant affine function, also tending

to ±∞ as t → +∞. In either case f ◦ l defines a proper map R
+ → R, contradicting

recurrence of l. Thus f ◦ l is constant, that is b = c = 0.

Since c = 0, at least one of B
(

v, x+(γ)
)

, B
(

v, x−(γ)
)

must vanish. Thus l̃ is

parallel to either E−
γ or E+

γ respectively. If it is parallel to both, then v is parallel to

x0(γ). We postpone the discussion of this case to the end of the proof.

Suppose that l̃ is parallel to E+

γ , but not E−
γ . Thus B

(

v, x+(γ)
)

= 0 but

B(v, x−(γ)) 6= 0. Then b = 0 implies that B
(

q − p, x+(γ)
)

= 0. Therefore

l̃ : R
+ → E+

γ .

In the same fashion, if l̃ is parallel to E−
γ , but not E+

γ , then l̃(R
+) ⊂ E−

γ .

Finally, suppose that l̃ is parallel to x0(γ), but lies on neither E−
γ nor E+

γ . Let

U = A
2,1 − (E−

γ ∪ E+

γ ).

Consider the quotient space N of A
2,1 by the one-dimensional foliation parallel to

Cγ . The restriction of the quotient map Π : A
2,1 → N to U is a 〈γ〉-equivariant

mapping with respect to a proper action of 〈γ〉 ∼= Z on U ′
= Π(U ). Specifically, U ′
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is the complement of two intersecting lines in the plane N and 〈γ〉 acts by hyperbolic

linear maps with discrete orbits.

Thus the composition

〈γ〉 × {q} → A
2,1 Π

→ N

(γn, q) 7→ γnq

is proper. Consequently the mapping

〈γ〉 × R
+ → A

2,1

(γn, t) 7→ γn(q + tv)

is proper. Therefore l : R
+ → M is proper, a contradiction.

Lemma 3.2 Suppose l = π ◦ l̃ is a geodesic ray in M, with l̃(t) = p + tv. Suppose one

of the following conditions holds:

(i) l ⊂ M+ and B
(

α(γ)x0(γ), v
)

> 0,

(ii) l ⊂ M− and B
(

α(γ)x0(γ), v
)

< 0.

Then l spirals towards M0.

Proof First suppose that l ⊂ M+, so that l̃ lies in the weak-unstable plane E+

γ . Let N

be a neighborhood of M0.

We can choose Ṽ in a lift of N such that Ṽ ∩ E+

γ is a quadrilateral with vertices

p ± k0x0(γ) ± k+x+(γ), with p ∈ Cγ . Then:

γnṼ ∩ E+

γ = p +
(

α(γ) ± k0
)

x
0(γ) ± k+λ−n

x
+(γ).

As n increases, the γn-translates of Ṽ are dilated in the x+(γ)-direction at the

rate of λ−n, whereas the x+(γ)-coefficient of l̃ grows linearly. Furthermore, since

B
(

α(γ)x0(γ), v
)

> 0, the ray l̃
(

[T,∞)
)

is entirely contained in
⋃

n>n0
γn(Ṽ ), for

some n0 > 0 and T ∈ R
+. Therefore l

(

[T,∞)
)

⊂ N .

Since the E+

γ = E−

γ−1 , the proof for condition (ii) reduces to the proof considered

previously: α(γ−1) = α(γ−1) and x0(γ−1) = −x0(γ) imply B(α(γ−1)x0(γ−1), v)

> 0, as desired.

In particular, every geodesic in M+ ∪ M− parallel to a spacelike vector contains a

recurrent ray: either its forward ray or its backward ray spirals towards M0.

We show these are the only recurrent geodesic rays in a cylinder. To this end, apply

a coordinate change on E±
γ , so that γ acts by translation. (Compare [1], where the

approach is in the same spirit as Lemma 3.2). Although Theorem 3.3 does not require

Lemma 3.2, Lemma 3.2 suggests how recurrence arises.

The restriction of γ to E+

γ is represented by the affine map

γ+ :

[

x

y

]

7→

[

1 0

0 λ−1

] [

x

y

]

+

[

α
0

]

,
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where 0 < λ < 1 and α 6= 0.

Apply the coordinate change

[

x

y

]

→

[

x

η

]

,

where

η(x, y) = λx/α y,

y(x, η) = λ−x/αη.

The action of 〈γ〉 in (x, η)-coordinates is given by horizontal translation by nα:

(γ+)n :

[

x

η

]

7→

[

x + nα
η

]

.

This defines a 〈γ〉-invariant diffeomorphism of the stable surface M+ with the Carte-

sian product (R/αZ) × R

ξ : M+ → (R/αZ) × R

[

x

y

]

7→

[

x mod αZ

η(x, y)

]

.

A geodesic in the unstable plane falls into one of two categories, depending on

whether it is parallel to the eigenvector x+(γ) or not. If the geodesic is parallel to

x+(γ), then we call it a vertical geodesic.

Theorem 3.3 Suppose l = π ◦ l̃ is a geodesic ray in M, with l̃(t) = p + tv. Then l is

recurrent if and only if one of the following holds:

(i) l ⊂ M+ and B
(

α(γ)x0(γ), v
)

> 0

(ii) l ⊂ M− and B
(

α(γ)x0(γ), v
)

< 0.

Proof By Lemma 3.1, any recurrent geodesic must lie in M+ ∪ M−. Lemma 3.2

shows that conditions (i) and (ii) are sufficient. We will now show that condition (i)

is necessary when l ⊂ M+. The fact that condition (ii) must hold when l ⊂ M− is

proved as in Lemma 3.2, by substituting γ−1 for γ.

Since in (x, η)-coordinates, γ acts by translation along the x-axis, a geodesic ray is

proper if and only if its η-coordinate is unbounded.

Let β̃ : R → M+ be the geodesic containing l̃ as either its forward or backward ray.

If β̃ is vertical, it admits the following representation:

β̃(t) =

[

x0

y0

]

+ t

[

0

c

]

.
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In the (x, η)-coordinate system:

ξ ◦ β̃(t) =

[

x0 mod αZ

η0 + c ′t

]

,

where

η0 = λx0/α y0,

c ′ = λx0/αc.

As t → +∞, the η-coordinate is unbounded. Hence the geodesic ray ξ ◦ β̃(t) does

not recur.

If β̃ is not vertical, then

β̃(t) =

[

x0

y0

]

+ t

[

1

m

]

,

where m ∈ R is the slope of β̃. Then

η ◦ β̃(t) = eµt (y ′

0
+ tm ′),

where

y ′

0
= λx0/α y0,

m ′
= λx0/αm,

µ = log(λ)/α.

Suppose now that l̃ is the forward ray of β̃. The η-coordinate is bounded exactly

when µ < 0. Since 0 < λ < 1, α > 0. If l̃ is the backward ray of β̃, then the

η-coordinate is bounded if and only if µ > 0, that is, when α < 0. In either case, l is

recurrent if and only if B
(

α(γ)x0(γ), v
)

> 0.

Figure 1 illustrates the proof of the theorem, by showing the orbit of a recurrent

geodesic in (x, η)-coordinates. Figure 2 shows the result in the quotient: the geodesic

l ⊂ M+ may cross the periodic geodesic M0. In that case l crosses M0 transversely,

and then spirals back towards M0, intersecting itself infinitely many times.

If m = 0, then l never intersects itself, but spirals towards M0 on one side.

Corollary 3.4 The only birecurrent geodesic in M is the periodic geodesic M0.
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Figure 1: The orbit of a recurrent geodesic on the unstable surface in (x, η)-coordinates: the

horizontal line projects to M0, and all recurrent geodesics in M+ spiral towards it.

C

M−

β

Figure 2: How a ray spirals towards a periodic geodesic.

4 Recurrent Geodesics in Flat Lorentz 3-Manifolds

Theorem 4.1 Let M be a complete flat Lorentz 3-manifold. For any oriented periodic

geodesics l1, l2 : R → M, there exists a birecurrent geodesic l whose forward ray spirals

towards l1 and whose backward ray spirals towards l2.

Such geodesics correspond to equivalence classes of arcs a whose endpoints lie on

l1 and l2, under the equivalence relation of homotopy relative to l1 and l2.

Proof Choose a basepoint x ∈ M and the corresponding universal covering space

Π : A
2,1 → M. Join l1, l2 to x by arcs a1, a2 respectively such that the composition

a1a−1

2
is homotopic to a by a homotopy relative to l1 and l2. Let γi be the holonomy

of the based loops corresponding to li , i = 1, 2. Thus li lifts to Cγi
in the universal
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cover.

For γ ∈ Γ, denote its associated stable and unstable surfaces in M by M±
γ . Every

geodesic in M is the projection of a geodesic in the cylinder MCγ
, since it is a covering

space.

Now suppose l is a geodesic in M+

γi
⊂ M. By Theorem 3.3, its forward ray spirals

towards li . Similarly if l ⊂ M−
γi

, then its backward ray spirals towards li .

Bispiralling geodesics are obtained as follows. The intersection M+

γ1
∩ M−

γ2
is the

image of the intersection of the two planes E+

γ1
and E−

γ2
, which is a line. Choose a

linear parametrization

l : R → E+

γ1
∩ E−

γ2
.

The forward ray of l spirals towards l1 and the backward ray of l spirals towards l2 as

claimed.

References

[1] V. Charette, Proper Actions of Discrete Groups in 2 + 1 Spacetime. Doctoral dissertation, University
of Maryland, 2000.

[2] T. Drumm, Fundamental polyhedra for Margulis space-times. Doctoral Dissertation, University of
Maryland, 1990.

[3] , Fundamental polyhedra for Margulis space-times. Topology (4) 31(1992), 677–683.
[4] G. A. Margulis, Free properly discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR

272(1983), 937–940.
[5] , Complete affine locally flat manifolds with a free fundamental group. J. Soviet Math. 134

(1987), 129–134

Department of Mathematics

University of Manitoba

Winnipeg, Manitoba

R3T 2N2

e-mail: charette@cc.umanitoba.ca

Department of Mathematics

University of Maryland

College Park, Maryland 20742

USA

e-mail: wmg@math.umd.edu

Department of Mathematics

University of Maryland

College Park, Maryland 20742

USA

e-mail: caj@math.umd.edu

https://doi.org/10.4153/CMB-2004-032-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-032-5

