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Introduction and Motivation: Are Birds Smarter Than
Nerds?

Everyone has seen “flocking,” by which I mean the collective, coherent motion
of large numbers of organisms [8, 9, 10, 11]. Flocks of birds and schools of fish,
and herds of wildebeest, are all familiar sights (although the latter possibly only in
nature documentaries). Perhaps nowadays it is most commonly seen in the simula-
tions used for digital cinematic special effects [8, 9, 10, 11]; these have led to the
only Oscar ever given for a physics project!

In the past couple of decades, many synthetic systems of self-propelled particles
have been fabricated [12, 13] that also exhibit flocking. In addition to providing
important experimental realizations of this phenomenon, these experiments make
clear that flocking does not depend on intelligent decision making by the flockers,
but, rather, can arise spontaneously from simple short-ranged interactions.

I will hereafter refer to all such collective motions – flocks, swarms, herds, col-
lections of synthetic self-propelled objects, etc. – as “flocking”; for convenience, I
will also refer to the “flockers” as “birds,” or, alternatively, “boids.”

Note that flocking can occur over an enormous range of length scales: from
kilometers (herds of wildebeest) to microns (e.g., the microorganism Dictyostelium
discoideum [14, 15, 16, 17]).

Remarkably, despite the familiarity and widespread nature of the phenomenon,
it is only in the past three decades that many of the universal features of flocks have
been identified and understood. It is my goal in this book to explain how we’ve
come to understand one particular type of “flocking”: namely, “polar ordered dry
active fluids,” which I’ll define soon. In the process, I hope to introduce those of you
unfamiliar with it to the “hydrodynamic” approach, which is a powerful technique
that can be applied to any large-scale collective phenomenon.

1.1 An Example of Flocking: the Vicsek Model

To my knowledge, the first physicist to think about flocking – certainly the physicist
who kicked off the modern field of active matter – was Thomas Vicsek [18, 19].
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2 Introduction and Motivation: Are Birds Smarter Than Nerds?

He was, as far as I know, the first to recognize that flocks fall into the broad cat-
egory of nonequilibrium dynamical systems with many degrees of freedom that
has, over the past few decades, been studied using powerful techniques originally
developed for equilibrium condensed matter and statistical physics (e.g., scaling,
the renormalization group, etc.). In particular, Vicsek noted an analogy between
flocking and ferromagnetism: The velocity vector of the individual birds is like the
magnetic spin of an iron atom in a ferromagnet. The usual “moving phase” of a
flock, in which all the birds, on average, are moving in the same direction, is then
the analog of the “ferromagnetic” phase of iron, in which all the spins, on average,
point in the same direction. Another way to say this is that the development of a
nonzero mean center of mass velocity 〈v〉 for the flock as a whole therefore requires
spontaneous breaking of a continuous symmetry (namely, rotational), precisely as
the development of a nonzero magnetization M ≡ 〈S〉 of the spin in a ferromagnet
breaks the continuous1 spin rotational symmetry of the Heisenberg magnet.

Because 〈v〉 is only nonzero in the ordered state, it is an “order parameter” for
flocking [20].

To make this analogy complete obviously requires that the birds, like the spin
in a ferromagnet, live in a rotation invariant environment; that is, that the spins
have nothing external that tells them in which direction to point, and the birds have
nothing external that tells them which way to fly.

To study this phenomenon (the spontaneous breaking of rotation invariance
by collective motion – which is what I will mean henceforth by the term
“flocking”), Vicsek formulated his deservedly famous algorithm. I will now
describe this algorithm in detail.

The model incorporates the following general features.

(1) A large number (a “flock”) of point particles (“boids”2) each move over time
through a space of dimension d (= 2, 3,. . . ), attempting at all times to “follow”
(i.e., move in the same direction as) their neighbors.

(2) The interactions are purely short ranged: Each “boid” responds only to its
neighbors, defined as those “boids” within some fixed, finite distance R0, which
is assumed to be independent of L, the linear size of the “flock.”

(3) The “following” is not perfect: The “boids” make errors at all times, which are
modeled as a stochastic noise. This noise is assumed to have only short-ranged
spatio-temporal correlations.

1 Of course, in a real crystalline ferrogmagnet, crystal symmetry breaking fields make the rotational symmetry
of the spins discrete, rather than continuous, since there are only a discrete set of orientations for the spin
preferred by the lattice. In flocks, there are no such symmetry breaking fields, so the rotational symmetry is
continuous, as it is in the idealized 0(n) Heisenberg model of a ferromagnet. Everything I say hereafter about
ferromagnetic systems implicitly refers to this fully rotationally invariant 0(n) model.

2 I will frequently use the term “boid” (a short form for “birdoid”), coined by C. Reynolds [8].
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1.1 An Example of Flocking: the Vicsek Model 3

(4) The underlying model has complete rotational symmetry: The flock is equally
likely, a priori, to move in any direction.

Any model that incorporates these general features should belong to the same
“universality class,” in the sense that term is used in critical phenomena and con-
densed matter physics. That is, all such systems should be described by the same
simple, universal scaling laws at large distances and times. To see this “univer-
sality,” of course, we need a large flock: The universality becomes exact in the
“thermodynamic” limit; i.e., as N → ∞ , where N is the number of “boids” in
the flock. The specific model proposed and simulated numerically by Vicsek is the
following.

In Vicsek’s discrete time model, a number of birds labeled by i move in a two-
dimensional plane with positions {ri(t)}, with time t being a discrete (integer)
variable. At each integer time, all of the birds simultaneously choose the direction
they will move on the next time step (taken to be of duration 1t = 1) by averaging
the directions of motion of all of those birds within a circle of radius R0 (in the
most convenient units of length R0 = 1) on the previous time step (i.e., updating
is simultaneous). The distance R0 is assumed to be� L, the size of the flock. The
direction the bird actually moves on the next time step differs from the previously
described direction by a random angle ηi(t), with zero mean and standard deviation
1. The distribution of ηi(t) is identical for all birds, time independent, and uncor-
related between different birds and different time steps. Each bird then, on the next
time step, moves in the direction so chosen a distance v01t, where the speed v0 is
the same for all birds.

To summarize, the rule for bird motion in d = 2 is

θi(t + 1) =
〈
θj(t)

〉
n + fi(t), (1.1.1)

ri (t + 1) = ri(t)+ v0 (cos θ (t + 1), sin θ (t + 1)) , (1.1.2)

〈 fi(t)〉 = 0, (1.1.3)〈
fi(t)fj(t′)

〉
= 2Dδijδtt′ , (1.1.4)

where the symbol 〈〉n denotes an average over “neighbors,” which are defined as
the set of birds j satisfying ∣∣rj(t)− ri(t)

∣∣ < R0 . (1.1.5)

Here 〈〉 without the subscript n denote averages over the random distribution of the
noises fi(t), and θi(t) is the angle of the direction of motion of the ith bird (relative
to some fixed reference axis) on the time step that ends at t.
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4 Introduction and Motivation: Are Birds Smarter Than Nerds?

The quantity
〈
θj(t)

〉
n is defined via

〈
θj(t)

〉
n ≡ arctan

( 〈
sin(θj(t))

〉
n〈

cos(θj(t))
〉
n

)
, (1.1.6)

where

〈
sin(θj(t))

〉
n =

∑
j∈n

sin(θj(t))

Nn
,

〈
cos(θj(t))

〉
n =

∑
j∈n

cos(θj(t))

Nn
(1.1.7)

with
∑

j∈n denoting a sum over all neighbors (that is, all birds) satisfying (1.1.5),
and Nn the number of birds satisfying (1.1.5).

This definition is equivalent to saying that the direction each bird moves between
time t and time t+ 1 would, in the absence of noise, be the direction of the average
of the velocity vectors vj(t) of its neighbors at time t.

The reason for this convoluted definition of the average
〈
θj(t)

〉
n is that using the

more obvious definition

〈
θj(t)

〉
nwrong =

∑
j∈n
θj(t)

Nn
(1.1.8)

has pathologies associated with the fact that θj, like all angles, is defined only mod-
ulo 2π . To have an unambiguous definition of θj, therefore, one must introduce a
“cut”; that is, define θj to always lie within some range of width 2π .

For example, one could choose to define θj to always lie in the interval
0 < θj < 2π , with θj = 0 defined to point to the east. But then consider a sit-
uation in which a bird had two neighbors, one heading one degree due south of
east, the other heading one degree due north of east. With our convention, we’d
define θ1 = 1◦, and θ2 = 359◦. Thus, on our next step, if we used the rule (1.1.8),
our bird would head off at 180◦; i.e., almost exactly opposite the direction of its
neighbors. This is clearly not following your neighbors!

You might think you could fix this problem by putting the “cut” due west; that
is, by defining θj to always lie in the interval −π < θj < π . However, you can
easily convince yourself that, while this fixes the problem just described when your
neighbors are heading almost due east, it gives you the same problem if they’re
heading almost due west. Indeed, in general, one will always have problems with
the rule (1.1.8) if your neighbors are moving close to, but on opposite sides of, the
direction in which you choose to put the cut.

You can easily convince yourself that the rule (1.1.7) has no such problems.
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1.1 An Example of Flocking: the Vicsek Model 5

The flock evolves through the iteration of this rule. Note that the “neighbors” of
a given bird may change on each time step, since birds do not, in general, move in
exactly the same direction as their neighbors.

I have been rather precise and detailed in explaining this algorithm. However,
we actually believe that most of the details of this algorithm do not matter for
the scaling properties of the flock. Only a few features (all of which the Vicsek
algorithm possesses) do matter for those scaling laws. These features are: activity,
conservation laws, symmetries, short-ranged interactions, and noisiness. We now
elaborate on these.

(1) Activity: A large number (a “flock”) of point particles (“boids”) each move
over time through a space of dimension d (= 2, 3,. . . ), attempting at all times
to “follow” (i.e., move in the same direction as) their neighbors. This motion is
due to some form of self-propulsion; in Vicsek’s algorithm, the rule is that the
speed of each creature is constant. Departures from this rule are not important,
provided that the boids prefer to be in a state of motion, rather than at rest. This
is what is meant by the word “active” in “polar ordered dry active fluids.”
This self-propulsion requires an energy source; it also requires that the system
be out of equilibrium. Dead birds don’t flock!

(2) Conservation laws: The underlying model does not conserve momentum; the
total momentum of the flock can change. Indeed, it does so every time a crea-
ture turns. We imagine this violation of momentum conservation can happen
because the creatures move either over a fixed surface, in two dimensions, or
through some fixed matrix (e.g., a gel) in three dimensions, with which they
interact frictionally. This surface or matrix therefore acts like a momentum
“source” or “sink.”
This lack of momentum conservation is what is meant by the term “dry” in
“polar ordered dry active fluids.” Note that many active systems – e.g., many
active nematics – are “wet,” by which we mean momentum is conserved. Note,
incidentally, that real birds (and not only water birds!) are “wet” in this sense,
since the sum of their momentum and the momentum of the air through which
they fly is conserved. This changes the dynamics considerably. The problem of
wet flocks can still be treated by a hydrodynamic approach [3, 4, 5, 6], but the
hydrodynamic model is different because of momentum conservation. I will
not discuss that case further here.
There is one conservation law in the Vicsek algorithm, however: The number of
birds is conserved. That is, birds are not being born or dying “on the wing.” You
laugh, but there are many biological situations – bacteria swarms, and tissue
development to name just two – in which this is not a good approximation:
Bacteria or cells are being born and dying on the time scale of the motion.
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6 Introduction and Motivation: Are Birds Smarter Than Nerds?

The hydrodynamics of this case is quite interesting [21, 22, 23], and will be
discussed in Chapter 9.

(3) Symmetry: The underlying model has complete rotational symmetry; the flock
is equally likely, a priori, to move in any direction. I will here consider models
that do not have Galilean invariance: that is, they have a preferred Galilean
frame. This frame is the one in which the background medium over or through
which the boids move is stationary. In the Vicsek algorithm, this is the unique
frame in which the speeds (i.e., the magnitudes of the velocity vectors, but not
the velocity vectors themselves) are the same (and given by v0).

(4) The interactions are purely short ranged: In Vicsek’s model, each “boid” only
responds to its neighbors. In Vicsek’s model, these are defined as those “boids”
within some fixed, finite distance R0, which is assumed to be independent of L,
the linear size of the “flock.” Hence, in the limit of flock size going to infinity –
i.e., the “thermodynamic limit” – the range of interaction is much smaller than
the size of the flock. Variants on this rule – for example, interactions whose
strength falls off exponentially with distance – can also be considered short
ranged.

(5) The “following” is not perfect: The “boids” make errors at all times, which are
modeled as a stochastic noise. This noise is assumed to have only short-ranged
spatio-temporal correlations. Its role in this problem is very similar to the role
of temperature in equilibrium systems: It tends to disorder the flock. As you’ll
see, one of the most interesting questions in this problem is whether the ordered
state can survive this noise.

In addition to these symmetries of the equations of motion, which reflect the
underlying symmetries of the physical situation under consideration, it is also
necessary to treat correctly the symmetries of the state of the system under con-
sideration. These may be different from those of the underlying system, precisely
because the system may spontaneously break one or more of the underlying sym-
metries of the equations of motion. Indeed, this is precisely what happens in the
ordered state of a ferromagnet: The underlying rotation invariance of the system as
a whole is broken by the system in its steady state, in which a unique direction is
picked out – namely, the direction of the spontaneous magnetization.

As should be apparent from our earlier discussion, this is also what happens in
a spontaneously moving flock. Indeed, the symmetry that is broken – rotational –
and the manner in which it is broken – namely, the development of a nonzero
expectation value for some vector (the spin S in the ferromagnetic case; the velocity
v in the flock) – are precisely the same in both cases.3

3 The isotropic Heisenberg model of magnetism is invariant under uniform rotation of all the spins, without a
corresponding rotation of the lattice on which they live. A flock, like an ordinary collection of interacting
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1.1 An Example of Flocking: the Vicsek Model 7

The fact that it is a unique vector that is singled out, rather than merely a unique
axis, is the meaning of the word “polar” in “polar ordered dry active fluids.”

Many different “phases,”4 in this sense of the word, of a system with a given
underlying symmetry are possible. Indeed, I have already described two such
phases of flocks: the “ferromagnetic” or moving flock, and the “disordered,”
“paramagnetic,” or stationary flock.

In equilibrium statistical mechanics, this is precisely how we classify different
phases of matter: by the underlying symmetries that they break. Crystalline solids,
for example, differ from fluids (liquid and gases) by breaking both translational
and orientational symmetry. Less familiar to those outside the discipline of soft
condensed matter physics are the host of mesophases known as liquid crystals, in
some of which (e.g., nematics [24]) only orientational symmetry is broken, while in
others, (e.g., smectic [24], which we’ll revisit in Chapter 8) translational symmetry
is only broken in some directions, not all.

It seems clear that, at least in principle, every phase known in condensed matter
systems could also be found in flocks. In this book, I’m going to focus on just one
phase: the “polar ordered dry active fluid phase,” in which rotational symmetry
is completely broken by the development of a nonzero average flock speed 〈v〉,
but all of the other symmetries of the dynamics (e.g., translation invariance) are
preserved. The word “fluid” in “polar ordered active fluids” is what tells us that
these are systems in which translational invariance is not broken.

The first, and to my mind still the biggest, surprise in the entire field of active
matter is that a “polar ordered dry active fluid phase” is even possible in two
dimensions. The reason Yuhai and I (and Vicsek) found this so surprising is the
well-known “Mermin–Wagner–Hohenberg theorem” [25, 26, 27] of equilibrium
statistical mechanics. This theorem states that in a thermal equilibrium model at
nonzero temperature with short-ranged interactions, it is impossible to spontane-
ously break a continuous symmetry. This implies in particular that the equilibrium
or “pointer” version of Vicsek’s algorithm described earlier, in which the birds
carry a vector vi whose direction is updated according to Vicsek’s algorithm, but in
which the birds do not actually move, can never develop a true long-ranged ordered
state in which all the vi point, on average, in the same direction (more precisely, in
which 〈v〉 ≡ 6ivi

N 6=
E0) , since such a state breaks a continuous symmetry, namely

rotation invariance.
Yet the moving flock evidently has no difficulty in doing so; as Vicsek’s simu-

lation shows, even two-dimensional flocks with rotationally invariant dynamics,

molecules, such as those which form liquid crystals, is invariant only under spatial rotations, which rotate
both the position and the velocity vectors of the creatures of the flock.

4 By “phases” in systems far from equilibrium, I simply mean nonequilibrium steady states of a given
symmetry.
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8 Introduction and Motivation: Are Birds Smarter Than Nerds?

short-ranged interactions, and noise – i.e., seemingly all of the ingredients of
the Mermin–Wagner–Hohenberg theorem – do move with a nonzero macroscopic
velocity, which requires 〈v〉 6= 0, which, in turn, breaks rotation invariance, in
seeming violation of the theorem.

There are a pair of gedanken experiments that make the very paradoxical and
surprising nature of this result more obvious. Both experiments start by putting a
million people on a flat, featureless plane in the fog. The featurelessness of the
plane, and the fog, ensure rotation invariance (since they leave the people with no
external indication of a preferred direction), while the fog has the further role of
ensuring that each person can see only a few of her nearest neighbors.

The first experiment now consists of asking everyone to try to point in the same
direction. The result is that the people cannot all point in the same direction, no
matter how good a job they do at aligning with their nearest neighbors (unless,
of course, the alignment is perfect). If they make the slightest errors, those will
accumulate over distance, so that, even though a given person may point in roughly
the same direction as others not too far away from her, widely separated people will
inevitably be pointing in wildly different directions.

The second gedanken experiment consists of slightly modifying the instructions
given to these million folks: Now ask them to all walk in the same direction.

Amazingly, if this instruction is given to the same people, in the same fog, with
the same errors, they can all walk in the same direction. Moving, apparently, is
fundamentally different from pointing.

Why? There is a very simple explanation for this apparent “violation” of
the Mermin–Wagner–Hohenberg theorem: One of the essential premises of the
Mermin–Wagner–Hohenberg theorem does not apply to movers, namely, they are
not systems in thermal equilibrium. The nonequilibrium aspect arises from the
motion: You can’t move forever in a medium with friction unless you’re alive. And,
if you’re alive, you’re not in thermal equilibrium (that’s why we say “cold and
dead”).

Clearly, motion must be what stabilizes the order in d = 2: As described above,
the motion is the only difference between the pointing and moving gedanken
experiments just described.

But how does motion get around the Mermin–Wagner–Hohenberg theorem?
And, more generally, how best to understand the large-scale, long-time dynamics
of a very large, moving flock?

The answer to these questions can be found in the field of hydrodynamics. I will
apply that body of knowledge to flocks in Chapter 4. But first, I’ll explain why the
Mermin–Wagner–Hohenberg theorem is true for pointers, which will give us some
insight into why it’s not true for walkers.
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