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Magneto-gravity-elliptic instability is addressed here considering an unbounded strained
vortex (with constant vorticity 2Ω and with ellipticity parameter ε) of a perfectly
conducting fluid subjected to a uniform axial magnetic field (with Alfvén velocity scaled
from the basic magnetic field B) and an axial stratification (with a constant Brunt–Väisälä
frequency N). Such a simple model allows us to formulate the stability problem as a
system of equations for disturbances in terms of Lagrangian Fourier (or Kelvin) modes
which is universal for wavelengths of the perturbation sufficiently small with respect to the
scale of variation of the basic velocity gradients. It can model localised patches of elliptic
streamlines which often appear in some astrophysical flows (stars, planets and accretion
discs) that are tidally deformed through gravitational interaction with other bodies. In
the limit case where the flow streamlines are exactly circular (ε = 0), there are fast and
slow magneto-inertia-gravity waves with frequencies ω1,2 and ω3,4, respectively. Under
the effect of finite ellipticity, the resonant cases of these waves, ωi − ωj = nΩ (i /= j) (n
being an integer), can become destabilising. The maximal growth rate of the subharmonic
instability (related to the resonance of order n = 2) is determined by extending the
asymptotic method by Lebovitz & Zweibel (Astrophys. J., vol. 609, 2004, pp. 301–312).
The domains of the (k0B/Ω, N/Ω) plane for which this instability operates are identified
(1/k0 being a characteristic length scale). We demonstrate that the N → 0 limit is, in
fact, singular (discontinuous). The axial stable stratification enhances the subharmonic
instability related to the resonance between two slow modes because, at large magnetic
field strengths, its maximal growth rate is twice that found in the case without stratification.

Key words: parametric instability, stratified flows

1. Introduction

The three-dimensional (3D) elliptical flow instability is very generic and occurs in many
flow configurations, when the basic velocity field (or base flow) consists of large horizontal
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vortices with elliptical streamlines in their core. The elliptic instability is a parametric
resonance of internal (usually inertial) waves due to an elliptical deformation of the
streamlines of a rotating flow. The reader is referred to Kerswell (2002) for a detailed
review and references therein. The origin of the ellipticity in the core of eddies is multifold.
In the study of the stability of airplane wakes, we have to consider the presence, before
their possible breaking, of a pair of large counter-rotating vortices: this is the mutual
induction of these eddies that render their core elliptic. More generally, the characteristics
and behaviour of counter-rotating and corotating vortex pairs have been recently reviewed
in the study by Leweke, Le Dizes & Williamson (2016).

In line with former studies, McKeown et al. (2020) showed that iterations of the
elliptical instability, arising from the interactions between counter-rotating vortices, lead
to the emergence of turbulence. As a second example, in rotating flows subjected to
precession, the gyroscopic torque, mediated by the misalignment of solid-body rotation
and system angular velocity, induces an additional shear that, superimposed to solid-body
rotation, results in elliptical streamlines, as shown by Kerswell (1993a) and by Salhi &
Cambon (2009) in the simplest geometry. More generally, elliptical shape caused by tidal
forces is very common in many astrophysical systems such as planetary cores, binary stars,
gaseous planets and accretion discs. The importance of elliptical instability, in a purely
hydrodynamic context, in the tidal dissipation mechanism in such astrophysical systems
has been the subject of several studies in the literature (Barker & Lithwick 2013; Cébron
et al. 2013; Barker 2016; Barker, Braviner & Ogilvie 2016). Note that tidal dissipation
generates heat in astrophysical systems, which in some cases may be important for their
structure and evolution (Ogilvie 2014).

Being the ellipticity due to the mutual induction of adjacent vortices or not, the
elliptical instability is local, so that it is generally sufficient to consider a single elliptic
eddy for the base (or mean) flow. For trailing vortices again, it has been shown that
the Moore–Saffman–Tsai–Widnall (MSTW) instability (Moore & Saffman 1975; Tsai &
Widnall 1976), in the short-wavelength regime, is an elliptical instability (Éloy & Le Dizes
2001; Fukumoto 2003; Sipp & Jacquin 2003; Chang & Smith 2021). It is worth mentioning
that the MSTW instability encompasses the long-wave instability bearing with Crow’s
instability (Crow 1970) which occurs through the mutual induction of a pair of parallel
counter-rotating vortex columns (McKeown et al. 2020): the Biot–Savart law is generally
used to compute the induced velocity on one of the trailing vortices owing to the presence
of the other. Recently, Feys & Maslowe (2016) have examined the elliptical instability
of the Moore and Saffman model Moore & Saffman (1975) for a single trailing vortex.
Their results demonstrate the significant effect of the distribution and intensity of the axial
flow on the elliptical instability of a trailing vortex. Such a robust 3D instability leads to
vortex decay under most circumstances, as reviewed by Lesur & Papaloizou (2009). Rather
old experimental evidences are quoted in the following historical review, and recently the
nonlinear fate of libration-induced elliptical instability in low-dissipation and low-forcing
regimes has been explored experimentally by Le Reun, Favier & Le Bars (2019). They
showed that once the saturation of the elliptical instability is reached, a turbulent state is
observed for which the energy is injected only in the resonant inertial waves.

It is clear that the elliptical instability has a very long history, and deserves a survey,
as follows. This allows us to discuss what is the simplest mathematical way to identify
it and to quantify its effects, first in the neutral (non-stratified), purely hydrodynamical
case. After some experimental evidences of that instability (Gledzer et al. 1975; Malkus
1989), see also the recent review by McKeown et al. (2020), a sudden interest arose when
Pierrehumbert (1986) discovered its characteristic properties by a conventional normal
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mode analysis approach, whereas at the same time Bayly (1986) found the same results
using the simpler and more elegant method using Kelvin modes, or mean-flow-advected
(Lagrangian) Fourier modes along elliptical trajectories. The latter study, similar to that
by Craik & Criminale (1986), was foreshadowed by a rapid distortion theory (RDT)
analysis by Cambon (1982), and Cambon, Teissedre & Jeandel (1985) (in French). This
is re-discussed, in English, by Godeferd, Cambon & Leblanc (2001), with especially its
figure 3, and in Sagaut & Cambon (2008) for a recent overview. Waleffe (1989, 1990)
clearly described the physical mechanism of the elliptical instability as a vortex stretching
mechanism and showed how the growing Kelvin modes found by Bayly (1986) in the
case of unbounded strained vortex could be superimposed to create a localised, unstable
disturbance of the form found in the bounded elliptical cylinder case (Gledzer et al. 1975).

From the previous studies, let us summarise the advantages of the formalism with
projection of the disturbance fields onto Kelvin modes. The Kelvin modes are essentially
3D Fourier modes, even if the wave vector can become time-dependent following the
mean flow streamlines. The time dependency of the wave vector represents the convection
of the plane wave exp(ik(t) · x) by the base flow. Both the direction and magnitude of
k change as wave crests rotate and approach or separate from each other due to basic
velocity gradients. Accordingly, all the formal advantages of Fourier space remain valid:
pure algebraic formulation of integro-differential equations, including Poisson equation for
pressure disturbances, algebraic dissipation term instead of Laplacian operator, algebraic
linkage from vorticity to velocity (instead of a Biot–Savart relationship). It is worth
emphasising that the system of equations for disturbances in terms of Lagrangian Fourier
modes is universal under a typical length scale. Indeed, such a system is recovered for
small-scale disturbances traveling near any smooth base-flow trajectory, in the zonal
asymptotic method of Lifschitz & Hameiri (1991) with close connection with geometric
optics; the velocity gradients of the base flow are treated as space-uniform in a domain of
unspecified length scale, asymptotically small (see also Godeferd et al. 2001).

Can the elliptic instability, in the pure hydrodynamic context, survive in the presence
of vertical basic density stratification, that is stabilising considered alone? A first answer
is given by the study of the stability of inertia-gravity waves when it is altered by the
ellipticity of streamlines. In relation to the dynamics of ocean and atmosphere (Miyazaki
& Fukumoto 1992; Miyazaki 1993) investigated the influence of the Coriolis force
and density stratification, caused by temperature or salinity gradient, on the elliptical
instability. Miyazaki & Fukumoto (1992) considered an unbounded strained-vortex flow
with stable axial stratification. They have found that the growth rates for the elliptical
instability were invariably reduced: the subharmonic elliptical instability is completely
suppressed when Brunt–Väisälä frequency (N) is greater or equal to the half of the
basic vorticity strength (Ω). For small eccentricities, asymptotic theory leads to formulae
for the maximum growth rate (Kerswell 2002) (see also § 3 in the present study). It is
worth mentioning that the elliptical instability of stratified vortices has been addressed
as well in previous studies (Otheguy, Chomaz & Billant 2006; Le Bars & Le Dizès
2006; Guimbard et al. 2010; Suzuki, Hirota & Hattori 2018). The effects of differential
diffusion between momentum and density on the elliptical instability have recently been
addressed by Singh & Mathur (2019). They showed that, in the case where the ratio of
thermal diffusivity to kinematic diffusivity is equal to unity, the viscous effects are purely
suppressive, whereas for sufficiently small values of this ratio, there is an oscillatory
instability whose signature is nevertheless present with zero growth rate in the inviscid
limit. In turbulent Rayleigh–Bénard convection, Zwirner, Tilgner & Shishkina (2020)
showed that the mechanism which causes the twisting and breaking of a single-roll
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large-scale circulation into multiple rolls is the elliptical instability. On the other hand,
density effects on the MSTW instability have been recently investigated by Chang
& Smith (2021) who performed a normal mode stability analysis and showed that,
for the subharmonic instability (resonance (m, m + 2) = (0, 2), m being the azimuthal
wavenumber) the growth rate is maximised when the ratio of vortex to ambient fluid
density is near 0.215.

The interaction of vortices with a magnetic field is a fundamental process in
astrophysical magnetohydrodynamics (MHD). Therefore, a similar question occurs when
one moves from hydrodynamics to MHD when the electrically conducting elliptical flow is
subjected to an unperturbed (or a basic) magnetic field. In a geophysical context, Kerswell
(1994) studied the effect of a toroidal magnetic field on the elliptic instability in a rotating
spheroidal container filled with an incompressible electrically conducting fluid, which
carries a constant axial electric current. He concluded that the toroidal magnetic field has
a stabilising influence. By including the effect of a uniform magnetic field perpendicular
to the plane of the elliptical base flow, the resulting magneto-elliptic instability has
been related to the problem of turbulence generation and, hence, momentum transport in
accretion discs by Lebovitz & Zweibel (2004) (hereafter LZ04). In that study, an analytical
technique was developed to determine the maximal growth rates of the destabilising
resonances of order n = 2 (i.e. subharmonic instabilities, see (1.1)) in the limit of small
elliptical (tidal) deformations. This analytical technique has been used in previous studies
by Mizerski & Bajer (2009) for the magneto-elliptical instability of rotating systems and
by Salhi, Lehner & Cambon (2010) for the magneto-precessional instability. Herreman
et al. (2010) conducted experiments to explain some aspects of the nonlinear transition
process for the elliptic instability in rotating cylinders under imposed magnetic field. It is
worth noting that in the case where the Coriolis and Lorentz forces are simultaneously
present and when the wave vector k aligns with the magnetic field the elliptical flow can
develop horizontal instability which dominates over all other modes (Bajer & Mizerski
2013). In the astrophysical context (tidal dissipation in gaseous planets and stars), Barker
& Lithwick (2014) found that magnetic fields do prevent vortices from forming and, hence,
greatly enhance the steady-state dissipation rate.

The combined effects of stable density stratification and MHD on the elliptical
instability within an elliptically distorted cylinder have been investigated by Kerswell
(1993b). He performed a normal mode stability analysis for a simple configuration
possessing considerable symmetry between the velocity and magnetic fields: a purely
azimuthal magnetic field, which in the frozen flux limit is also elliptically distorted. In
that study, stratification is either axial (the isopycnics are parallel to the streamlines) or
radial (the isopycnics are perpendicular to the streamlines).

In the present paper we analyse in detail the joint influence of a stable axial stratification
(with strength N) and an external (axial) uniform magnetic field (with Alfvén velocity
scaled from the basic magnetic field B) on the stability of an unbounded flow with
elliptical streamlines of a perfectly conducting fluid. Our study extends the study by
Miyazaki & Fukumoto (1992) by including the effects of a magnetic field and also the
study by LZ04 by including the effects of an axial stable stratification. An important
aspect of the present study is to map out the regime of (B/(L0Ω), N/Ω) space (L0 being a
characteristic length scale) for which the destabilising resonances of order n = 2 (see (1.1))
of magneto-inertia-gravity (MIG) waves prone to operate and to determine their growth
rates at small ellipticity by extending the analytical technique by LZ04. In the laboratory
experiment of a magnetised turbulent Taylor–Couette flow of liquid metal by Nornberg
et al. (2010), the combined fast and slow Alfvén-inertial waves were clearly identified
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where the observed slow wave is damped. These authors have identified a relationship
between the slow magneto-inertial waves and the magneto-rotational instability (MRI)
(Balbus & Hawley 1991; Wang et al. 2022). On the other hand, Mizerski & Lyra (2012)
examined the link between the magneto-elliptical instability and the MRI, explaining that
the two instabilities are different manifestations of the same magneto-elliptical-rotational
instability. Salhi et al. (2012) have studied the effects of stable stratification on the MRI
instability and showed that, under the MHD Boussinesq approximation (e.g. Wilczyński,
Hughes & Kersalé 2022), the so-called ‘magnetic induction potential scalar’ (MIPS,
i.e. the scalar product of the magnetic field vector and the density gradient) is a Lagrangian
invariant for a non-diffusive fluid. In contrast, the potential vorticity (PV), which is very
useful as an invariant in stratified geophysical flows (e.g. Pedlosky 2013), is no longer valid
in MHD because it removes the baroclinic torque in the extended vorticity equation, but
not the counterpart of the Lorentz force.

An asymptotic stability analysis is developed in § 3 at leading order in the ellipticity
parameter ε in order to determine the growth rates of the (subharmonic) instability tongues
that emanate from the points at vanishing ellipticity. In this limit, disturbances to the
basic flow are found in terms of MIG dispersive waves, with a dispersion law (Salhi
et al. 2017) that includes Ω, N, B/L0 and the angular parameter μ = cos(θ) (the angle
θ being the angle between the wave vector of the perturbations and that of the base-flow
vorticity). In contrast with particular cases, the general dispersion law of MIG waves is no
longer a simple combination of the individual dispersion frequencies, considered alone,
but is obtained in combining the eigenvalues of the matrix of the whole linear system of
equations (Salhi et al. 2017). Fast and slow modes are identified, with different resonance
conditions between them, or

ωi − ωj = nΩ (i, j = 1, 2, 3, 4, i /= j, n being an integer). (1.1)

Without an analysis of the resonant conditions, it is not possible to simply identify the
different instabilities, namely if they are subharmonic or not, if they result from the
interaction of two fast modes, two slow modes, or one fast and one slow.

As detailed in § 2, the use of the magnetic invariant (MIPS) makes it possible to reduce
the linear system of ordinary differential equations, which represents a Floquet problem,
from a five-component system to a four-component system only. In § 3, we show that stable
stratification enhances the destabilising resonance of order n = 2 between two slow modes
because we find that, at large magnetic strengths, its growth rate is about twice that found in
the case without stratification (LZ04). Asymptotic formulae are compared with numerical
results carried out at arbitrary ellipticity in § 4. The effect of diffusion is briefly addressed
in the special case where the diffusion coefficients (kinetic, thermal and magnetic) are
equal. Conclusions and perspectives are offered in § 5.

2. MHD Boussinesq’s equations

We consider a stratified electrically conducting fluid. Density variations are introduced
using the Boussinesq approximation for simplicity (Chandrasekhar 1961). The fluid is
assumed to be inviscid and non-diffusive. The effect of viscosity (ν) and thermal (κ)

and magnetic (η) diffusivity are briefly addressed in § 4.3 by considering the case where
ν = κ = η (i.e. the case where the magnetic and thermal Prandtl numbers are unity).
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The Boussinesq MHD equations written in a fixed frame take the form (Davidson 2013)

Dtũ = −∇p̃ +
(

b̃ · ∇
)

b̃ + ϑ̃n + ν∇2ũ, (2.1a)

Dtb̃ =
(

b̃ · ∇
)

ũ + η∇2b̃, (2.1b)

Dtϑ̃ = κ∇2ϑ̃, (2.1c)

∇ · ũ = 0, (2.1d)

∇ · b̃ = 0, (2.1e)

where Dt(·) ≡ (∂t + ũ · ∇)(·) denotes the material derivative, ũ denotes the velocity and
b̃ denotes the magnetic field which is scaled using Alfvén velocity units, i.e. it is divided
by

√
ρ0μ0 where ρ0 and μ0 are the constant density and the magnetic permeability of the

fluid. Here, p̃ being the total pressure (including the magnetic part) divided by the constant
density ρ0. In the present study, we consider axial stratification,

n = e3 = −g/g. (2.2)

where e3 is the upward vertical unit vector and g is the gravitational acceleration vector.
The first equation in the above system is the momentum equation, the second is the
induction equation for the magnetic field and the third is the buoyancy scalar equation.
Both velocity field and magnetic field are solenoidal (2.1d,e).

For a non-magnetised Boussinesq ideal fluid, one may easily show that the PV (Pedlosky
2013),

�̃κ = ω̃a · ∇ϑ̃, (2.3)

is a Lagrangian, invariant, i.e. Dt�̃κ = 0. Here, ω̃a is the absolute vorticity vector which,
in the absence of the Coriolis force, identifies with the vorticity vector W = ∇ × ũ. A
counterpart, for a magnetised Boussinesq ideal fluid, is the so-called MIPS (Salhi et al.
2012)

�̃m = b̃ · ∇ϑ̃ (2.4)

that is a Lagrangian invariant, i.e. Dt�̃m = 0, and not �̃κ . The usefulness of introducing
the MIPS is illustrated later.

2.1. Base flow
The solutions of system (2.1) are conveniently decomposed into a ‘basic flow’
(U, P, B, Θ) and a ‘disturbance’ (u, p, b, ϑ), but the latter needs to be small compared
with the former,

ũ = U + u, p̃ = P + p, b̃ = B + b, ϑ̃ = Θ + ϑ. (2.5a–d)

We consider the linear stability of a stratified vortical flow with elliptical streamlines and
with uniform vertical magnetic field (see figure 1)

U = A · x, A = Ω

⎛
⎝ 0 −E 0

E−1 0 0
0 0 0

⎞
⎠ (2.6a)

B = Be3, (2.6b)

Θ = N2x3 (2.6c)
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x3

x3

g

B

x1

�(x3)

Ψ(x1, x2)

 x2

Figure 1. A schematic drawing of the basic state: planar flow with elliptical streamlines, Ψ =
−(Ω/2)(E−1x2

1 + Ex2
2) being the stream function in the presence of an axial uniform magnetic field (B = Be3)

and an axial stable stratification (Θ = N2x3, N2 = −(g/ρ0)(d�/dx3), N being the Brunt–Väisälä frequency).
The gravity vector is given by g = −ge3 with g > 0.

where Ω is a constant that is a measure of the intensity of the flow and E ≥ 1 is a measure
of elliptical deformation of the streamlines, and N is the Brunt–Väisälä frequency such
that

N2 = − g
ρ0

d�

dx3
. (2.7)

Circular streamlines correspond to the case where E = 1. The parameter

ε = 1
2

(
E − E−1

)
(2.8)

represents the departure of the streamlines of the unperturbed flow from axial symmetry.
We note that

0 < δ = (E − E−1)/(E + E−1) < 1 (2.9)

for the flow to be elliptical. We also note that, an equivalent form for the unperturbed
velocity field has been used in previous studies (Waleffe 1990; Miyazaki & Fukumoto
1992; Miyazaki 1993; Kerswell 2002; Mizerski & Bajer 2009; Bajer & Mizerski 2013)

U = Γ [− (1 + δ) x2e1 + (1 − δ) x1e2] , (2.10)

where 2Γ = Ω(E + E−1) and −Γ δ represents the strain rate, but the expression (2.6a)
seems more suitable for analysing resonant destabilisation (Mizerski & Bajer 2009).

The basic buoyancy scalar Θ varies linearly with the axial coordinate x3 (axial
stratification) and is proportional to the gravitational acceleration, g, and to a background
density (or temperature) gradient. This linear profile admits a constant Brunt–Väisälä
frequency N throughout the entire fluid. More general exact solutions of the combined
stratified fluid/magnetic equations exist in an unbounded domain (Craik 1989); the case
in hand (i.e. (2.6)) is probably the simplest of these. As indicated previously, Miyazaki &
Fukumoto (1992) considered an unbounded strained-vortex flow with stable exponential
stratification in the axial direction at small Froude number, Fr = Γ 2L0/g � 1 with
L0 a characteristic length scale. One may show that the resulting linear differential
system for the disturbances superimposed on the base flow is the same considering
either an exponential basic stratification or a linear (with respect to space coordinates)
basic stratification. Both profiles (exponential or linear) admit a constant Brunt–Väisälä
frequency throughout the entire fluid.
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2.2. Perturbed system
In the following, we consider the case of a non-diffusive fluid. Diffusivity effects with
the assumption that the diffusion coefficients are equal (ν = κ = η) or, equivalently, the
magnetic and thermal Prandtl numbers are equal to one are briefly discussed at the end of
§ 4.

2.2.1. Linearised system in physical space
We substitute the solutions (2.5a–d) into the system (2.1) and linearise. Linearisation is
not readily justified by the fact that the flow disturbances are very small with respect
to the base flow. Linearisation is briefly discussed in the conclusion. Thus, we expect
our analysis to break down when the disturbances become so large that nonlinear effects
become important. The resulting perturbed equations are

Dtu = −∇p − (u · ∇) U + (B · ∇) b + ϑe3, (2.11a)

Dtb = (b · ∇) U + (B · ∇) u, (2.11b)

Dtϑ = −N2u3, (2.11c)

∇ · u = 0, (2.11d)

∇ · b = 0. (2.11e)

As for the linear part of MIPS (see (2.4)), it takes the form

�m = B
∂ϑ

∂x3
+ N2b3, (2.12)

where Dt�m = 0, so that �m = const. As shown later, for the purposes of studying
stability, we may set �m = 0 (see also Benkacem et al. 2022).

2.2.2. Floquet system in wave space
The disturbances are expressed in terms of Lagrangian Fourier modes, as discussed in
section 1. These modes were used for shear waves by Moffatt (2010), who was probably
the first to call them ‘Kelvin modes’, in reference to a pioneering paper by Lord Kelvin
Kelvin (1887) in the nineteenth century. They are advected by the mean flow as Lagrangian
invariants (Cambon 1982; Sagaut & Cambon 2008), as plane waves for which the direction
and the speed of propagation depend on time, via a time-dependent wave vector:[

u, p, b, ϑ
]
(x, t) =

[
û, p̂, b̂, ϑ̂

]
(k, t) exp (ix · k(t)) , (2.13)

where i2 = −1. Accordingly, the material derivative of the fluctuating velocity can be
rewritten as

Dtu =
(

∂t + Uj
∂

∂xj

) [
û(k, t) exp (ix · k(t))

]
(2.14)

with Uj = Ajmxm, so that

Dtu = [
∂tû + i

(
(dtkj)xj + Ajmkjxm

)
û
]

exp (ix · k(t)) , (2.15)

or, equivalently,

Dtu =
(
∂tû + i

[(
dtk + ATk

)
· x
]

û
)

exp (ix · k(t)) . (2.16)
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In order to remove the explicit dependence on x in the resulting equations for the Fourier
amplitudes û, b̂, p̂ and ϑ̂, one has to ensure that k(t) varies in time according to the eikonal
equation

dtk = −AT · k, (2.17)

where dt(·) ≡ d(·)/dt and T denotes transpose. Equation (2.17) can be solved to give

k1 = kp cos(τ − φ), k2 = Ekp sin(τ − φ), k3 = k30, (2.18a–c)

where τ = Ωt being a dimensionless time,

k2
p = k2

1 + E−2k2
2 = k2

10 + E−2k2
20, tan φ = −E−1k20/k10, (2.19a,b)

with kj0 ( j = 1, 2, 3) the initial wave vector component. For purposes of studying stability,
we may set φ = 0. This is easily seen by making the substitution Ωt′ = Ωt + φ, which
eliminates φ from the equation.

Substituting the plane waves solution (2.13) into the system (2.11) and taking into
account the eikonal equation (2.17), we obtain

dtû = −ip̂k − A · û + i (k3B) b̂ + ϑ̂e3, (2.20a)

dtb̂ = A · b̂ + i (k3B) û, (2.20b)

dtϑ̂ = −N2û3, (2.20c)

together with k · û = 0 and k · b̂ = 0. The use of the latter conditions allows one to
eliminate the Fourier amplitude of fluctuating pressure,

p̂(k, t) = −ik−2
(

2Ω2ĉ1 + k3ϑ̂
)

, Ω ĉ1 = Ek1û2 − E−1k2û1, (2.21a,b)

and to reduce the above seven-component Floquet system to a five-component version.

Here, k =
√

k2
1 + k2

2 + k2
3 is the modulus of the wave vector. This reduction of components

results from the fact that both Fourier modes for fluctuating velocity and for fluctuating
magnetic field are two-component in the plane normal to the wave vector. Such projection
can be done using the orthonormal Craya–Herring frame of reference, as used in several
articles (e.g.from Salhi & Cambon 1997).

We note that the case where the wave vector is vertical, so that k1 = k2 = 0, kp = 0 and
k3 = ±k, characterises a special class of disturbances, called horizontal perturbations, in
which the vertical components û3 and b̂3 identically vanish (Bajer & Mizerski 2013). In
that case, axial stratification has no effect on the horizontal perturbations, and then there
is no instability without the Coriolis force.

2.2.3. Change of variables
At k3 = 0, the solution of the resulting Floquet system (2.20) is stable. Accordingly, we
henceforth consider only perturbations with vertical wave number k3 /= 0. As in the studies
by LZ04 and by Mizerski & Bajer (2009), we transform the resulting Floquet system in
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terms of the following variables to facilitate subsequent calculations

Ω ĉ2 = −k3û3, Ω ĉ3 = Ek1b̂2 − E−1k2b̂1, Ω ĉ4 = −k3b̂3, Ω2ĉ5 = −k3ϑ̂.

(2.22a–d)

Given (2.21a,b) we transform the system (2.20) according to these new variables,

dτ ĉ1 = −4ε
k1k2

k2 ĉ1 − 2ĉ2 + i
(k3B)

Ω
ĉ3 + 2ε

k1k2

k2 ĉ5, (2.23a)

dτ ĉ2 = 2
k2

3
k2 ĉ1 + i

(k3B)

Ω
ĉ4 + k2

⊥
k2 ĉ5, (2.23b)

dτ ĉ3 = i
(k3B)

Ω
ĉ1, (2.23c)

dτ ĉ4 = i
(k3B)

Ω
ĉ2, (2.23d)

dτ ĉ5 = − N2

Ω2 ĉ2, (2.23e)

where dτ ĉ1 = Ω−1dtĉ1 and k⊥ =
√

k2
1 + k2

2. Combining (2.23d) and (2.23e), we deduce
the following relation:

− Ω

k3

[
iΩ (k3B) ĉ5 + N2ĉ4

]
= i (k3B) ϑ̂ + N2b̂3 = �̂m = const., (2.24)

which represents the spectral counterpart of the MIPS (see (2.4)). Accordingly, system
(2.23) can be further reduced to a fourth-order inhomogeneous Floquet system,

dτ ĉ = D(τ ) · ĉ + ϕ̂, (2.25)

where the only non-zero elements of D(τ ) are

D11 = −4ε
k1k2

k2 , D12 = −2, D21 = 2
k2

3
k2 , (2.26a)

D13 = D31 = D42 = i
(k3B)

Ω
, (2.26b)

D14 = 2iε
N2

Ω(k3B)

k1k2

k2 , (2.26c)

D24 = i

(
(k3B)

Ω
+ N2

Ω (k3B)

k2
⊥

k2

)
. (2.26d)

The non-zero components of the inhomogeneous term in (2.25) take the form

ϕ̂1 = 2iε
k1k2

k2
�̂m

(Ω2B)
, (2.27a)

ϕ̂2 = i
k2
⊥

k2
�̂m

(Ω2B)
(2.27b)

and it can be seen as a time-varying forcing excitation.
Note that in the non-magnetised stratified case, one can use the fact that the

PV is a Lagrangian invariant for a non-diffusive fluid (Pedlosky 2013) to derive a
non-homogeneous two-component Floquet system in terms of the variables ĉ1 and ĉ2.
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2.3. Homogeneous Floquet system
The linear system (2.25) has the properties D(τ + T) = D(τ ) and ϕ̂(τ + T) = ϕ̂(τ ) where
T = 2π is the period common to both the matrix D and the vector ϕ̂. Floquet theory does
not address stability of the inhomogeneous system described by (2.25) where the ‘forcing
excitation’ ϕ̂(τ ) is present. However, the T-periodic nature of ϕ̂(τ ) allows an extension to
the theory (Slane & Tragesser 2011). Following the study of Slane & Tragesser (2011), it
is shown that the basic behaviour of the homogeneous system

dτ ĉ = D · ĉ (2.28)

does not change with the addition of the term ϕ̂(τ ). Here, ĉ = (ĉ1, ĉ2, ĉ3, ĉ4)
T in the

canonical basis of C4. In other words, for purposes of studying stability, one may set
�̂κ = 0, so that ϕ̂ = 0 (Benkacem et al. 2022).

We denote by Φ(τ ) any fundamental matrix solution of the homogeneous system (2.28)
where Φ(0) = I4. According to Floquet–Lyapunov theorem, Φ is expressible in the form
(Kuchment 1993),

Φ(τ ) = F (τ ) exp (Kτ) , (2.29)

where F (τ ) is a non-singular continuous 2π-periodic 4 × 4 matrix-function (whose
derivative is an integrable piecewise-continuous function) and K is a constant matrix.
The determinant of Φ is unity at τ = 2π, |Φ(2π)| = 1 because

trace D =
4∑

j=1

Djj = −4ε
k1k2

k2 = − 1
k2 dτ k2. (2.30)

It follows that whenever λ is an eigenvalue of the monodromy matrix, M = Φ(2π), so
too are its inverse λ−1 and its complex conjugate λ∗ (see LZ04). Consequently, in the
stable case, eigenvalues of M lie on the unit circle. If any eigenvalue λ of M has modulus
exceeding one, this implies that there is indeed an exponentially growing solution. The
growth rates are then given by

σ = 1
2π

log (λ) . (2.31)

In the Floquet system (2.28) figure four dimensionless parameters, namely

ε = 1
2

(
E − E−1

)
, μ = k3/k0, N = N/Ω, B = (k0B)/Ω, (2.32a–d)

where k0 =
√

k2
p + k2

3 represents the modulus of the initial wave vector for ε = 0. The
parameters k0B, N and 2Ω can be seen as the maximal frequencies of Alfvén, gravity and
inertial waves, respectively (we return to this later).

For the stability analysis of system (2.28), we perform an asymptotic analysis to
leading order in ε to determine the maximal growth rates of instability (if it exists).
In addition, we integrate numerically (using the fourth-order Runge–Kutta–Gill method)
system (2.28) from τ = 0 to τ = 2π and we determine the eigenvalues of the solution
matrix numerically (using the double QR method).

3. Destabilised resonances of MIG waves

In this section, we start from the case of a vertically stratified flow with (horizontal)
circular streamlines subjected to a vertical magnetic field. In that case, there are
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MIG waves. We characterise the resonant cases of these waves because some of
them become destabilising when the streamlines are elliptical (ε /= 0). We perform an
asymptotic analysis to leading order in ε of the Floquet system (2.28) and determine
the maximal growth rate of the destabilising resonant cases of order n = 2 (called
subharmonic instability). The asymptotic analysis is performed by extending analytical
techniques developed by LZ04. For the sake of clarity, all the asymptotic calculations are
reported in Appendix A. Here we only state the results.

3.1. Dispersion relation of MIG waves
In this section, we establish the dispersion relation of the MIG waves propagating in a
non-diffusive unbounded fluid. The cases of inertia-gravity waves and magneto-inertia
waves are briefly addressed. We denote by D0 the matrix D for E = 1 (i.e. circular
streamlines)

D0 = Ω−1

⎛
⎜⎜⎝

0 −2Ω iωa 0
(2Ω)−1ω2

r 0 0 i
(
ω2

a + ω2
g

)
ω−1

a

iωa 0 0 0
0 iωa 0 0

⎞
⎟⎟⎠ , (3.1)

where

ωr = 2Ω · (k/k) = 2Ωμ, (3.2a)

ωa = B · k = Bk0μ = ΩBμ, (3.2b)

ωg = N|g × k|/(gk) = N
√

1 − μ2 = ΩN
√

1 − μ2 (3.2c)

are the frequencies of inertial, Alfvèn and gravity waves, respectively. The eigenvalues σj
( j = 1, 2, 3, 4) of the constant matrix D0 take the form (Salhi et al. 2017),

−Ω2σ 2
1,2 = ω2

1,2 = 1
2

[
2ω2

a + ω2
r + ω2

g +
√(

ω2
r + ω2

g

)2 + 4ω2
r ω

2
a

]
, (3.3a)

−Ω2σ 2
3,4 = ω2

3,4 = 1
2

[
2ω2

a + ω2
r + ω2

g −
√(

ω2
r + ω2

g

)2 + 4ω2
r ω

2
a

]
, (3.3b)

or, equivalently,

ω1 = −ω2 = Ω√
2

√(
4 + 2B2 − N 2

)
μ2 + N 2 +

√[(
4 − N 2

)
μ2 + N 2

]2 + 16B2μ4,

(3.4a)

ω3 = −ω4 = Ω√
2

√(
4 + 2B2 − N 2

)
μ2 + N 2 −

√[(
4 − N 2

)
μ2 + N 2

]2 + 16B2μ4.

(3.4b)

These are distinct and non-zero as long as

B /= 0 and 0 < μ2 < 1. (3.5)

In the non-stratified case (N = 0), the frequencies ω1,2,3,4 are linear with respect to
the variable μ (see (3.8)); in the presence of stratification, they are not. This has
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the consequence of making the asymptotic analysis calculations much more complex
(see Appendix A) than in the cases without stratification which were studied by LZ04
(the magneto-elliptical instability) and Mizerski & Bajer (2009) (the magneto-elliptical
instability of rotating systems).

On the other hand, we note that (3.3), which can be rewritten as follows (Salhi et al.
2017) (

ω2 − ω2
g

) (
ω2 − ω2

a − ω2
g

)
− ω2

r ω
2 = 0, (3.6)

represents the dispersion relation for MIG waves in a non-diffusive fluid. As it was
discussed in Salhi et al. (2017), the dispersion relation (3.6) remains similar to that of
f -plane MHD (Schecter, Boyd & Gilman 2001).

We can gain insight into the analysis of resonant cases of MIG waves by examining
some limiting cases.

3.1.1. Inertia-gravity waves
In the absence of unperturbed magnetic field (B = 0, so that, ωa = 0), the frequency ω3,4
given by (3.3) vanishes, whereas the frequency ω1,2 reduces to

ω1,2 = ±
√

ω2
g + ω2

r = Ω

√
(4 − N 2)μ2 + N 2. (3.7)

In that case, there are inertia-gravity waves where the simultaneous presence of the
solid-body rotation and stable vertical stratification produces higher-frequency waves
because ω2

r ≤ ω2
1,2 and ω2

g ≤ ω2
1,2.

3.1.2. Magneto-inertia waves
In the non-stratified case, N = 0, the frequency of gravity waves vanishes, ωg = 0. In that
case, there are fast and slow magneto-inertia waves with frequency

ω1,2 = ±1
2

(√
ω2

r + 4ω2
a + ωr

)
= ±Ω

(√
1 + B2 + 1

)
μ, (3.8a)

ω3,4 = ±1
2

(√
ω2

r + 4ω2
a − ωr

)
= ±Ω

(√
1 + B2 − 1

)
μ, (3.8b)

respectively. Note that, in the study by LZ04, the fast magneto-inertia waves are called
‘hydrodynamic modes’ and the slow magneto-inertia waves are called ‘magnetic modes’
because ω3,4 = 0 at vanishing unperturbed magnetic field.

3.2. Resonant cases of MIG waves
In this section, we establish the condition of resonances of order n between two fast or
between two slow modes or between a fast mode and a slow mode.

The resonant cases of MIG waves are those parameter values (μ,N ,B, ) such that

ωi − ωj = nΩ, (i /= j), (3.9)

where n is an integer. For the elliptical flow, the only resonant cases that can lead to
instability are those for which the integer n is even.
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By using (3.3) we deduce that the resonance condition between two fast modes (ω1 −
ω2 = nΩ) or between two slow modes (ω3 − ω4 = nΩ) is described by the following
algebraic equation,

4B2
(
B2 − N 2

)
μ4 +

(
4B2N 2 − 2n2B2 − 4n2 + n2N 2

)
μ2 + n2

(
n2

4
− N 2

)
= 0,

(3.10)

with 0 < μ2 < 1. Because the replacement μ → −μ and/or n → −n in (3.10) result in
the same condition, we may therefore assume without loss of generality that μ > 0 and
n > 0.

The condition (3.10) for resonance readily extends that by Bayly (1986) for basic
elliptical flow instability (B = 0 and N = 0). Note that π/Ω is the typical time (period)
for a wave packet to run the closed elliptical streamline, in the limit of vanishing,
but non-zero, ε; in the same limit, this period characterises the periodic alignment of
the fluctuating vorticity with the mean (weak) strain, as 2π/ω. The condition can be
written 4Ωμ = nΩ from the seminal study (Bayly 1986), that immediately yielded μ =
n/4 = 0.5 (because only n = 2 gives rise to μ < 1), giving the origin of time-dependent
instability tongues at vanishing ε. Even if a single-mode analysis is apparently sufficient,
as emphasised by Craik & Criminale (1986) without the need for nonlinearity (exact
solution), a two-mode resonance is implied, as also suggested by the classical normal
mode analysis. For both basic elliptical flow instability and precessional instability, we
have to consider the modes with dispersion law ω1 = +ωr and ω2 = −ωr, and the
subharmonic destabilising resonance is found for ω1 − ω2 = 2ωr = ±nΩ. Accordingly,
the subharmonic order is n = 2 for the basic elliptical flow instability, and n = 1 for the
precessional instability. Also in agreement with his triad instability principle, a detailed
analysis of Waleffe (1992) shows that the elliptical instability corresponds to a forward
(F)-interaction: the two modes with eigenfrequency ω1 and ω2 have opposite polarities
and are coupled with the mean flow, which is associated to a zero frequency, the unstable
modes are thereby two resonant inertial waves associated with the uniform background
rotation.

In a similar manner, we determine from (3.3) the resonance condition between a fast
mode and a slow mode (ω1 − ω3 = nΩ or ω1 − ω4 = nΩ),[(

4 − N 2
)2 + 16B2

]
μ4 − 2

[
2n2B2 +

(
N 2 − 4

) (
N 2 − n2

)]
μ2 +

(
N 2 − n2

)2 = 0.

(3.11)

In the three following sections, we present asymptotic formulae for the maximal growth
rates of the subharmonic instabilities (those corresponding to the destabilising resonances
of order n = 2). The asymptotic formulae are yielded by the asymptotic analysis at leading
order in ε of the Floquet system (2.28). Obviously, the instabilities related to higher-order
resonances (n = 4, 6, 8, . . .) are excluded by the procedure leading to the asymptotic
formulae. These instabilities (if they exist) can be captured by the numerical computations
(see § 4).

3.3. Destabilising resonance between two fast modes
As shown by LZ04, the universal elliptic instability, which results from the resonances
(of order n = 2) between two fast modes, persists in the presence of magnetic fields of
arbitrary strength, although the growth rate decreases somewhat (LZ04). As a counterpart,
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VII

VI

V

IV

II

III

I

2

1

0 �3

N 
=

 N
/Ω

B = k0B/Ω

Figure 2. Domains of the (B,N ) plane for which the magneto-gravity-elliptic instability operates. The
subharmonic instability resulting from a resonance (of order n = 2) between two fast modes (referred to as
IF instability) exists for (B,N ) belonging to domains I, II and VI. The subharmonic instability resulting
from a resonance between two slow modes (referred to as IS instability) exists for (B,N ) belonging to
domains II, IV, V and VI. The subharmonic instability resulting from a resonance between a fast mode
and a slow mode (referred to as IM instability) exists for (B,N ) belonging to domains I, II, III and
IV. For (B,N ) belonging to domain VII, there is no subharmonic instability, whereas instabilities related
to higher order resonances (n = 4, 6, 8, . . .) can exist. Domain I: (B,N ) ∈ [0,

√
3] × [0, 1]; domain II:

(B,N ) ∈ [
√

3, +∞[ × [0, 1]; domain III: (B,N ) ∈ [0,
√

3] × [1, 2]; domain IV: (B,N ) ∈ [
√

3, +∞[ ×
[1, 2]; domain V: (B,N ) ∈ [

√
3, +∞[ × [2, +∞[; domain VI: (B,N ) ∈ Df where Df is defined by (3.13);

domain VII: (B,N ) ∈ [0,
√

3[ × [2, +∞[\Df .

in the presence of vertical (stable) stratification, it is completely suppressed when N
reaches 1 (Miyazaki & Fukumoto 1992). In this section, we investigate the effects of the
axial (stable) stratification and magnetic field when there are simultaneously present on
this instability (referred to as IF instability).

A detailed analysis of the algebraic equation (3.10), knowing that 0 ≤ μ2 ≤ 1, 0 ≤ B <

+∞ and 0 ≤ N < +∞, indicates that the resonant case of order n = 2 between two fast
modes (ω1 − ω2 = 2Ω) exists for

(B,N ) ∈ ([0, +∞[ × [0, 1]) ∪ Df , (3.12)

which corresponds to the domains I, II and VI of the plane (B,N ) shown by figure 2.
Here, the domain Df is defined as follows:

∀ (B,N ) ∈ Df ⇔ for given N ∈ ]2, +∞[ =⇒ 1 < f (N ) ≤ B <
√

3, (3.13)

where f : ]2, +∞[ → ]1,
√

3[ is a continuous decreasing function with reciprocal function
f −1 : ]1,

√
3[ → ]2, +∞[,

∀N ∈ ]2, +∞[, f (N ) = 1
N 2

√
N 4 + 4N 2 − 8 + 4

√
(N 2 − 1)(N 4 − 4) −→

N→+∞
1,

(3.14a)

∀B ∈ ]1,
√

3[, f −1(B) = 2
(B2 − 1)

√
1 + B2 + B

√
4 − (B2 − 1)2 −→

B→1+
+∞. (3.14b)

963 A9-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.300


A. Salhi and C. Cambon

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10

μ

N/Ω

k0B/Ω = �3 (slow, slow)

(fast, fast)
k0B/Ω = 1.632 (slow, slow)

(fast, fast)

k0B/Ω = 1.532 (slow, slow)

(fast, fast)

Figure 3. Resonant cases of order n = 2 in the case where (B,N ) ∈ Df (see (3.13)). Variation of μ =
cos(θ) = k3/k0 versus N = N/Ω for B = k0B/Ω = √

3, 1.632 and B = 1.532. Solid lines represent the
resonances between two fast modes (fast, fast) and dotted lines represent the resonances between two slow
modes (slow, slow).

For (B,N ) belonging to the domain given by (3.12), the resonances (of order n = 2)

between two fast modes occur when

μ2 = 1 − N 2

4 − N 2 if B = 0, (3.15a)

μ2 = B2 − 1
B4 − B2 − 4

if B = N , (3.15b)

μ2 = (1 + B2)(1 − N 2) + B2 + 3 − √
Δ

2B2(B2 − N 2)
if B /=N , (3.15c)

where

Δ(B,N ) =
(
N 2

(
B2 − 1

)
− 4

)2 + 16
(
B2 − N 2

)
. (3.16)

It immediately follows that

lim
0≤N≤1,B→+∞

B2μ2 = 1 − N 2, lim
1<B<

√
3,N→+∞

B2μ2 = 1. (3.17a,b)

In the non-stratified magnetised case (N = 0), the parameter μ = [1 + √
1 + B2]−1

changes from 0.5 (so that, θ = (̂k, W ) = cos−1(μ) = π/3) at B = 0 to zero (so that,
θ = π/2) as B → +∞ (see also LZ04). Recall that k denotes the wave vector and
W = ∇ × U denotes the basic vorticity vector. In the non-magnetised stratified case
(B = 0), the parameter μ =

√
(1 − N 2)/(4 − N 2) changes from μ = 0.5 at N = 0 to

μ = 0 at N = 1. For (B,N ) ∈ [0, +∞[ × [0, 1] and when B is fixed, the parameter μ

changes from μ = [1 + √
1 + B2]−1 at N = 0 to μ = 0 at N = 1. For (B,N ) ∈ Df and

when B is fixed, the parameter μ increases from μ(B, f (B)) at N = f (B) to μ = 1 as
N → +∞. As an illustration, figure 3 shows the variation of μ versus N for three values
of B = √

3, 1.632 and 1.532.
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Magneto-gravity-elliptic instability

According to our asymptotic analysis at leading order in ε (see Appendix A), the
maximal growth rate of the subharmonic instability (if it exists) resulting from the
resonance between two fast modes is of the form

σmf

ε
=
(
3 − B2μ2) (1 + B2μ2)

8

[(N 2 − B2 + 2
)
μ2 + (

1 − N 2)][(N 2 − 2B2 − 4
)
μ2 + (

2 − N 2
)] (3.18)

in which μ2 is given by (3.15).
Some results reported in previous studies (Waleffe 1990; Kerswell 2002 and LZ04) can

be recovered from (3.18) by using (3.15)
σmf

ε
= 9

16
for N = 0, B = 0, (3.19a)

σmf

ε
= 9

4
(1 − N 2)

(4 − N 2)
for 0 ≤ N ≤ 1, B = 0, (3.19b)

σmf

ε
= 1

4

(
1 + 1√B2 + 1 + 1

)2

for N = 0, 0 ≤ B < +∞. (3.19c)

Equation (3.19b) indicates that the maximal growth rate is zero at N = 1. Therefore,
in the non-magnetised stratified case (B = 0), the subharmonic instability is completely
suppressed by stratification when N reaches 1 (Miyazaki & Fukumoto 1992; Kerswell
2002). For the non-stratified magnetised case (N = 0), (3.19c) indicates that σmf /ε
decreases as B increases so as (see also LZ04)

lim
N=0, B→+∞

σmf

ε
= 1

4
. (3.20)

However, in the stratified magnetised case, the analysis of (3.18) is more subtle as shown
in the following.

For (B,N ) ∈ ]0, +∞[ × ]0, 1] and when N is fixed, σmf /ε also decreases from
σmf /ε = [9(1 − N 2)]/[4(4 − N 2)] at B = 0 to zero (and not to 1/4) as B → +∞.

Indeed, from (3.18), one easily deduces that

lim
0<N≤1, B→+∞

σmf

ε
= 0, (3.21)

because limB→+∞ B2μ2 = 1 − N 2, as indicated previously. Therefore, the N → 0 limit
is, in fact, singular (discontinuous). As an illustration, figure 4 shows σmf /ε versus B for
five values of N = 0.0, 0.2, 0.5, 0.7 and 0.9. At N = 1, one has σmf = 0 independently
of B.

For (B,N ) ∈ Df and for fixed N , the maximal growth rate σmf increases from 0 at
B = √

3 to σmf ( f (N ), N) at B = f (N ) with

lim
N→+∞

σfm ( f (N ) , N)

ε
= 1

2
. (3.22)

This is illustrated by figure 5 which displays the variation of σmf /ε versus B (1 < B <
√

3)

for N = 10 and N = 50. Therefore, this subharmonic instability, which occurs when

2Ω < N < +∞ and Ω < k0B = Ωf (N ) <
√

3 Ω, (3.23a,b)

is the results of the simultaneous presence of axial (stable) stratification and magnetic field.
On the other hand, the above analysis clearly shows that, for (B,N ) ∈ [0, +∞[ × [0, 1],
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Figure 4. Maximal growth rate of the destabilising resonances of order n = 2 between two fast modes (see
(3.18)). The figure shows σmf /ε vs B = k0B/Ω for N = N/Ω = 0, 0.2, 0.5, 0.7 and N = 0.9.
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Num. results, ε = 0.05

Figure 5. Maximal growth rates of subharmonic instabilities resulting from the resonances between two fast
modes (σmf ) or between two slow modes (σms) in the case where (B,N ) ∈ Df (see (3.13)). The variation of
σmf /ε and σms/ε versus B = k0B/Ω for N = N/Ω = 10 and N = 50 is shown. Numerical results (see § 4)
for ε = 0.05 are represent by symbols.

the IF instability is completely suppressed by the stratification when N reaches 1. When
0 < N < 1, stratification acts to render the IF instability less efficient especially for large
B because its maximal growth approaches zero as B → +∞ (see (3.21)).

3.4. Destabilising resonances between two slow modes
As shown by LZ04, in the presence only of the magnetic field, there exist other
subharmonic instabilities, which are due to the presence of the magnetic field, in addition
to the universal elliptical instability. One of them is the subharmonic instability resulting
from the resonances (of order n = 2) between two slow modes (referred to as IS
instability). In this section, we study the effects of the vertical (stable) stratification on
the IS instability.
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From the resonant condition described by relation (3.10), we deduce that the resonant
cases of order n = 2 between two slow modes, so that ω3 − ω4 = 2Ω, exist for

(B,N ) ∈
(

[
√

3, +∞[ × [0, +∞[
)

∪ Df . (3.24)

This corresponds to the domains II, IV, V and VI shown in figure 2.
For (B,N ) belonging to these domains, the resonant cases of order n = 2 between two

slow modes occur at the following points of the μ axis

μ2 = B2 − 1
B4 − B2 − 4

if B = N , (3.25a)

μ2 = (1 + B2)(1 − N 2) + B2 + 3 + √
Δ

2B2(B2 − N 2)
if B /=N . (3.25b)

It immediately follows that

lim
N≥0, B→+∞

μ2B2 = 1, lim
B>1, N→+∞

μ2B2 = 1. (3.26a,b)

In the non-stratified magnetised case, (3.25) reduces to μ = [
√B2 + 1 − 1]−1, or

equivalently, μ2B2 = 1 + 2μ. Thus, the parameter μ changes from 1 at B = √
3 to 0

as B → +∞ (see also LZ04). In the stratified magnetised case, (3.25) indicates that,
at fixed B such that (B,N ) ∈ [

√
3, +∞[ × [0, +∞[, the parameter μ changes from

μ = [
√B2 + 1 − 1]−1 at N = 0 to μ = 1/B as N → +∞. For fixed B such that

(B,N ) ∈ Df , the parameter μ decreases from μ(B, f (B)) at N = f (B) to μ = 1/B as
N → +∞ (see figure 3).

As shown in Appendix A, the maximal growth rate, denoted by σms, of the IS instability
is also described by (3.18) (repeated here for the sake of clarity)

σms

ε
=
(
3 − B2μ2) (1 + B2μ2)

8

[(N 2 − B2 + 2
)
μ2 + (

1 − N 2)][(N 2 − 2B2 − 4
)
μ2 + (

2 − N 2
)] (3.27)

in which μ is now given by (3.25) and not by (3.15).
In the non-stratified magnetised case (N = 0), (3.27) reduces to

σms

ε
= 1

4

(
1 − 1√B2 + 1 − 1

)2

−→
N=0, B→+∞

1
4
, (3.28)

where
√

3 < B < +∞, in agreement with the previous results by LZ04. In that case,
σms/ε increases from 0 at B = √

3 to 1/4 as B → +∞.

For (B,N ) ∈ ([
√

3, +∞[ × [0, +∞[) ∪ Df , we use (3.26a,b) to deduce from (3.27)
the following limits

lim
N>0, B→+∞

σms

ε
= 1

2
, lim

B>1, N→+∞
σms

ε
= 1

2
. (3.29a,b)

Indeed, when B � 1 and B � N > 0, an equivalent form for σms/ε can be written as

σms

ε
∼

B→+∞

(
3 − B2μ2) (1 + B2μ2)

8

(
1 − N 2 − B2μ2)(
2 − N 2 − 2B2μ2

) −→
B→+∞

1
2

(3.30)
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Figure 6. Maximal growth rate of the destabilising resonances of order n = 2 between two slow modes (see
(3.27)). The figure shows σms/ε versus B for N = 0.0, 0.5, 1.0, 2 and N = 3.

because limB→+∞ μ2B2 = 1. When N � B > 1, an equivalent form for σms/ε can be
written as

σms

ε
∼

N→+∞

(
3 − B2μ2) (1 + B2μ2)

8
−→

N→+∞
1
2

(3.31)

because limN→+∞ μ2B2 = 1.

It follows that, for (B,N ) ∈ [
√

3, +∞[ × [0, +2] and when N is fixed, σms/ε increases
from 0 at B = √

3 to 0.5 as B → +∞. This is illustrated by figure 6 which shows σms/ε
versus B for N = 0, 0.5, 1 and N = 2. By comparing (3.28) and (3.31), we can remark
that, in this case, the N → 0 limit is, in fact, singular (discontinuous). Consequently, we
can conclude that in the presence of the stratification with N ≤ 2 the IS instability is
reinforced because σms/ε tends towards 1/2 like B → +∞, whereas without stratification
(N = 0), σms/ε approaches 1/4.

On the other hand, for (B,N ) ∈ Df ∪ ([
√

3, +∞[ × ]2, +∞[) (this corresponds to
the domains V and VI shown in figure 2) and when N is fixed, σms/ε also increases
from σmf ( f (N ),N )/ε at B = f (N ) to 0.5 as B → +∞. Indeed, for (B1,N ) ∈ Df and
(B2,N ) ∈ [

√
3, +∞[ × ]2, +∞[, we have (see figure 5),

0 ≤ σmf (B1,N ) ≤ σms (B1,N ) ≤ σms (B2,N ) <
ε

2
. (3.32)

It clearly appears that in the simultaneous presence of the axial magnetic field and
stratification with N > 2, the subharmonic instability resulting from the resonances (of
order n = 2) between two slow modes, which emerges beyond the threshold Bc = f (N ) <√

3, is dominant with a maximal growth rate approaching ε/2 for large B.

3.5. Destabilising resonances between a fast mode and a slow mode
In this section, we study the effects of the vertical (stable) stratification on the subharmonic
instability resulting from the resonances (of order n = 2) between a fast mode and a slow
mode (hereinafter, referred to as IM instability). Without stratification, the IM instability
occurs for all magnetic field strengths where its maximal growth rate approaches ε/4 as
B → +∞ (see LZ04).
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The resonance of order n = 2 between a fast mode and a slow mode, i.e. ω1 − ω3 = 2Ω

or ω1 − ω4 = 2Ω, exists for

(B,N ) ∈ ]0, +∞[ × [0, +∞[. (3.33)

In the case where ω1 − ω4 = 2Ω, one has μ = 1, but this resonant case does not induce
any instability because the Floquet system (2.28) is stable at μ = 1, as already indicated.

In the case where ω1 − ω3 = 2Ω, we deduce from the algebraic equation (3.11) that the
points of the μ−axis characterising the resonances between a fast mode and a slow mode
are given by

μ2 =
(
4 − N 2)2(

4 − N 2
)2 + 16B2

. (3.34)

The latter expression implies that, for fixed N ≥ 0, the parameter μ decreases from 1 at
B = 0 to zero as B → +∞. Inversely, for fixed B > 0, the parameter μ increases from
μ = 1/

√
1 + B2 at N = 0 to 1 as N → +∞.

However, according to our asymptotic analysis (see Appendix A), only the resonant
cases for which the couple (B,N ) belongs to the domain ]0, +∞[ × [0, 2[ (this
corresponds to the domains I–IV shown in figure 2), are destabilising. In that case,
the maximal growth rate of the IM instability, denoted by σmm, is found as (see
Appendix A.3.3)

σmm

ε
= (1 − μ2)

16

[
(1 − μ2)(4 − N 2) + 4N 2]

√
4 + N 2

√
(4 − N 2)3

(4 − N 2)2 + B2N 4 . (3.35)

It immediately follows that σmm = 0 for N = 2, independently of the magnetic field
strength.

In the non-stratified case (N = 0), (3.35) reduces to

σmm

ε
= 1

4

(
1 − μ2

)2 = B4

4
(
1 + B2

)2 −→
B→+∞

1
4
, (3.36)

in agreement with the study by LZ04. Therefore, σmm/ε increases from 0 at B = 0 to
approach 1/4 as B → +∞.

However, in the simultaneous presence of the vertical (stable) stratification and the
magnetic field and for fixed N ≤ 2, σmm/ε increases from 0 to reach its maximum value
(which is less than 1/4), then it decreases tending towards zero when B → +∞. Also in
this case, the N → 0 limit is, in fact, singular (discontinuous). As an illustration, figure 7
shows σmm/ε vs B for N = 0, 0.5, 1, 1.5 and N = 2.

We can therefore conclude that the effect of (stable) stratification on the IM instability is
to suppress it if N exceeds 2, or to make it less efficient otherwise (0 < N < 2) because
σmm approaches zero for large B.

4. Numerical results

In this section, we numerically determine the maximal growth rate of the dominant
instability for a given value of the triplet (B,N , ε) such that 0 ≤ B = B/Ω ≤ 4 and
0 ≤ N = N/Ω ≤ 4 and 0 ≤ ε ≤ 1 (or, equivalently, 1 ≤ E = ε + √

1 + ε2 = 1 + √
2).

We use the resonance conditions (3.10) and (3.11) for the identification of the instability
(if it exists) and we compare the asymptotic formulae with the numerical results. At the
end of this section, we briefly examine the effect of fluid diffusivity in a special case where
the diffusion coefficients are equal (ν = κ = η).
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Figure 7. Maximal growth rate of the destabilising resonances of order n = 2 between a fast and a slow mode
(see (3.35)). The figure shows σmm/ε versus B for N = 0.0, 0.5, 1.0 and N = 1.5.

4.1. Identification of instabilities
For the identification of the instabilities picked up by the numerical procedure we use the
resonance conditions described by (3.10) and (3.11) as explained as follows.

On the one hand, for a given value of the couple (B,N ), we use (3.15), (3.25) and (3.34)
and determine the values of μ, say μ0, characterising the resonant cases of order n = 2.

On the other hand, for the same value of the couple (B,N ), we consider several values of
ε uniformly distributed in the interval [0, 1] and, for each of these values of ε, we integrate
numerically the Floquet system (2.28) and determine the growth rate σ for 2000 values of
μ (evenly distributed) in ]0, 1[. Obviously, σ(μ) = 0 if there is no instability. Thus, in
the plane (μ, σ + ε), the region of instability that emanates from the point of abscissa μ0
characterises a subharmonic instability. As an illustration, figure 8 shows σ + ε versus μ

for B = 4 and N = 0.5 and 100 values of ε evenly distributed in the interval [0, 0.8]. In
that case, there are three subharmonic instabilities IF, IM and IS which correspond to the
regions of instability emanating from the points (μ0 = 0.1755, 0), (μ0 = 0.2282, 0) and
(μ0 = 3074, 0), respectively. The other instabilities appearing in figure 5 are related to
higher-order resonances (n = 4, 6, 8, . . .), but as they are dominated by the subharmonic
instabilities, we do not seek to identify them one by one.

4.2. Comparison between the asymptotic formulae and the numerical results
We recall that the present asymptotic results (at leading order in ε) clearly shows that
subharmonic instability exists when

(B,N ) ∈ ([0, +∞[ × [0, 2]) ∪ ([
√

3 + ∞[ × [2, +∞[) ∪ Df . (4.1)

Obviously, the procedure leading to the asymptotic formulae excludes the instabilities
related to higher-order resonances (n = 4, 6, 8, . . .). Numerical calculations indicate that,
when (B,N ) belongs to domains I–VI (see figure 2) deprived of a very narrow band which
are specified below, one of the subharmonic instabilities listed in § 3 is dominant.

In figure 9, we show the continuous variation of the maximal growth rate σm (maximum
σ over 0 ≤ μ ≤ 1) of the dominant instability normalised by σ0 = 9/16 plotted as a
function of 0 ≤ B ≤ 4 and 0 ≤ N ≤ 4. Figure 9(a) displays the numerical results for
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Figure 8. Magneto-gravity elliptic instabilities. The figure shows σ + ε versus μ for B = 4 and N = 0.5 and
100 values of ε evenly distributed in the interval [0, 0.8]. The regions of instability labelled by f , m and s
denote the IF, IM and IS instabilities that emanate from the points of the μ-axis of abscissa 0.1775, 0.2282 and
0.3074, respectively. The other instabilities picked up by the numerical procedure are related to higher-order
resonances (n = 4, 6, 8, . . .): for n = 4, μ = 0.3836 (fast, fast), μ = 0.4792 (fast, slow), μ = 0.6359 (slow,
slow); for n = 6, μ = 0.5821 (fast, fast), μ = 0.7252 (fast, slow).
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Figure 9. Magneto-gravity elliptic instabilities. Maximal growth rate of dominant instability normalised
by σ0 = 9/16 plotted as a function of 0 ≤ B ≤ 4 and 0 ≤ N ≤ 4.: (a) numerical results for ε = 0.1;
(b) asymptotic analysis results.

ε = 0.1, where the grid consists of 201 points evenly distributed in each one of the ranges
0 ≤ B ≤ 4 and 0 ≤ N ≤ 4. Figure 9(a) shows the analytical results for σm/σ0 where

σm = max(σmf , σms, σmm). (4.2)

Recall that σmf , σms and σmm are given by equations (3.18), (3.27) and (3.35), respectively.
As can be seen, the agreement between the numerical results and the asymptotic

formulae is quite good except for (B,N ) belonging to a narrow band around N = 3 and
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Figure 10. Magneto-gravity elliptic instabilities. Maximal growth rate of the dominant instability normalised
by ε versus N for selected values of B = 1 (figure 10a), B = 2 (figure 10b), B = 3 (figure 10c) and
B = 4 (figure 10d). The figure compares the asymptotic formulae with the numerical results at ε = 0.1. The
subharmonic instability resulting from a resonance between two fast (respectively, slow) modes is labelled by
IF (respectively, IS), whereas that resulting from a resonance between a fast and a slow mode is labelled by
IM. From figure 10(a), we observe that an instability related to higher-order resonances (IHOR) is present for
N > 3.7.

B � f (N = 3) = 1.6035. This can also be observed more quantitatively from figure 10
which shows σm/ε versus N for some selected values of B = 1 (figure 10a), B = 2
(figure 10b), B = 3 (figure 10c) and B = 4 (figure 10d).

A closer examination of the regions of instability in the plane (μ, σ + ε) for a given
(B,N ) belonging to the narrow band around N = 3 reveals that beyond ε ≈ 0.1 the
subharmonic instability resulting from the resonances between two slow modes disappears
and it is the instability related to resonances of order n = 4 between a fast mode and a slow
mode which becomes dominant. This is illustrated by figure 11 which shows σ + ε vs μ

for N = 3.1 and B = √
3. It can be observed that, before disappearing, the subharmonic

instability coalesces with the instability related to the resonances of order n = 6 between
two slow modes. Recall that for the identification of the different regions of instability we
use (3.10) and (3.11).

Similar conclusions are drawn from the analysis of the numerical results for 0.1 < ε

in the sense that, for (B,N ) belonging to one of the domains I–VI, the dominant
instability corresponds to one of the subharmonic instabilities listed in § 3. As for the
agreement between the asymptotic formulae and the numerical results at ε > 0.1, it is not
as satisfactory as in the case of weak ellipticity (ε � 0.1). Indeed, the difference between
the numerical results and the asymptotic formulae increases as ε increases especially for
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Figure 11. Magneto-gravity elliptic instabilities. The figure shows σ + ε versus μ for N = 3.1 and B = √
3,

and 100 values of ε regularly distributed in the interval 0 ≤ ε ≤ 0.15. The subharmonic instability IS emanates
from the point (0.6589, 0) and disappears beyond ε ≈ 0.1. Before disappearing, the IS instability coalesces
with the instability associated with a resonance of order n = 6 between two slow modes which emanates
from the point (0.5262, 0). The region of instability emanating from the point (0.7168, 0) corresponds to the
instability related to resonances of order n = 4 between a fast mode and a slow mode.
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Figure 12. Magneto-gravity elliptic instabilities. Maximal growth rate of dominant instability normalised by
ε versus N for ε = 0.1, 0.2, 0.3, 0.4, 0.5 and B = 4.

(B,N ) belonging to the domains V and VI. This is illustrated by figure 12 that displays
σm/ε versus N for B = 4 and five values of ε = 0.1, 0.2, 0.3, 0.4 and ε = 0.5.

We point out that the present numerical computations, as well as the asymptotic analysis,
do not detect any instabilities for 2 < N < 3 and 0 ≤ B ≤ f (N = 3) = 1.6035. As an
illustration, figure 13 shows the continuous variation of the maximal growth rate σm of
the dominant instability normalised by σ0 = 9/16 plotted as a function of 0 ≤ B ≤ 4 and
0 ≤ N ≤ 4 for ε = 0.5 (figure 13a) and ε = 1 (figure 13b).

4.3. Accounting for diffusivity, in the simplest case
As indicated in the introduction, Singh & Mathur (2019) investigated the effects of
differential diffusion between momentum and density (Sc = κ/ν) in their local stability
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Figure 13. Magneto-gravity elliptic instabilities. Maximal growth rate of dominant instability normalised by
σ0 = 9/16 plotted as a function of 0 ≤ B ≤ 4 and 0 ≤ N ≤ 4: (a) ε = 0.5; (b) ε = 1.

analysis for an elliptical vortex with a uniform stable stratification along the vorticity axis.
They showed that in the case where Sc = κ/ν = 1 viscous effects are purely suppressive,
whereas for sufficiently small Sc < 1, there is an oscillatory instability the signature of
which is nevertheless present with zero growth rate in the inviscid limit.

The study of the effects of differential diffusion in the case of an elliptical vortex with
a uniform stable stratification and a uniform magnetic field involves three dimensionless
numbers, namely, the Reynolds number and the thermal and magnetic Prandtl numbers,
in addition to the parameters ε, B and N . This requires a detailed study and is beyond
the scope of the present work. For instance, we consider the very special case where the
diffusion coefficients are equal, ν = κ = η.

In that case, the dispersion relation of the MIG waves is obtained by replacing ω in (3.6)
by (ω − νk2), and the Fourier amplitudes of the velocity, magnetic field and buoyancy
scalar perturbations may be associated with those in the inviscid limit û, b̂ and ϑ̂ by the
substitution (Cambon et al. 1985; Landman & Saffman 1987)(

û(v), b̂(v), ϑ̂ (v)
)

=
(

û, b̂, ϑ̂
)

exp
(

−ν

∫ t

0
k2(s) ds

)
. (4.3)

Accordingly, the maximal growth rate of the dominant instability, if attainable, is

σ (v)
m = σm − Re−1k2

0L2
0

(
1 + (E2 − 1)(1 − μ2

m)

2

)
, (4.4)

where Re = ΩL2
0/ν is the Reynolds number, L0 is a characteristic length scale and μm

is the value of μ where σm occurs. At L0k0 ∼ 1, the dominant instability survives the
diffusive effects if Re > Rec, where

Rec = 2 + (E2 − 1)(1 − μ2
m)

2σm
. (4.5)

Figure 14 shows the variation of Rec vs N for E = 1.5 (so that ε = 0.41667) and B =
1,

√
3, 3 and B = 4. It appears that in the case where B ≥ √

3, the dominant instability
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Figure 14. Case where the diffusivity coefficients (kinematic, magnetic and thermal) are equal. Variation of
the critical Reynolds number Rec versus N for E = 1.5 (therefore ε = 0.41667) = and B = 1,

√
3, 3 and

B = 4. Dominant instability can survive the effects of diffusion, provided Re > Rec.

survives the diffusion effects for Rec ∼ 50 and (B,N ) ∈ [
√

3, +∞[ × [0, +∞[. As there
are no instabilities when 2 < N < 3 and 0 < B < f (N ) = 1.6035, the critical Reynolds
number Rec takes large values for N in the left (respectively, right) neighbourhood of
N = 2 (respectively, N = 3). This is the case for B = 1 that we observe in figure 14.

5. Concluding remarks

We have analysed here the joint influence of a stable stratification and an external uniform
magnetic field on the stability of an unbounded flow with elliptical streamlines of a
perfectly conducting fluid. Both stable stratification, via the mean buoyancy gradient, and
mean magnetic field are in the axial direction. Such a simple model allows us to formulate
the stability problem as a system of equations for disturbances in terms of Lagrangian
Fourier modes which is universal for wavelengths of the perturbation sufficiently small
with respect to the scale of variation of the mean velocity gradients. Moreover, it can
similarly model localised patches of elliptic streamlines which often appear in geophysical
and astrophysical flows. For example, an elliptical vortex patch embedded in the accretion
disc can be created by the non-uniform average angular velocity profile in the disc. Indeed,
some previous studies using the zonal asymptotic method of Lifschitz & Hameiri (1991)
show that these localised patches of elliptic streamlines are unstable to short-wavelength
instabilities regardless of what type of flow surrounds (e.g. Lifschitz 1994; Sipp, Lauga &
Jacquin 1999; Godeferd et al. 2001; Aravind, Dubos & Mathur 2022).

The analysis presented in the present paper extends the study by Miyazaki & Fukumoto
(1992) by including the effect of the (axial) magnetic field on the gravity-elliptic
instability and the study by LZ04 by including the effect of an axial stratification on the
magneto-elliptic instability. The stability analysis involves a non- homogeneous Floquet
system with arbitrary value of the MIPS in its right-hand side (2.25). For the purpose of
the study of stability, this right-hand side ((2.25, (2.28) and (3.1)) can be set to zero without
lack of generality. Of course, the resulting homogeneous Floquet system (left-hand side)
already accounts for the invariance of the MIPS with parameters (μ, ε, k0B/Ω, N/Ω).

This is shown by (3.6) as well.
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Because most of the instabilities appearing in this elliptical flow are due to the
destabilising resonances, we have analysed in detail the resonant cases of the MIG waves
propagating in flows with circular streamlines (ε = 0). These resonant cases are of three
types, the resonances between two fast modes, the resonances between a fast mode and
slow mode and the resonances between two slow modes, where the last two types disappear
in the absence of the unperturbed magnetic field. The asymptotic method at leading
order in ε by LZ04 has been extended to determine the growth rates of the destabilising
resonances of order n = 2 (i.e. the subharmonic instability). It results from this analysis
that the subharmonic instability operates for (k0B/Ω, N/Ω) belonging to the domain
(]0, +∞[ × [0, 2]) ∪ ([

√
3 + ∞[ × [2, +∞[) ∪ Df (see figure 2) where Df is defined by

(3.13). Moreover, the present analysis reveals that the effects of stable (axial) stratification
on the magneto-elliptical instability can be analysed by distinguishing the two cases N ≤
2Ω and N > 2Ω. Case where 0 < N ≤ 2Ω . In that case, three subharmonic instabilities
can exist: the IF (respectively, IS) instability results from resonances between two fast
(slow) modes and the IM (M for mixed) instability results from resonances between a
fast mode and a slow mode. For these three subharmonic instabilities, the N → 0 limit
is, in fact, singular (discontinuous). The IF (respectively, IM) instability is completely
suppressed by stable stratification when N/Ω reaches 1 (respectively, 2), independently of
the magnetic field strength. For 0 < N/Ω < 1 (respectively, 0 < N/Ω < 2) its maximal
growth rate approaches zero for large k0B, whereas in the case without stratification,
it approaches ε/4. As for the IS instability which only occurs for k0B/Ω >

√
3, it is

enhanced by the stable stratification because its maximal growth rate approaches ε/2
for large k0B whereas without stratification it approaches ε/4. Case where N/Ω > 2.
In that case, only the subharmonic instabilities resulting from resonances between two
fast modes (IF+) or two slow modes (IS+) can occur. The IF+ instability can only
occur for 2 < N/Ω < +∞ and 1 < f (N/Ω) ≤ B/Ω <

√
3 (i.e. the domain Df ). Its

maximal growth rate, which approaches ε/2 as k0B/Ω → +∞, remains less than that
of the IS+ instability. On other words, for (k0B/Ω, N/Ω) belonging to the domain Df ,
the IS+ instability dominates the IF+ instability (see figure 5). The IS+ instability is
also present for 2 < N/Ω < +∞ and

√
3 < k0B/Ω < +∞ with a maximal growth rate

approaching ε/2 for large k0B. Note that the enhancement of the IS instability when the
two backgrounds are simultaneously present is connected with a large exchange of energy
between the kinetic and magnetic energies and between the kinetic and potential energies.

The analytical results were compared with numerical results for several values of
0 ≤ ε ≤ 1, 0 ≤ B ≤ 4 and 0 ≤ N ≤ 4. The comparison reveals that the subharmonic
instability, if it exists, dominates the instabilities related to higher-order resonances
(n = 4, 6, 8, . . .). The agreement between the asymptotic formulae and the numerical
results is quite good for small ellipticities (ε � 0.1) (see figure 12). The numerical
results also reveal that for a narrow band around N = 3, the dominant instability is
rather that related to resonances of order n = 4 between a fast mode and a slow mode
(see figure 11). Instabilities related to higher-order resonances can occur for (B,N ) ∈
[0,

√
3[ × ]2, ∞[\Df (see, e.g., figure 8).

The whole analysis developed in this study is essentially linear, and linearisation
deserves some discussion. On the one hand, it was clarified that a two-mode analysis is
needed for the destabilising resonances, in contrast with a single-mode analysis where the
nonlinearity is identically zero (Craik & Criminale 1986; Moffatt 2010). Other cases where
the nonlinearity is not explicit, but implicitly present, exist in the literature, especially in
astrophysics, with the regeneration of modes for bypass transition in accretion discs (e.g.
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Chagelishvili et al. 2003). Looking at the velocity field, linearisation cannot be justified by
a small value of the perturbed velocity field with respect to the base (mean) velocity field,
which is extensional: a ratio of time scale is used instead in the so-called RDT as the linear
‘rapid’ limit; a typical time-scale of the ‘turbulent’ velocity field is assumed to be large
with respect to the time scale given by the (inverse of the magnitude of) the mean velocity
gradients (e.g. A in (2.6a)). As suggested by an anonymous referee, some robustness of
the linear solution results from the particular mean flow configuration, where the periods
of a fluid element moving along different streamlines are the same. Accordingly, there is
no growth of gradient, as a source of nonlinearity, and thereby of wavenumber, across the
streamlines direction.

The present analysis, which allowed us to map the domains of the (B,N ) space for
which the magneto-gravity-elliptic instability can operate, would serve to guide future
DNS for the study of the effects of nonlinearity on this instability. Note that, in the case
of the magneto-precessional instability, the regime of the saturation of this instability by
nonlinear interactions was identified. It corresponds to a saturation stage during which
the total turbulent energy (kinetic + magnetic), the production rate due to the base flow
and the total dissipation rate remain almost independent of time where the dissipation rate
balances the production rate (Salhi, Khlifi & Cambon 2020).

The question that can arise concerns the joint influence of Lorentz, Coriolis and
buoyancy forces on the elliptical instability. With the inclusion of the Coriolis force, in
addition to the Lorentz and buoyancy forces, the problem turns out to be more complex
because the resulting fourth four-component linear Floquet system becomes one with
five parameters, namely (μ, ε,B,N , Ωc/Ω), (Ωc being the angular velocity of system
rotation). For that we preferred not to include, in this analysis, the effect of the Coriolis
force.

As a useful extension of our present study, more complex but with a similar analysis, an
additional Coriolis force can be introduced. Keeping the same effects of stratified MHD,
the problem will include the angular velocity Ωc of the system rotation in addition to the
basic angular velocity Ω. Moreover, for anticyclonic rotation (i.e.Ωc ≤ −Γ/2 = −Ω(E +
E−1)/4), the horizontal instability is dominant Bajer & Mizerski 2013). Indeed, when the
wave vector is axial (here, the vectors Ωc, B and ∇� are also axial) there is no effect
of the buoyancy force (in the linear regime) since the frequency of gravity waves is zero
(ωg = 0). In that case, the maximal growth rate of the horizontal instability, which is
not of resonant nature, is about σm/ε = 1 for (k3B)2 = −Ω2(1 + 2Ωc/Ω) in the limit of
small ε (so that, Γ = Ω(1 + O(ε2)). The study of the effect of cyclonic rotation on the
magneto-gravity-elliptic instability, as well as the study of the joint influence of a stable
stratification and unperturbed magnetic field on the precessional instability, are the subject
of future studies.

Declaration of interests. The authors report no conflict of interest.
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Abdelaziz Salhi https://orcid.org/0000-0002-3154-345X;
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Appendix A. Asymptotic analysis at leading order in ε of the Floquet system (2.28)

In this appendix, we extend the asymptotic method of LZ04 to determine, at leading order
in ε, the maximal growth rate of the solution of the four-component Floquet system (2.28),
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dτ ĉ = D · ĉ. Recall that Φ(τ, ε, μ,B,N ) denotes the fundamental matrix solution,

dτΦ = D · Φ, Φ(τ = 0) = I4 (A1a,b)

and M = Φ(2π, ε, μ,B,N ) denotes the Floquet multiplier matrix where its determinant
is unity (see the end of § 2.3). It follows that whenever λ is an eigenvalue of M, so also
are its inverse λ−1 and its complex conjugate λ∗. We denote by

p(λ, ε) = |M − λI4| (A2)

the characteristic polynomial of the characteristic polynomial of the Floquet multiplier
matrix M and by Λ1, Λ2, Λ3 and Λ4 its roots. A necessary condition for stability is that
each root lie on the unit circle (see LZ04).

A.1. Expansion in Taylor series of the Floquet multiplier matrix
We expand the Floquet multiplier matrix M(ε, μ,B,N ) in Taylor series in the
neighbourhood of (ε, μ) = (0, μ0), holding (B,N ) constant,

M = M0(μ0, 0) + εMε(μ0, 0) + (μ − μ0)Mμ(μ0, 0) + · · · , (A3)

where Mε = (∂M/∂ε), Mμ = (∂M/∂μ) and the dots indicate higher-order terms in ε

and μ − μ0. In general, at sufficiently small ε, the region in the (ε, μ) plane where
instability occurs is typically a wedge with apex at a point (ε, μ) = (0, μ0) and boundaries

μ = μ0 + γ±ε, (A4)

where the slopes γ+ and γ− are to be found. The instability (if it exists) has a bandwidth
(γ+ − γ−)ε; that is, for given ε, B and N , the length of the μ−interval for which the
wavenumbers are unstable. Therefore, (A3) can be rewritten as

M = M0 + εM1 + O(ε2), (A5a)

M1 = Mε + γ Mμ. (A5b)

Accordingly, we no longer need the designation μ0 and, hereinafter, use the symbol μ in
its place.

To determine matrices M0, Mε and Mμ, we expand, for a given τ ∈ [0, 2π], Φ and D,

Φ(τ, ε) = Φ0(τ, μ, 0) + εΦ1(τ, μ, 0) + O(ε2), (A6a)

D(τ, ε) = D0 + εDε(τ, 0) + O(ε2), (A6b)

where Φ0(τ = 0) = I4 and Φ1(τ = 0) = 0. Substituting (A6) into (A1a,b), we obtain

dτΦ0 = D0 · Φ0, dτΦ1 = D0 · Φ1 + Dε · Φ0, (A7a,b)

with solution Φ0(τ ) = eτD0 and

Φ1(τ ) = Φ0(τ ) ·
(∫ τ

0
Φ−1

0 (s) · Dε(s) · Φ0(s) ds
)

. (A8)

Because the characteristic polynomial p(λ, ε) is the same in any coordinate system and
the four eigenvalues of the matrix D0, given by (3.6) (repeated here for the sake of clarity)
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are distinct

σ1 = −σ2 = − i√
2

√(
4 + 2B2 − N 2

)
μ2 + N 2 +

√[(
4 − N 2

)
μ2 + N 2

]2 + 16B2μ4

(A9a)

σ3 = −σ4 = − i√
2

√(
4 + 2B2 − N 2

)
μ2 + N 2 −

√[(
4 − N 2

)
μ2 + N 2

]2 + 16B2μ4

(A9b)

as long as B /= 0 and 0 < μ2 < 1, we transform the solution in the base diagonalising D0,

D̃0 = T−1 · D0 · T = diag (σ1, −σ1, σ3, −σ3) . (A10)

Here, the columns of T are the eigenvectors of D0,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ1 −σ1 σ3 −σ3

−1
2

(
σ 2

1 + m2) −1
2

(
σ 2

1 + m2) −1
2

(
σ 2

3 + m2) −1
2

(
σ 2

3 + m2)
im im im im

− i
2

m
σ1

(
σ 2

1 + m2) i
2

m
σ1

(
σ 2

1 + m2) − i
2

m
σ3

(
σ 2

3 + m2) i
2

m
σ3

(
σ 2

3 + m2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A11)

T−1 = 1(
σ 2

1 − σ 2
3
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

σ1

m2

(
σ 2

3 + m2) −1
i

2m

(
σ 2

3 + m2) − iσ1σ
2
3

m3

−1
2

σ1

m2

(
σ 2

3 + m2) −1
i

2m

(
σ 2

3 + m2) iσ1σ
2
3

m3

−1
2

σ3

m2

(
σ 2

1 + m2) 1 − i
2m

(
σ 2

1 + m2) iσ3σ
2
1

m3

1
2

σ3

m2

(
σ 2

1 + m2) 1 − i
2m

(
σ 2

1 + m2) − iσ3σ
2
1

m3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A12)

where m = Bμ. Therefore, in the base diagonalising D0, M̃0 and M̃ε take the form

M̃0 = T−1 · M0 · T = diag
(

e2πσ1, e−2πσ1, e2πσ3, e−2πσ3
)

= diag (λ1, λ2, λ3, λ4) ,

(A13a)

M̃ε = T−1 · Mε · T = M̃0 · J̃ , (A13b)

J̃ij =
(

T−1
)

im
Tlj

∫ 2π

0
e(σj−σi)τ (Dε)ml (τ ) dτ. (A13c)

To complete the construction of the matrix M̃1, which appears in (A5), we need the
derivative of M̃0(μ) = M̃(μ, 0) with respect to μ,

γ M̃μ = γ
∂M̃0

∂μ
= 2iπγ

Ω
diag

(
∂ω1

∂μ
λ1,

∂ω2

∂μ
λ2,

∂ω3

∂μ
λ3,

∂ω4

∂μ
λ4

)
. (A14)
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A.2. Expansion of the characteristic polynomial
We expand the characteristic polynomial in Taylor series around ε = 0 to second order
in ε,

p(λ, ε) = p0(λ) + p1(λ)ε + p2(λ)ε
2 + O

(
ε3
)

, (A15)

where p0(λ) is the characteristic polynomial of M0 with roots λ1 = e2πσ1, λ2 = e−2πσ1,

λ3 = e2πσ3 and λ4 = e−2πσ3 . Although σ1, σ2, σ3 and σ4 are distinct, it is possible for the
multipliers λj ( j = 1, 2, 3, 4) to be repeated: if σj − σm = i� for an integer � /= 0, then
λj = λm. As shown by LZ04, a necessary condition for the onset of instability is that there
be a double (or higher) root of the characteristic equation. As we only consider the case in
which the eigenvalues are multiplicity 2, the Puiseux expansion takes the form

Λ1 = λ1 + ε1/2β 1
2

+ εβ1 + O
(
ε3/2

)
, (A16)

where, for definiteness, we have assumed that λ1 = λ2. It can be shown, however, that
β1/2 = 0, in this case, and then the leading-order correction to the eigenvalue, β1 /= 0, can
be established from a quadratic equation

1
2

[
d2p0

dλ2 (λ1)

]
β2

1 +
[

dp1

dλ
(λ1)

]
β1 + p2(λ1) = 0. (A17)

By the use of the formulae for the derivatives of the characteristic polynomial with respect
to parameter ε, derived by LZ04 (see their appendix B), we obtain

d2p0

dλ2 (λ1) = 2 (λ3 − λ1) (λ4 − λ1) , (A18a)

p1(λ1) =
4∑

j=1

(
M̃1

)
jj

∏
� /= j

(λ� − λ) , (A18b)

dp1

dλ
(λ1) =

[(
M̃1

)
11

+
(

M̃1

)
22

]
(λ3 − λ1) (λ4 − λ1) , (A18c)

p2(λ1) =

∣∣∣∣∣∣∣
(

M̃1

)
11

(
M̃1

)
12(

M̃1

)
21

(
M̃1

)
22

∣∣∣∣∣∣∣ (λ3 − λ1) (λ4 − λ1) . (A18d)

Going back to the general case of λj = λm, the quadratic equation (A17), with the aid
of (A5b), (A13) and (A18) can easily be transformed to an equation for the coefficient
α = β/λj,

α2 −
(

J̃jj + J̃mm + 2iπγ

Ω

(
∂ωj

∂μ
+ ∂ωm

∂μ

))
α +

∣∣∣∣∣∣∣∣
J̃jj + 2iπγ

Ω

∂ωj

∂μ
J̃jm

J̃mj J̃mm + 2iπγ

Ω

∂ωm

∂μ

∣∣∣∣∣∣∣∣
= 0.

(A19)

Therefore, either α is pure imaginary and we infer stability (to leading order in ε), or
Re α /= 0 and we infer instability (see Proposition 2 in LZ04).
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A.3. Maximal growth rates of subharmonic instabilities
The solutions of the quadratic equation (A19) take the form,

α = 1
2

[
J̃jj + J̃mm + 2iπγ

Ω

(
∂ωj

∂μ
+ ∂ωm

∂μ

)]
± 1

2

√
D, (A20)

where the expression for D can be put in the form

D = −
∣∣∣∣J̃jj − J̃mm + 2iπγ

Ω

(
∂ωj

∂μ
− ∂ωm

∂μ

)∣∣∣∣
2

+ 4J̃jmJ̃mj, (A21)

because all the diagonal elements of the matrix J̃ are pure-imaginary numbers. The
discriminant D must be greater than zero in order to have instability, so that

4J̃jmJ̃mj >

∣∣∣∣J̃jj − J̃mm + 2iπγ

Ω

(
∂ωj

∂μ
− ∂ωm

∂μ

)∣∣∣∣
2

> 0. (A22)

Now the maximal growth rate, which in this case is achieved for

γ =
iΩ
(

J̃jj − J̃mm

)
2π

(
∂ωj

∂μ
− ∂ωm

∂μ

) ∈ R (A23)

is

σmax = ε

2π
(Re α)max = ε

2π

√
J̃jmJ̃mj (with j /= m). (A24)

We now show that the diagonal elements of the matrix J̃ are pure-imaginary numbers.
From (2.26) giving the matrix D, we deduce Dε, where its non-zero elements are

(Dε)11 = i
(

1 − μ2
) (

e2iτ − e−2iτ
)

, (A25a)

(Dε)14 = N 2

2B

(
1 − μ2)

μ

(
e2iτ − e−2iτ

)
, (A25b)

(Dε)21 = μ2
(

1 − μ2
) (

e2iτ + e−2iτ − 2
)

, (A25c)

(Dε)24 = −i
N 2

2B μ
(

1 − μ2
) (

e2iτ + e−2iτ − 2
)

. (A25d)

Substituting the above expressions into (A13c) and using (A11) and (A12) we obtain

J̃jj =
(

T−1
)

j2

(
T1j

∫ 2π

0
(Dε)21 dτ + T4j

∫ 2π

0
(Dε)24 dτ

)
, (A26a)

J̃11 = −J̃22 = iπμ2
(

1 − μ2
) (4 − N 2)ω2

1 + N 2B2μ2

ω1
(
ω2

3 − ω2
1
) , (A26b)

J̃33 = −J̃44 = −iπμ2
(

1 − μ2
) (4 − N 2)ω2

3 + N 2B2μ2

ω3
(
ω2

3 − ω2
1
) , (A26c)

in which, as well as throughout the remainder of this appendix, the frequencies ω1 and
ω3 are normalised by Ω . Equation (A26) proves that the diagonal elements of the matrix
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J̃ are pure-imaginary numbers. This implies that the slopes γ±, which are solutions of
the equation Re(α) = 0, are also solutions of the equation Re(

√
D) = 0. The expression

of D given by (A21) involves the term (∂μωj − ∂μωm). However, the dependence of the
frequencies ωj and ωm on the variable μ is not linear which increases the complexity of
an analytical development in the resolution of Re(

√
D) = 0. It appears more convenient

to perform analytically the derivatives ∂μωj and ∂μωm, and to resolve numerically the
equation Re(

√
D) = 0.

We now calculate the maximal growth rates associated with the three unstable cases,
namely the fast–fast (case 1), slow–slow (case 2) and fast–slow (case 3) destabilising
resonances.

A.3.1. Case 1
The frequencies ω1 and ω2 = −ω1 given by (3.4a) correspond to fast modes and a
resonance (or order n = 2) between them is characterised by ω1 − ω2 = 2, so

ω1 = −ω2 = 1 or σ1 = −σ2 = i. (A27)

The maximal growth rate of the subharmonic instability IF, denoted by σmf , is described
by (A24) which, in this case, reduces to

σmf = ε

2π
(Re α)max = ε

2π

√
J̃12J̃21 (A28)

with

J̃12 =
(

T−1
)

1m
Tn2

∫ 2π

0
e−2iτ (Dε)mn dτ =

(
T−1

)
1m

Tn2H+
mn (A29)

J̃21 =
(

T−1
)

2m
Tn1

∫ 2π

0
e+2iτ (Dε)mn dτ =

(
T−1

)
2m

Tn1H−
mn, (A30)

where, given (A25), the non-zero elements H+
mn and H−

mn take the form

H+
11 = −H−

11 = 2iπ(1 − μ2), (A31a)

H+
14 = −H−

14 = π
N 2

B
(1 − μ2)

μ
, (A31b)

H+
21 = H−

21 = 2πμ2(1 − μ2), (A31c)

H+
24 = H−

24 = −iπ
N 2

B μ(1 − μ2). (A31d)

With the aid of (A11) and (A12) one easily shows that J̃21 = −J̃12. Now back to
determining the element J̃12

J̃12 =
(

T−1
)

11

(
H+

11T12 + H+
14T42

)+
(

T−1
)

12

(
H+

21T12 + H+
24T42

)
. (A32)

The substitution of T−1
ij , H+

ij and Tij by their expressions respectively given by (A12),
(A31) and (A11) into (A32) leads to

J̃12 = −J̃21 = − iπ
4

(1 − μ2)

(1 − ω2
3)

(
4 − N 2 + B2N 2μ2

)(
1 + 2μ2 − ω2

3
B2μ2

)
. (A33)
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From (3.4a) and (3.4b) giving the expression of the frequencies ω1 and ω3, we deduce that

ω2
1 + ω2

3 = 1 + ω2
3 =

(
4 + 2B2 − N 2

)
μ2 + N 2 (A34)

because ω1 = 1 in case 1. Moreover, with the aid of the resonance condition (3.10), we
deduce the equality

ω2
3 =

(
4 + 2B2 − N 2

)
μ2 + N 2 − 1 = B2μ2

[(
B2 − N 2

)
μ2 + 1

]
. (A35)

Accordingly, the substitution of (A35) into (A33) leads to

J̃12 = −J̃21 = − iπ
4

(
3 − B2μ2

) (
1 + B2μ2

) [(N 2 − B2 + 2
)
μ2 + (

1 − N 2)][(N 2 − 2B2 − 4
)
μ2 + (

2 − N 2
)] .
(A36)

Hence, we obtain the expression of

σmf

ε
= 1

2π
(Re α)max = 1

2π

√
J̃12J̃21 =

√
−
(

J̃12

)2 ≥ 0 (A37)

given by (3.18) in which the parameter μ is given by (3.15).

A.3.2. Case 2
The frequencies ω3 and ω4 = −ω3 given by (3.4b) correspond to slow modes and a
resonance (or order n = 2) between them is characterised by ω3 − ω4 = 2, so

ω3 = −ω4 = 1 or σ3 = −σ4 = i. (A38)
The maximal growth rate of the subharmonic instability IS, denoted by σms, is then
described by (A24) which, in this case, reduces to

σms = ε

2π
(Re α)max = ε

2π

√
J̃34J̃43. (A39)

With the aid of (A11) and (A12) we show that J̃43 = −J̃34. The determination of the
element

J̃34 =
(

T−1
)

31

(
H+

11T12 + H+
14T44

)+
(

T−1
)

32

(
H+

21T14 + H+
24T44

)
(A40)

is similar to that of J̃12 since if we perform the permutation σ1 ↔ σ3 in the expression of(
T−1)

11,
(
T−1)

12, T12 and T42 in (A11) and (A12) we obtain the expression of
(
T−1)

31,(
T−1)

32 , T14 and T44 and, hence,

J̃34 = −J̃43 = − iπ
4

(1 − μ2)

(1 − ω2
1)

(
4 − N 2 + B2N 2μ2

)(
1 + 2μ2 − ω2

1
B2μ2

)
, (A41)

where

ω2
1 =

(
4 + 2B2 − N 2

)
μ2 + N 2 − 1 = B2μ2

[(
B2 − N 2

)
μ2 + 1

]
. (A42)

Thus, the substitution of (A42) into (A43) gives rise to

J̃34 = −J̃43 = − iπ
4

(
3 − B2μ2

) (
1 + B2μ2

) [(N 2 − B2 + 2
)
μ2 + (

1 − N 2)][(N 2 − 2B2 − 4
)
μ2 + (

2 − N 2
)] ,
(A43)

which is identical to (A36). The difference is due to the fact that, in (A36), the parameter
μ is described by (3.15), whereas in (A43) it is given by (3.25). It then results in
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the expression

σms

ε
= 1

2π
(Re α)max = 1

2π

√
J̃34J̃43 =

√
−
(

J̃34

)2 ≥ 0 (A44)

given by (3.27) in which the parameter μ is given by (3.25).

A.3.3. Case 3
The resonance (of order n = 2) between a fast mode and a slow mode is characterised by
ω1 − ω3 = 2. If this resonant case is destabilising, its maximal growth rate is then of the
form

σmm = ε

2π
(Re α)max = ε

2π

√
J̃13J̃31, (A45)

where

J̃13 =
(

T−1
)

11

(
H+

11T13 + H+
14T43

)+
(

T−1
)

12

(
H+

21T13 + H+
24T43

)
, (A46a)

J̃31 =
(

T−1
)

31

(
H+

11T11 + H+
14T41

)+
(

T−1
)

32

(
H+

21T11 + H+
24T41

)
. (A46b)

With the aid of (A11), (A12) and (A31) we find

J̃13 = iπ(1 − μ2)

8ω3(ω
2
1 − ω2

3)

((
4 − N 2

)
ω2

3 + B2N 2μ2
)(

ω1 − ω1ω
2
3

B2μ2 + 2μ2

)
, (A47a)

J̃31 = iπ(1 − μ2)

8ω1(ω
2
3 − ω2

1)

((
4 − N 2

)
ω2

1 + B2N 2μ2
)(

ω3 − ω3ω
2
1

B2μ2 − 2μ2

)
. (A47b)

We set

A0 = −
(
1 − μ2)(

ω2
1 − ω2

3
)2 , (A48a)

A1 =
((

4 − N 2
)

ω2
3 + B2N 2μ2

) ((
4 − N 2

)
ω2

1 + B2N 2μ2
)

, (A48b)

A2 =
(
1 − μ2)
ω1ω3

(
ω1 − ω1ω

2
3

B2μ2 + 2μ2

)(
ω3 − ω3ω

2
1

B2μ2 − 2μ2

)
, (A48c)

so as

J̃13J̃31 = π2

64
A0A1A2. (A49)

To calculate the quantities A0,A1 and A2 we proceed as follows. We use the resonance
condition either in the form ω1 − ω3 = 2 or in an equivalent form (see (3.34))

1 − μ2 = 16(
4 − N 2

)2B2μ2 (A50)
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together with the expressions of ω1 and ω3 described by (3.3) and determine ω1ω3, ω2
1 +

ω2
3 and (ω2

1 − ω2
3)

2

ω1ω3 = −
(
4 + N 2)(
4 − N 2

)B2μ2, (A51a)

ω2
1 + ω2

3 = 2 (2 + ω1ω3) , (A51b)(
ω2

1 − ω2
3

)2 = 16 (1 + ω1ω3) . (A51c)

We therefore substitute (A51) into (A48) to obtain

A0 = − B2(
4 − N 2

)2 + B2N 4
, (A52a)

A1 =
(

4 − N 2
)3 (

1 − μ2
) [(

4 − N 2
) (

1 − μ2
)

+ 4N 2
]
, (A52b)

A2 = −
(
1 − μ2)

B2
(
4 + N 2

) [(4 − N 2
) (

1 − μ2
)

+ 4N 2
]
. (A52c)

Thus, we deduce the expression of σmm/ε given by (3.35).
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