# Comparison of Approaches to Photometric Redshift Estimation of Quasars 

Yang Tu, Yan-Xia Zhang, Yong-Heng Zhao \& Hai-Jun Tian<br>Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, 100012, Beijing, P.R.China email: tyang@bao.ac.cn


#### Abstract

We probe many kinds of approaches used for photometric redshift estimation of quasars, including KNN (K-nearest neighbor algorithm), Lasso (Least Absolute Shrinkage and Selection Operator), PLS (Partial Least Square regression), ridge regression, SGD (Stochastic Gradient Descent) and Extra-Trees.


Keywords. Photometric redshifts, quasars, data mining, machine learning

## 1. Sample and Methods

The sample is cross-identified by SDSS DR7, UKIDSS DR8 and ALLWISE. 24,089 quasars are obtained (Zhang et al. 2013). Based on the input pattern $10 C+r$, the performance of KNN, Lasso, PLS, Ridge, SGD, Extra-Trees are compared in figure 1.


Figure 1. The first: the photometric redshift estimation by KNN $(k=7)$; the second: the photometric redshift estimation by Extra-Trees (estimator $=90$ ); the third: comparison of photometric redshift estimation by six approaches.

## 2. Conclusions

The experimental results show that when the input pattern $10 C+r$ is adopted, KNN has the best performance, Extra-Trees has better performance, the others achieve bad accuracy.

## Acknowledgement

This paper is funded by National Key Basic Research Program of China 2014CB845700 and National Natural Science Foundation of China under grants No.11178021, No.11033001, NSFC-TAMU Joint Research Program No. 11411120219.

## Reference

Zhang Yanxia, Ma He, Peng Nanbo, Zhao Yongheng, Wu Xue-bing, $A J$, 2013, 146, 22 (10pp)

