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Abstract

We prove that certain tree products of finitely generated Abelian groups have Property E. Using this fact,
we show that the outer automorphism groups of those tree products of Abelian groups and Brauner’s
groups are residually finite.
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1. Introduction

It is well known that automorphism groups of finitely generated residually finite
(RF) groups are RF (Baumslag [2]). In general, outer automorphism groups
(Out G) of finitely generated RF groups need not be RF (Wise [12]). It seems
interesting to determine which finitely generated RF groups have residually finite
outer automorphism groups. In fact, Gilman [3] showed that Out Fr is residually finite
alternating and residually finite symmetric where Fr is a free group of rank r ≥ 3.
In [4], Grossman showed that the outer automorphism group, Out π1(M), is RF
where M is a closed orientable surface of genus k. It follows that mapping class
groups of orientable surfaces of genus k are RF . In [1], Allenby et al. showed that
Out G is RF if G is the generalized free product of two free groups amalgamating
a maximal cyclic subgroup. From this it follows that mapping class groups of all
closed surfaces (orientable or non-orientable) are RF . Johannson [6] showed that
mapping class groups of simple 3-manifolds are finite, from which he derived that
outer automorphism groups of fundamental groups of simple 3-manifolds are finite.
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10 Y. D. Chai et al. [2]

We note that fundamental groups of closed surfaces of genus k are conjugacy separable
1-relator groups and their outer automorphism groups are RF [1]. It would be
interesting to know whether outer automorphism groups of conjugacy separable 1-
relator groups areRF .

In this paper, we develop a group property, Property E, which extends Grossman’s
Property A [4]. Exploiting this property, we show that the outer automorphism groups
of certain tree products of Abelian groups and Brauner’s groups areRF .

In Section 2, we give the basic background materials that are needed for this paper.
In Section 3, we determine a criterion for a generalized free product of a group with
Property E and an Abelian group to have Property E. Applying this we prove that
outer automorphism groups of certain tree products (stem products) of Abelian groups
are RF . In Section 4, applying these results to certain knot and linkage groups
known as Brauner’s groups, we prove that outer automorphism groups of these groups
areRF .

2. Preliminary results

Throughout this paper we use standard notation and terminology.
A group G is residually finite (RF) if, for each non-trivial element x ∈ G, there

exists a finite homomorphic image G of G such that the image of x in G is not trivial.
A group G is conjugacy separable if, for each pair of elements x, y ∈ G such that x

and y are not conjugate in G, there exists a finite homomorphic image G of G such
that the images of x and y in G are not conjugate in G.

If A and B are groups, then A ∗H B denotes the generalized free product of A
and B amalgamating the subgroup H . In particular, if g ∈ A ∗H B, then we use ‖g‖

to denote the generalized free product length of g.
We use Inn g to denote the inner automorphism of G induced by g ∈ G. Out G

denotes the outer automorphism group, Aut(G)/Inn(G), of G. CG(g) denotes the
centralizer of g in G and Z(G) denotes the center of G. We use {x}

G to denote the
conjugacy class of x in G.

If H is a subgroup of G, we use x ∼H y to denote that x is conjugate to y by an
element in H .

DEFINITION 2.1. By a conjugating endomorphism/automorphism of a group G
we mean an endomorphism/automorphism α which is such that, for each g ∈ G, there
exists kg ∈ G, depending on g, so that α(g) = k−1

g gkg .

DEFINITION 2.2 (Grossman [4]). A group G has Property A if for each
conjugating automorphism α of G, there exists a single element k ∈ G such that
α(g) = k−1gk for all g ∈ G, that is α = Inn k.

We extend Grossman’s Property A to include endomorphisms.
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DEFINITION 2.3. A group G has Property E if, for each conjugating
endomorphism α of G, there exists a single element k ∈ G such that α(g) = k−1gk
for all g ∈ G, that is α = Inn k.

Clearly, every group having Property E has Property A. We will make use of the
following results.

THEOREM 2.4 (Grossman [4]). Let B be a finitely generated, conjugacy separable
group with Property A. Then Out B isRF .

THEOREM 2.5 (Magnus et al. [8, Theorem 4.6]). Let G = A ∗H B and let x ∈ G
be of minimal length in its conjugacy class. Suppose that y ∈ G is cyclically reduced,
and that x ∼G y.

(1) If ‖x‖ = 0, then ‖y‖ ≤ 1 and, if y ∈ A, then there is a sequence h1, h2, . . . , hr
of elements in H such that y ∼A h1 ∼B h2 ∼A · · · ∼A(B) hr = x.

(2) If ‖x‖ = 1, then ‖y‖ = 1 and either x, y ∈ A and x ∼A y, or x, y ∈ B and
x ∼B y.

(3) If ‖x‖ ≥ 2, then ‖x‖ = ‖y‖ and y ∼H x∗ where x∗ is a cyclic permutation of x.

The following lemma is a slight modification of Lemma 3.14 in [7].

LEMMA 2.6. Let G be a tree product of any groups Ai (1 ≤ i ≤ n) amalgamating
edge groups, where edge groups are contained in the centers of vertex groups. If
x ∼G y for x ∈ Z(Ai ) and y ∈ A j , then x = y.

3. Main results

In this section we prove that certain generalized free products of groups with
Property E have Property E. Applying these results we show that outer automorphism
groups of certain tree products of Abelian groups areRF .

THEOREM 3.1. Let G = A ∗H B where B is Abelian. Suppose that the following
hold:

(C1)
⋂

a∈A(CA(a)H) = Z(A)H;
(C2) there exists a ∈ A such that {a}

A
∩ H = ∅;

(C3) A has Property E.

Then G = A ∗H B has Property E.

PROOF. If B = H then G = A has Property E by (C3). Hence we assume that
B 6= H .

Let α be a conjugating endomorphism of G and α(g) = k−1
g gkg for g ∈ G. Without

loss of generality, we can assume that α(a) = a, where a satisfies (C2). Thus a /∈ H .
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STEP 1. We show that, for each b ∈ B\H , we can choose kb in A.

Let b ∈ B\H and α(b) = k−1
b bkb for some kb ∈ G. Let kb = u1u2 · · · ur be an

alternating product of the shortest length in G. Since B is Abelian, we may assume
that u1 ∈ A. Then

k−1
ba (ba)kba = α(ba) = k−1

b bkb · a = u−1
r · · · u−1

2 · u−1
1 bu1 · u2 · · · ur−1 · ur · a.

Thus

ba ∼G u−1
r−1 · · · u−1

2 · u−1
1 bu1 · u2 · · · ur−1 · ur au−1

r . (3.1)

If r ≥ 2 and ur ∈ B\H , then the right-hand side of (3.1) is cyclically reduced of length
2(r + 1). By Theorem 2.5 this is impossible, since the left-hand side of (3.1) is
cyclically reduced of length 2. If r ≥ 2 and ur ∈ A then, by (C2), ur au−1

r /∈ H . In
this case, the right-hand side of (3.1) is cyclically reduced of length 2r . Since the left-
hand side of (3.1) is of length 2, this is also impossible by Theorem 2.5. Therefore
r ≤ 1. Hence we can choose kb = u1 ∈ A.

STEP 2. There exists a fixed w ∈ A such that α(y) = w−1 yw for all y ∈ B.

Let b ∈ B\H be fixed and let y ∈ B\H be arbitrary. By Step 1, we can assume that
kb = w ∈ A and ky ∈ A. Then k−1

by (by)kby = α(by) = α(b)α(y) = w−1bw · k−1
y yky .

Hence,
by ∼G b · wk−1

y · y · kyw
−1. (3.2)

Since b, y ∈ B\H , if kyw
−1

∈ A\H then the right-hand side of (3.2) is cyclically
reduced of length 4. Thus (3.2) does not hold. This implies that kyw

−1
∈ H . Let

ky = hyw, where hy ∈ H depends on y. Since B is Abelian, α(y) = k−1
y yky =

w−1h−1
y yhyw = w−1 yw. This shows that α(y) = w−1 yw for all y ∈ B\H . Now

α(h) = α(hy · y−1) = α(hy)α(y−1) = w−1(hy)w · w−1 y−1w = w−1hw for all h ∈

H . Hence α(y) = w−1 yw for all y ∈ B.
By (3.1), we have ba ∼G w−1bwa ∼G bwaw−1. It follows from Theorem 2.5

that ba ∼H bwaw−1. Let ba = h−1bwaw−1h for some h ∈ H . Since B is Abelian,
a = h−1waw−1h. Let u = w−1h. Then u ∈ A and [u, a] = 1.

Let α = Inn u ◦ α. Then α is also a conjugating endomorphism of G and
α(y) = u−1(α(y))u = u−1(w−1 yw)u = h−1 yh = y for all y ∈ B. Moreover, α(a) =

u−1(α(a))u = u−1au = a. We shall show that α is an inner automorphism of G. For
convenience, we again write α(g) = k−1

g gkg for g ∈ G.

STEP 3. We show that kx ∈ A for all x ∈ A\H .

Let x ∈ A\H and kx = u1u2 · · · ur be an alternating product of the shortest
length in G such that α(x) = k−1

x xkx . Then k−1
xa (xa)kxa = α(xa) = k−1

x xkx · a =

u−1
r · · · u−1

1 xu1 · · · ur · a. Hence

xa ∼G u−1
r−1 · · · u−1

2 · u−1
1 xu1 · u2 · · · ur−1 · ur au−1

r . (3.3)
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(i) Suppose that u1 ∈ A and r ≥ 2. In this case we may assume that u−1
1 xu1 /∈ H for,

if u−1
1 xu1 = h ∈ H then u−1

2 u−1
1 xu1u2 = u−1

2 hu2 = h = u−1
1 xu1. This reduces the

length of kx . Hence we may assume that u−1
1 xu1 /∈ H . If ur ∈ B then the right-hand

side of (3.3) is cyclically reduced of length 2r . If ur ∈ A then, from (C2), ur au−1
r /∈ H ,

hence the right-hand side of (3.3) is cyclically reduced of length 2(r − 1). Since the
left-hand side of (3.3) is of length ≤ 1, by Theorem 2.5, both cases are impossible.

(ii) Suppose that u1 ∈ B. If r ≥ 2 and ur ∈ B\H , then the right-hand side of (3.3)
is cyclically reduced of length 2(r + 1). If ur ∈ A then ur au−1

r /∈ H by (C2). Hence if
r ≥ 2 and ur ∈ A\H then the right-hand side of (3.3) is cyclically reduced of length 2r .
Hence, by Theorem 2.5, both cases are impossible. Now, if r = 1 and kx = u1 ∈ B\H ,
then the length of the right-hand side of (3.3) is 4. Clearly it is also impossible.

This shows that kx = u1 ∈ A for all x ∈ A\H .
Since H ⊂ B, α(h) = h for all h ∈ H . Hence α restricted to A is a conjugating

endomorphism of A. Since A has Property E by (C3), α restricted to A is an inner
automorphism of A. Thus there exists a fixed g ∈ A such that α(x) = g−1xg for all x ∈

A. Since h = α(h) = g−1hg, g ∈
⋂

d∈H CA(d) ⊂
⋂

d∈H (CA(d)H). For x ∈ A\H ,
xb ∼G α(xb) = g−1xg · b, where b ∈ B\H . By Theorem 2.5, xb ∼H g−1xg · b. This
implies that x = h−1

1 g−1xgh2 and b = h−1
2 bh1 for some h1, h2 ∈ H . Since B is

Abelian, h1 = h2. Thus x = h−1
1 g−1xgh1. This implies that gh1 ∈ CA(x). Hence

g ∈ CA(x)H for all x ∈ A\H . Thus g ∈
⋂

x∈A(CA(x)H). By (C1), this implies that
g = zh3 for some h3 ∈ H and z ∈ Z(A). This means that α(x) = h−1

3 xh3 for all x ∈ A.
Since B is Abelian, α(y) = y = h−1

3 yh3 for all y ∈ B. Hence α = Inn h3. This shows
that G has Property E. 2

Since Abelian groups have Property E, we have the following corollary.

COROLLARY 3.2. Let A, B be finitely generated Abelian groups. Then A ∗H B
has Property E.

PROOF. If A = H (similarly B = H ) then A ∗H B = B has Property E. Suppose
that A 6= H 6= B. Since A is Abelian, A satisfies (C1), (C2) and (C3). Hence A ∗H B
has Property E by Theorem 3.1. 2

In this paper, we are mainly interested in certain tree products, so called stem
products, of finitely generated Abelian groups. Hence we consider tree products of
any groups Ai (1 ≤ i ≤ n) amalgamating central edge subgroups [7], that is, the tree
product of the form

Gn = A1 ∗H1 A2 ∗H2 · · · ∗Hn−1 An, Hi ⊂ Z(Ai ) ∩ Z(Ai+1), (3.4)

where Ai ∩ Ai+1 = Hi , Ai 6= Hi and Hi 6= Ai+1. If n ≥ 2 then

Gn = Gn−1 ∗Hn−1 An, (3.5)

and Z(Gn) = H1 ∩ · · · ∩ Hn−1 = H1 ∩ Hn−1 (see [8, p. 211]). For convenience, we
let H0 = 1 and Hn = 1.
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LEMMA 3.3. Let Gn be as in (3.4). If x ∈ Ai\(Hi−1 ∪ Hi ) then CGn (x) ⊂ Ai .

PROOF. Let y ∈ CGn (x). We shall show that y ∈ Ai by induction on n.
For n = 2, G2 = A1 ∗H1 A2 and x ∈ A1\H1. Since H1 ⊂ Z(G2), x is not in any

conjugate of H1 in G2. Then, by [8, Theorem 4.5, p. 209], either (i) y is in a conjugate
of H1 in G2 or (ii) y ∈ A1. Since Z(G2) = H1, (i) also implies that y ∈ H1 ⊂ A1.
Hence CG2(x) ⊂ A1. Thus the lemma is true for n = 2.

Assume that the lemma is true for Gn−1, that is CGn−1(a) ⊂ A j if a ∈ A j\

(H j−1 ∪ H j ) for 1 ≤ j ≤ n − 1. Let Gn = Gn−1 ∗Hn−1 An and let x ∈ Ai\(Hi−1 ∪

Hi ). We shall show that CGn (x) ⊂ Ai .

CASE 1 (x ∈ Ai for some 1 ≤ i ≤ n − 1). Clearly x ∈ Gn−1\Hn−1. Let y ∈

CGn (x). Since x ∈ Ai\Hn−1 for 1 ≤ i ≤ n − 1 and Hn−1 ⊂ Z(An), by Lemma 2.6,
x is not in any conjugate of Hn−1 in Gn = Gn−1 ∗Hn−1 An . Thus, by [8, Theorem
4.5, p. 209], either (i) y is in a conjugate of Hn−1 in Gn or (ii) y ∈ Gn−1. We shall
show that (i) also implies that y ∈ Gn−1. For this, let y = g−1hg, where g ∈ Gn
and h ∈ Hn−1. Let g = u1u2 · · · ur be an alternating product of the shortest length
in Gn = Gn−1 ∗Hn−1 An such that y = g−1hg. Since h ∈ Hn−1 ⊂ Z(An), we may
assume that u1 ∈ Gn−1 and u−1

1 hu1 6= h. Then, by Lemma 2.6, u−1
1 hu1 /∈ Hn−1.

We shall show that g ∈ Gn−1, that is r ≤ 1. Suppose that r ≥ 2. Then y =

u−1
r · · · u−1

2 (u−1
1 hu1)u2 · · · ur is a reduced element of length 2r − 1. Since xy = yx ,

xu−1
r · · · u−1

2 (u−1
1 hu1)u2 · · · ur = u−1

r · · · u−1
2 (u−1

1 hu1)u2 · · · ur x . (3.6)

If ur ∈ An\Hn−1 then both sides of (3.6) are cyclically reduced of length 2r . Since
x ∈ Gn−1\Hn−1, this is impossible. Hence ur ∈ Gn−1\Hn−1. Since r ≥ 2, this implies
from (3.6) that xu−1

r = u−1
r k for some k ∈ Hn−1. Then, by Lemma 2.6, x = k which

is also impossible. Hence r ≤ 1, that is, g ∈ Gn−1. Thus y = g−1hg ∈ Gn−1 and
y ∈ CGn−1(x). Therefore, by induction, y ∈ Ai .

CASE 2 (x ∈ An). Let y ∈ CGn (x). Since x ∈ An\Hn−1, as in Case 1, either (i) y
is in a conjugate of Hn−1 or (ii) y ∈ An . We shall show that (i) implies that y ∈ Hn−1.
As before, let g = u1u2 · · · ur be an alternating product of the shortest length in Gn =

Gn−1 ∗Hn−1 An such that y = g−1hg, where h ∈ Hn−1, u1 ∈ Gn−1 and u−1
1 hu1 6= h.

Suppose that r ≥ 1. If ur ∈ Gn−1\Hn−1, then both sides of (3.6) are cyclically
reduced of length 2r . Since x ∈ An\Hn−1, this is impossible. Hence ur ∈ An\Hn−1.
Then (3.6) implies that xu−1

r−1 · · · u−1
1 hu1 · · · ur−1 = u−1

r−1 · · · u−1
1 hu1 · · · ur−1x .

Since x ∈ An\Hn−1 and ur−1 ∈ Gn−1\Hn−1, this is also impossible. Thus r = 0, that
is, g ∈ Hn−1. This implies that y = g−1hg ∈ Hn−1 ⊂ An . 2

LEMMA 3.4. Let Gn be as in (3.4) and Hn ≤ Z(An). Then
⋂

a∈Gn
(CGn (a)Hn)

= Z(Gn)Hn .

PROOF. Recall that Ai 6= Hi−1 and Ai 6= Hi for each i and that Z(Gn)

= H1 ∩ · · · ∩ Hn−1 = H1 ∩ Hn−1 (see [8, p. 211]).
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Clearly there exist x1 ∈ A1\H1 and xn ∈ An\Hn−1. We shall show that
CGn (x1)Hn ∩ CGn (xn)Hn ⊂ Z(Gn)Hn . Let x ∈ CGn (x1)Hn ∩ CGn (xn)Hn . Then
x = a1h1 = anhn , where ai ∈ CGn (xi ) and hi ∈ Hn . Then, by Lemma 3.3, a1 ∈ A1

and an ∈ An . Hence a1 = anhnh−1
1 ∈ A1 ∩ An = H1 ∩ Hn = Z(Gn). It follows

that x = a1h1 ∈ Z(Gn)Hn . Thus CGn (x1)Hn ∩ CGn (xn)Hn ⊂ Z(Gn)Hn . Therefore⋂
a∈Gn

(CGn (a)Hn) = Z(Gn)Hn as required. 2

THEOREM 3.5. Let Gn be given by (3.4), where the Ai are finitely generated
Abelian groups. Then Gn has Property E.

PROOF. We shall prove the theorem by induction on n. Since G1 = A1 is Abelian,
clearly G1 has Property E. By Corollary 3.2, G2 has Property E. Suppose that n ≥ 3
and Gn−1 has Property E. Considering Gn = Gn−1 ∗Hn−1 An , we need to show (C1)
and (C2) in Theorem 3.1. By Lemma 3.4, (C1) holds. To prove (C2), let a ∈ A1\H1.
Then a /∈ Hn−1 and by Lemma 2.6, {a}

Gn−1 ∩ Hn−1 = ∅. Hence (C2) holds. Thus, by
Theorem 3.1, Gn has Property E. 2

Since tree products of finitely generated Abelian groups are conjugacy
separable [7], we have the following result from Theorem 2.4.

THEOREM 3.6. Outer automorphism groups of tree products of finitely generated
Abelian groups areRF .

If G = A ∗h=bm 〈b〉, where b is of infinite order, then we say that G is obtained
by adjoining an mth root to an element of the group A (see [9, 10]). In the case of
adjoining a root, we prove the following criterion which is simpler than Theorem 3.1.

THEOREM 3.7. Suppose that A has Property E and satisfies:

(C1)
⋂

a∈A(CA(a) 〈h〉) = Z(A) 〈h〉.

Then G = A ∗h=bm 〈b〉 has Property E.

PROOF. Let α be a conjugating endomorphism of G and α(g) = k−1
g gkg for g ∈ G.

Without loss of generality, we can assume that α(b) = b.

CLAIM. We show that, for each a ∈ A, we can choose ka in 〈b〉.

PROOF. Let a ∈ A\〈h〉 and ka = u1u2 · · · ur be an alternating product of the
shortest length in G such that α(a) = k−1

a aka . We shall first show that r ≤ 1. Suppose
that r ≥ 2. Then, as in the proof of Theorem 3.1,

ab ∼G α(ab) ∼G u−1
r−1 · · · u−1

2 · u−1
1 au1 · u2 · · · ur−1 · ur bu−1

r . (3.7)

(1) Suppose that u1 ∈ A. Since u2 ∈ 〈b〉, we may assume that u−1
1 au1 /∈ 〈h〉. In

this case, if ur ∈ A then the right-hand side of (3.7) is cyclically reduced of length 2r .
If ur ∈ 〈b〉 then the right-hand side of (3.7) is cyclically reduced of length 2(r − 1).
Since the left-hand side of (3.7) is cyclically reduced of length 2, (3.7) does not hold
if r ≥ 3. Thus we assume that u−1

1 au1 /∈ 〈h〉 and r = 2. Then (3.7) implies that
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16 Y. D. Chai et al. [8]

ab ∼G u−1
1 au1u2bu−1

2 = u−1
1 au1b. (3.8)

Thus, by Theorem 2.5, ab ∼〈h〉 u−1
1 au1b. This means that a = h−su−1

1 au1hs1 and
b = h−s1bhs for some s, s1. Since h ∈ 〈b〉, we have s = s1 and u−1

1 au1 = hsah−s .
Then α(a) = u−1

2 u−1
1 au1u2 = u−1

2 (hsah−s)u2. Thus we may choose ka = h−su2 ∈

B. This contradicts that r ≥ 2 is the smallest length of ka such that α(a) = k−1
a aka .

(2) Suppose that u1 ∈ 〈b〉. If ur ∈ A then the right-hand side of (3.7) is cyclically
reduced of length 2(r + 1). If ur ∈ 〈b〉 then the right-hand side of (3.7) is cyclically
reduced of length 2r . Since r ≥ 2 and the left-hand side of (3.7) is of length 2, both
cases cannot occur.

Therefore r ≤ 1. Thus (i) ka = u1 ∈ A or (ii) ka = u1 ∈ 〈b〉. If ka = u1 ∈ A then,
by (3.7), ab ∼G u−1

1 au1b. Hence, as above, a = h−su−1
1 au1hs for some s. Thus

α(a) = u−1
1 au1 = hsah−s . This implies that we can choose ka = h−s

∈ 〈b〉. Hence, in
both case (i) and (ii), ka ∈ 〈b〉 for each a ∈ A\〈h〉. Since α(b) = b, α(hi ) = hi for all i .

Thus the claim holds. 2

Let a ∈ A\〈h〉 be fixed and x ∈ A\〈h〉 be arbitrary. By our claim, we can
assume that ka = w ∈ 〈b〉 and kx ∈ 〈b〉. Then ax ∼G α(ax) = w−1aw · k−1

x xkx ∼G
awk−1

x xkxw
−1. Since a, x ∈ A\〈h〉, kxw

−1
∈ 〈h〉. Hence kx = hsx w where sx

depends on x .
Let α = Inn w−1

◦ α. Then α is also a conjugating endomorphism of G and
α(a) = w(w−1aw)w−1

= a, α(x) = w(k−1
x xkx )w

−1
= h−sx xhsx for each x ∈ A\〈h〉.

Moreover, α(b) = w−1(α(b))w = w−1bw = b. Since h ∈ 〈b〉, α(hi ) = hi for all i . Let
sx = 0 for x ∈ 〈h〉. Then α(x) = h−sx xhsx for each x ∈ A. Thus α restricted to A is a
conjugating endomorphism of A. Since A has Property E, α restricted to A is an inner
automorphism of A. Let g ∈ A such that α(x) = g−1xg for all x ∈ A. Thus g−1xg =

h−sx xhsx for each x ∈ A. Hence gh−sx ∈ CA(x). This implies that g ∈ CA(x) 〈h〉

for all x ∈ A. Since
⋂

x∈A(CA(x) 〈h〉) = Z(A) 〈h〉 by (C1), g = zhr for some r
and z ∈ Z(A). Thus α(x) = h−r xhr for all x ∈ A and α(b) = b = h−r bhr . Hence
α = Inn hr and α is an inner automorphism of G. Therefore, G has Property E. 2

4. On Brauner’s groups

In [10], Stebe studied the cyclic subgroup separability of Brauner’s groups. In this
section we prove that the outer automorphism groups of these groups are residually
finite. These groups are given by:

(1) the group of a single knot on a torus,

〈x〉 ∗
xn = ym

〈y〉;

(2) the group for the linkage of a torus knot with a circle,

〈x, y : [x, y]〉 ∗
xn ym = zm

〈z〉;
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(3) the group for the linkage of a torus knot with circles within and outside the torus,

〈x, y : [x, y]〉 ∗
xn ym = ambn

〈a, b : [a, b]〉;

(4) the group of the linkage of torus knots,

〈a〉 ∗

am = x
δ1
1

〈x1, y1 : [x1, y1]〉 ∗

x
α1
1 y

β1
1 = x

δ2
2

〈x2, y2 : [x2, y2]〉 ∗

x
α2
2 y

β2
2 = x

δ3
3

· · ·

· · · ∗

x
αn−1
n−1 y

βn−1
n−1 = xδn

n

〈xn, yn : [xn, yn]〉 ∗

xαn
n yβn

n = x
δn+1
n+1

〈xn+1〉;

(5) the group of a hose knot,

Ar = 〈p1〉 ∗

p
n1
1 = q

m1
1

〈q1〉 ∗

h2 = q
m2
2

〈q2〉 ∗

h3 = q
m3
3

· · · ∗
hr = qmr

r

〈qr 〉,

where hi = pni −ni−1mi
i qmi−1mi

i−1 , pi = q−ui−1
i−1 pki−1−ni−2ui−1

i−1 qmi−2ui−1
i−2 , q0 = 1,

n0 = 0 and mi ki = ni ui + 1 (see [5]).

Since the first four groups are tree products of finitely generated Abelian groups
amalgamating cyclic subgroups, they are conjugacy separable [7]. By Theorem 3.5,
they have Property E. Hence outer automorphism groups of those groups are residually
finite (Theorem 3.6). Thus we can state the following theorem.

THEOREM 4.1. Outer automorphism groups of groups given by (1)–(4) above
areRF .

The only case left is the outer automorphism group of the group Ar of a hose knot
in (5) above. The group Ar is obtained by repeated adjoining roots. Thus, applying
Theorem 3.7, we shall show that Ar has Property E (Theorem 4.5). We first note some
properties of Ar .

(1) Without loss of generality, we can assume n1 6= ±1 and mi 6= ±1.
(2) hi+1 = pni+1−ni mi+1

i+1 qmi mi+1
i is cyclically reduced of length > 1 in Ai =

Ai−1 ∗hi = q
mi
i

〈qi 〉 (see [11, p. 89]).

(3) Clearly Z(A1) = 〈pn1
1 〉 and Z(Ar ) = 1 for r ≥ 2.

(4) CAr (qi ) = 〈qi 〉 for each i .

LEMMA 4.2. Let A1 be defined by (5). Then
⋂

a∈A1
(CA1(a) 〈h2〉) = Z(A1) 〈h2〉.

PROOF. Consider A1 = A1/Z(A1). Then A1 = 〈p1, q1 : pn1
1 , qm1

1 〉 = 〈p1 : pn1
1 〉 ∗

〈q1 : qm1
1 〉 and h2 = (q−u1

1 pk1
1 )n2−n1m2 . We shall first show that

⋂
a∈A1

(CA1
(a) 〈h2〉) =

〈h2〉. For this, let x ∈
⋂

a∈A1
(CA1

(a) 〈h2〉). Suppose that x /∈ 〈h2〉. Since

x ∈ CA1
(p1) 〈h2〉 ∩ CA1

(q1) 〈h2〉, x = pα
1 h

i
2 = qβ

1 h
j
2 for some i, j and some

pα
1 , qβ

1 /∈ 〈h2〉. Then q−β

1 pα
1 = h

j−i
2 . Since h2 = (q−u1

1 pk1
1 )n2−n1m2 is cyclically
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reduced of length 2(n2 − n1m2) ≥ 2, q−β

1 pα
1 = h

±1
2 . Moreover, q−β

1 = q−u1
1 and

pα
1 = pk1

1 . Since m1k1 = n1u1 + 1, (n1, m1) = 1. Thus, either |n1| 6= 2 or |m1| 6= 2.

We can choose non-trivial elements pd
1 , qc

1 such that either pd
1 6= pα

1 or qc
1 6= q−β

1 .
Let w = qc

1 pd
1qc

1. Since x ∈
⋂

a∈A1
(CA1

(a) 〈h2〉), x ∈ CA1
(w−1 p1w) 〈h2〉. Thus

x = pα
1 h

i
2 = w−1 pλ

1wh
k
2 for some λ, k. Hence p−α

1 w−1 pλ
1w = h

i−k
2 , that is,

p−α
1 q−c

1 p−d
1 q−c

1 pλ
1qc

1 pd
1qc

1 = h
i−k
2 = (p−α

1 qβ

1 ) · · · (p−α
1 qβ

1 ). This implies that

q−c
1 = qβ

1 and p−d
1 = p−α

1 , contradicting our choice of either qc
1 or pd

1 . Hence x ∈

〈h2〉, proving that
⋂

a∈A1
(CA1

(a) 〈h2〉) ⊂ 〈h2〉. Therefore
⋂

a∈A1
CA1

(a) 〈h2〉 = 〈h2〉.

To prove
⋂

a∈A1
(CA1(a) 〈h2〉) = Z(A1) 〈h2〉, let x /∈ Z(A1) 〈h2〉. Then x /∈ 〈h2〉 in

A1 = A1/Z(A1). Since
⋂

a∈A1
CA1

(a) 〈h2〉 = 〈h2〉 by the above, there exists a ∈ A1

such that x /∈ CA1
(a) 〈h2〉. Then x /∈ CA1(a) 〈h2〉. Thus x /∈

⋂
a∈A1

(CA1(a) 〈h2〉).
This shows that

⋂
a∈A1

(CA1(a) 〈h2〉) ⊂ Z(A1) 〈h2〉. Hence
⋂

a∈A1
(CA1(a) 〈h2〉) =

Z(A1) 〈h2〉. 2

LEMMA 4.3. For r ≥ 2, there exists c ∈ Ar−1\〈qr−1〉〈hr 〉.

PROOF. We have two cases.

CASE 1 (r = 2). Let A1 = A1/Z(A1) as before. Then A1 = 〈p1 : pn1
1 〉 ∗ 〈q1 : qm1

1 〉

and h2 = (q−u1
1 pk1

1 )n2−n1m2 . Since (n1, m1) = 1, either |n1| 6= 2 or |m1| 6= 2. Then we

can choose non-trivial elements pα
1 , qβ

1 such that pα
1 qβ

1 6= p−k1
1 qu1

1 . We shall show that

pα
1 qβ

1 /∈ 〈q1〉〈h2〉. Suppose that pα
1 qβ

1 = q i
1h

j
2 for some i, j . Then

pα
1 qβ

1 = q i
1(q

−u1
1 pk1

1 )(n2−n1m2) j . (4.1)

If |(n2 − n1m2) j | ≥ 2, then the right-hand side of (4.1) is of length at least 3. Since the
left-hand side of (4.1) is of length 2, (4.1) does not hold. Hence |(n2 − n1m2) j | = 1.
Then the only possible case of (4.1) is i = 0 and (n2 − n1m2) j = −1, that is, pα

1 qβ

1 =

p−k1
1 qu1

1 . This clearly contradicts the choice of pα
1 qβ

1 . Hence pα
1 qβ

1 /∈ 〈q1〉〈h2〉. Let

c = pα
1 qβ

1 . Then c /∈ 〈q1〉〈h2〉 as required.

CASE 2 (r ≥ 3). Let N = 〈pn1
1 , q2, . . . , qr−1〉

Ar−1 and let Ar−1 = Ar−1/N . Then

Ar−1 = 〈p1, q1 : pn1
1 , qm1

1 , h2〉 = 〈p1, q1 : pn1
1 , qm1

1 , (q−u1
1 pk1

1 )n2−n1m2〉.

Then pi = pki−1ni−2ui−1
i−1 and hi = pni −ni−1mi

i for i ≥ 3. Hence hr ∈ 〈pr 〉 ⊂ 〈p2〉.

Thus 〈qr−1〉〈hr 〉 = 〈hr 〉 ⊂ 〈p2〉, where p2 = q−u1
1 pk1

1 . Since Ar−1 6= 〈p2〉, there
exists c ∈ Ar−1\〈p2〉. Then c /∈ 〈hr 〉. Let c be a preimage of c in Ar−1. Then
c ∈ Ar−1\〈qr−1〉〈hr 〉, as required. 2
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LEMMA 4.4. For r ≥ 1,
⋂

a∈Ar
(CAr (a) 〈hr+1〉) = Z(Ar ) 〈hr+1〉.

PROOF. The case of r = 1 is proved in Lemma 4.2. So we consider r ≥ 2.
Since Z(Ar ) = 1 for r ≥ 2, we shall show that

⋂
a∈Ar

(CAr (a) 〈hr+1〉) = 〈hr+1〉.
Let x ∈

⋂
a∈Ar

(CAr (a) 〈hr+1〉). Suppose that x /∈ 〈hr+1〉. Then x ∈ CAr (qr ) 〈hr+1〉 ∩

CAr (qr−1) 〈hr+1〉. Since CAr (qr ) = 〈qr 〉, CAr (qr−1) = 〈qr−1〉 and x /∈ 〈hr+1〉, we
have x = q i

r hs1
r+1 = q j

r−1hs2
r+1 for some i, j, s1, s2, where q i

r , q j
r−1 /∈ 〈hr+1〉. Hence

q− j
r−1q i

r = hs2−s1
r+1 . (4.2)

Since hr+1 is cyclically reduced of length > 1 in Ar = Ar−1 ∗〈hr 〉 〈qr 〉 and the
left-hand side of (4.2) is of length at most 2, equation (4.2) implies that s2 −

s1 = ±1 and h±1
r+1 = q− j

r−1q i
r is cyclically reduced of length 2. Hence q i

r /∈

〈hr 〉 = 〈qmr
r 〉. By Lemma 4.3, there exists c ∈ Ar−1\〈qr−1〉〈hr 〉. Let w = cqr c.

Since x ∈
⋂

a∈Ar
(CAr (a) 〈hr+1〉), x ∈ CAr (wqr−1w

−1) 〈hr+1〉. Hence x = q i
r hs1

r+1 =

wqε
r−1w

−1hs3
r+1 for some ε, s3, where qε

r−1 6= 1. Since hr is cyclically reduced of
length > 1 in Ar−1 = Ar−2 ∗hr−1 = q

mr−1
r−1

〈qr−1〉, we have qε
r−1 /∈ 〈hr 〉. This implies

that hs1−s3
r+1 = q−i

r wqε
r−1w

−1
= q−i

r cqr cqε
r−1c−1q−1

r c−1, which is cyclically reduced

in Ar . Since h±1
r+1 = q− j

r−1q i
r ,

q−i
r cqr cqε

r−1c−1q−1
r c−1

= (q−i
r q j

r−1) (q−i
r q j

r−1) (q−i
r q j

r−1)(q
−i
r q j

r−1). (4.3)

Hence there exist hε1
r , . . . , hε6

r such that c = q j
r−1hε1

r , qr = h−ε1
r q−i

r hε2
r , c =

h−ε2
r q j

r−1hε3
r , . . . , q−1

r = h−ε5
r q−i

r hε6
r , and c−1

= h−ε6
r q j

r−1. Thus c ∈ 〈qr−1〉〈hr 〉,
which contradicts the choice of c. Therefore x ∈ 〈hr+1〉. This implies
that

⋂
a∈Ar

(CAr (a) 〈hr+1〉) ⊂ 〈hr+1〉. Hence
⋂

a∈Ar
(CAr (a) 〈hr+1〉) = 〈hr+1〉 =

Z(Ar ) 〈hr+1〉 for r ≥ 2. 2

Applying Theorem 3.7, we have the following theorem.

THEOREM 4.5. The group of a hose knot has Property E.

PROOF. Clearly A1 has Property E by Corollary 3.2. By Lemma 4.2 and
Theorem 3.7, A2 = A1 ∗h2 = q

m2
2

〈q2〉 has Property E. Inductively, suppose that Ar−1

has Property E. Then Ar = Ar−1 ∗hr = qmr
r

〈qr 〉 has Property E by Lemma 4.4 and
Theorem 3.7. 2

We note that the group of a hose knot is conjugacy separable [11]. Thus, applying
Theorems 2.4 and 4.5, we have the following theorem.

THEOREM 4.6. Outer automorphism groups of hose knot groups areRF .

Consequently, we have shown that the outer automorphism groups of all Brauner
groups stated at the beginning of this section are residually finite.
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PROBLEM. Are outer automorphism groups of conjugacy separable 1-relator
groups residually finite?
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