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RELATIONSHIPS BETWEEN WIDTHS OF A CONVEX BODY
AND OF AN INSCRIBED PARALLELOTOPE

MAREK LASSAK

Assume that a parallelotope P is inscribed in a three-dimensional convex body C
A conjecture says that w^+w^+w^1 ^ 1, where Wi is the ratio of the width of C
to the width of P for the direction perpendicular to the t-th pair of parallel facets
of P. We prove three weaker inequalities. One of them is tofx + toj"1 + a j 1 ^ 1,
where 03 denotes the related axial diameter of C.

Let C be a convex body in Euclidean n-space E" and let P be a parallelotope
inscribed in C. Denote by Wi the ratio of the width of C to the width of P for the
direction perpendicular to the i-th pair of parallel facets of P , for i = 1, . . . ,n . We
recall a conjecture from [2].

CONJECTURE 1. For every convex body C C E™ and every parallelotope P inscribed
in C we have

a)

For n = 2 Conjecture 1 holds true as shown in [2]. The note [1] announces without
a proof that Conjecture 1 is true for n = 3 under some very specific assumptions.

We consider the three-dimensional case. We have P = E\ + E2 + £3 , where E\,
E2, Ez are three independent edges of P . Of course, F\ = E2 + E3, F2 = E\ + Ez
and F3 = Ei + E2 are three non-parallel facets of P.

We define the i -th axial diameter of C as the ratio o< of the length of the longest
segment in C which is parallel to Ei to the length of Ei, where i = 1,2,3. In other
words, a* is the length of the longest segment in C parallel to the i-th axis of a
coordinate system whose unit vectors determine the edges E\, E2 and Ez. The term
axial diameter was introduced by Scott [3, 4]. If P is the unit cube then a» and Wi
are just the inner and outer 1-quermasses of C.
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Since a* ^ Wi for i = 1,2,3, the inequality w^ * + toJ14- twj1 ^ 1 is stronger than
di1 + a^1 + a^1 ^ 1. The last inequality has been proved by Scott [3]. It has been
improved up to w^1 + a j 1 + a j 1 ^ 1 by Wills [5]. The results of Scott and Wills hold
true for the more general situation of a convex body without interior lattice points.

Our aim is to prove a few inequalities which are better than the inequality of Scott
but still weaker than the. conjectured inequality (1).

THEOREM 1 . Assume that a parallelotope P is inscribed in a three-dimensional
convex body C. Then

(2) w^1 + «>21 + o j 1 > 1.

PROOF: We do not make our considerations narrower assuming that P is a cube
with vertices (ei,e2,e3), where e» € {—1,1} for i = 1,2,3, in a rectangular coordinate
system. We can always obtain this case by an affine transformation.

We apply Steiner symmetrisation with respect to the plane X3 = 0. Denote by D
the image of our body C . Of course, w\ and 102 remain unchanged. Let Hi , H[ be
the supporting planes of D perpendicular to Ei, where i = 1,2. Denote be Li and
L'i the intersection of the plane £3 = 0 with Hi and H[, respectively, where i = 1,2.
Observe that if» and H[ touch D at some points which are in Li and L\, respectively,
where t = 1,2. Of course, the width of D in the direction perpendicular to the plane
£3 = 0 is 03. Let g be the point of support of D by the supporting plane £3 = 03/2.

Consider the homothety 7 with centre g and ratio 1 — a j 1 . The image of the
plane £3 = 0 is the plane £3 = 1. The common part Co of C and of the plane £3 = 1
is a two-dimensional convex body in the plane £3 = 1. Since the cube P is inscribed in
C, the square face PQ of P which lies in the plane £3 = 1 is inscribed in Co - Denote
by ui and V2 the widths of Co in the directions perpendicular to the sides of Po; the
directions are perpendicular to Hi and H2, respectively. Since the two-dimensional
case of Conjecture 1 holds true (see [2, Lemma]), we have v^1 - fu j 1 > 1. On the other
hand, the width of the strip between the pair of parallel straight lines y(Li), ~f{L'^)
is Wi(l — o j 1 ) , where i = 1,2. Since the straight lines L\, L\, Li-, L'2 have non-
empty intersections with C, from the convexity of C it follows that the straight lines
7(Li ) , 7(I<i), 7(^2), i(L2) have non-empty intersections with Co- Consequently,
u>i(l — a^1) ^ vi and ^2(1 — oj 1 ) ^ V2- So we have (u>i(l — o j 1 ) ) " + (102(1 —
a j 1 ) ) " 1 ^ 1. Thus wi-1+w2-

1 ^ 1 -O3" 1 . Hence wr1 +1^"1 + a 3 - 1 ^ 1- D

Wills [5] presents an example that (2) does not hold true in the more general
situation when C is a convex body without points of an integer lattice in the interior.

When we change the roles of the axes in Theorem 2, we get t o i " 1 + a 2 - 1 + ^ 3 - 1 ^ 1
and a i " 1 •+• u^"1 + iO3-1 ^ 1- Adding those three inequalities and dividing by 3
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we obtain the following corollary which, in a sense, moves us two thirds of the way

from the Scott's inequality a i " 1 + O2 - 1 + a 3 - 1 ^ 1 to the conjectured inequality

COROLLARY 1 . Assume that a parallelotope P is inscribed in a three-dimensional

convex body C. Then

3 V /

We note that the approach of the proof of Theorem 2 and induction arguments lead

to the analogous inequality twi"1 + W2~x + O3~l H h o n ~ 1 ^ 1 for an n-dimensional

convex body with an inscribed parallelotope. In analogy to Corollary 1, we also obtain

(2/n) £ w-1 + ((n - 2)/n) £ a"1 > 1.

By the i-th column Ki generated by P, where i G {1,2,3}, we understand the
union of all straight lines parallel to Ei which have non-empty intersection with P . Of
course, P = K\ n Ki n K3. Consider the ratio ki of the width of C n Ki to the width
of P in the direction perpendicular to Fi, where i = 1,2,3. Of course, ki is the outer
1-quennass of Ki n C in the direction of Ei.

Observe that if C is centrally symmetric, then there is no longer segment in C
in the direction of Ei than the segment being the intersection of C with the straight
line passing through the centres of P and of Fi. Thus if C is centrally symmetric, we
have di ^ ki 4: Wi for i = 1,2,3. Consequently, the inequality i f 1 + fcjT1 + k^1 ^ 1 is
stronger than oj"1 + o j 1 + o j 1 ^ 1 but weaker than tof1 + toj 1 + w^1 ^ 1.

THEOREM 2 . Assume that a parallelotope P is inscribed in a three-dimensional
centrally-symmetric convex body C. Then

PROOF: AS in the proof of Theorem 1, assume that P is a cube with vertices
(ei,e2,e3).

Of course, if at least one of the numbers ki,k2,k3 is equal to 1, then (3) holds
true. Let

(4) jfcx > 1, k2 > 1, fc3 > 1.

The assumption of our Theorem implies that the boundary of C contains points
x — (xi,X2,*3), y — (2/1,^2,3/3), 2 = (£1,^2,23) such that all the coordinates
^1,^2, J/i, 2/3,22,23 are between —1 and 1. What is more, we can assume that x\
and x-i are non-negative. (We can choose the order and the orientation of the axes of
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our coordinate system which ensures that.) FVom the central symmetry we see that the
boundary of C contains also points — x, -y, —z symmetric with respect to the origin
to x, y, z. There are eight triples of points from amongst x, y, z, —x, — y, —z such
that exactly one point in each triple is selected from each of the sets {x, —x}, {y, —y},
{z, —z}. Prom (4) we see that our six points x, —x, y, —y, z, —z are pairwise different.
Thus each triple {eix, eiy, e3z} of points, where ci, e2, &z € {1,2}, determines exactly
one plane II{eix, e.?y, e3z} passing through them. We obtain eight planes; four pairs
of symmetric planes.

We shall prove our Theorem by contradition. In other words, we assume now that

(5) *r1 + *21 + fti1<l

and our aim is to show that P is not inscribed in C.
In order to prove that P is not inscribed in C it is sufficient to show that at

least one of the eight vertices (e\,e2,ez) of P is not in the boundary of C. We shall
prove this by showing that at least one of the eight planes II{eix, e^y, ezz} has empty
intersection with P . Taking into account the central symmetry of C and P, it is
sufficient to show that at least one of the following four determinants is positive:

d\ = det

d3 = det

i-yi l-k2

1 - Z 2

l - * s
i - y 3

1-23J
l-k3

d.2 = det

d4 = det

Let

P =
q =

r = fci

k ^ ^1

t = —

Z2 1 — Z3 .

+ 22) - xxy3 - x2z3,

+ z3) - x2yi - y3z2,

+ y3) - xxz2 - yiz3,

I-H
r-l

1

1
1
1

+ Xl

- y i

+ Xi

+ y\
- fci

1
1
1

1
1
1

+ X2

-k2

- z 2

-X2

-k2

+ Z2

1
1
1

1
1
1

-V
+ y3
+ Z3.

-k3-
-ys
+ z3.

— l)x2y3 — (k2 - + X1J/3Z2 + X2J/1Z3.

Since k = kik2k3(l — A;̂ 1 - fcj1 — k^1), from (5) we see that A; > 0. A simple
calculation shows that

d\= p + q + r

d.2= p — q-r t,

= —p — q + r + k +1.
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Remember that x\ ^ 0 and x2 ^ 0. Each of the numbers j / i , j/3, z2, z3 can be non-
negative (which we mark by + ) or negative (marked by —). We have 2* = 16 cases
in which each of the numbers 3/1,3/3, Z2, Z3 is of a fixed sign. Some of those cases are
equivalent in the following sense. We can change by rotation the coordinate system such
that the oriented axes exchange their positions. But we allow only such an exchange
after which the new x\ and X2 are again non-negative. It is easy to see that we have
exactly 6 non-equivalent cases. They are considered in Cases 1-6 below. Successive
signs + or — mean that successive numbers x\,X2,yi,tf3,Z2,z3 are non-negative or
negative, respectively.

In every case, we show that at least one of the determinants di, 62, d3,d4 is positive.
In order to conclude this, we show that a positive linear combination of those four
determinants is positive (sometimes the combination is reduced to a single determinant).
In every case (besides Case 1), and subcase we present our linear combination as a
sum of non-negative components, from which at least one is positive. This positive
component is always equal or greater than 5k, where 5 > 0. We remember that k > 0.
The positiveness of 5k and the non-negativeness of the remaining components follows
always from the assumptions of the considered case (or subcase).

C A S E 1. + + -H + + + . Of course, if x\ = x2 = 3/1 = 3/3 = Z2 = zz = 0, then
di = k > 0. Moreover, the first derivatives of di with respect to each of the six variables
are non-negative when the variables are at most 1 (for example, the derivative with
respect to x\ is (1 — 3/3XI — Z2) — (1 — £2X1 — 23) ^ 0). Thus d\ > 0 in this case.

CASE 2. + + + + —K We have 2d\ + d3 + d4 = 2q + 2r + 4k + At = 2(kx - 1)
(x2 + y3~ 2x2y3) + 2x2(l - yi)+2y3-2xiz2(l - 3/3) -2y322(l - Xi) + 2Ai2Xi(l - z3) +
2(i2 - 1)23(1 - xi) + 223(1 - 3/1) + 2xiz3 - 4(fc3 - 1)3/122 + 4x23/1-23 + 4* > 0.

CASE 3. + + + + — . Of course, di + d4 = 2r + 2fc + 2t = 2&i(x2 + 3/3 - ^23/3) +

2x23/3 - 2(fc2 - l)*iZ3 - 2(fc3 - l)yi*2 + 2xi22(y3 - 1) + 2y1z3(x2 - 1) + 2k > 0.

CASE 4. ++—I K In view of (5) we have l-k^-k^-k^1 > 0 and also we have

(3 - k^1 - k^1 - k^kikiks - (k2 - l)Xi23 - (fcl - l)X23/3 ~ (*3 " 1)3/1*2 > 2*1*2*3 "
(k2 - 1) - (*i - 1) - (*3 - 1) > 2kxk2k3 - *ifc2 - Jfc2fc3 - *2*3 + 3 = k + kik2k3 + 3 > 0.
Those two inequalities are used below, where we show that a positive linear combination
of d i , (fa, ds is positive: (l - (frf1/^ ~ fa1 /2))dx + (l - [k?/2) - {k3

x/2))d3 +
(1 - (fcrV2) - (*3 72) )d 4 = (*2 - l)(xi 4- 23 - 2xlZ3) + (fei - l)(x2 + 3/3 - 2x2y3) +
(*3 - l)(-3/i - z2 - 23/122) + (1 - fcf1 - k2

l - k3
x) [(3 - fcf1 - k2

x - k^)kxk2k3 -

(fc2 - l)Xi23 - (*! - l )x2y3 - (*3 - l)yiZ2J + (1 - K1) [*l22(y3 - 1) +yiZ3(*2 - 1)] +

(1 - k^1)[x2yi(23 - 1) + y3z2(xl - 1)] + (1 - k3
x)[xiy3(z2 + 1) + x223(yi + 1)] > 0.

CASE 5. +H 1~ . We have w = - ( f c i - l )x2y3-(*;2 - I)xiz3-(k3- l)yiz2 ^ 0.
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SUBCASE 5.1. When j/i + z2 ^ 0 or when X\ + z3 ^ 0. The first inequality implies
d1 + d2 = 2p + 2k + 2t = 2w + 2xiy3(z2 - 1 ) + 2x2Z3(yi - 1 ) + 2k3(yi + z2) 4- 2k > 0.
Similarly, in the second possibility we obtain that d\ + d3 > 0.

SUBCASE 5.2. When x2 + y3 ^ 0. We obtain that d2 + d3 = - 2 r + 2fc + 2t =
2u> + 2x1z2(y3 + 1) + 2y1z3{x2 + 1) - 2fci(x2 + 3/3) + 2* > 0.

SUBCASE 5.3. When yi + z2 < 0, xi + z3 < 0 and x2 + Ite > 0- The assumptions
of this subcase mean that z2 < — y\, xi < —z3 and — y3 < x2. Since all the six
numbers are positive, we obtain X\{—y3)z2 < (—yi)x2(—z3). Thus x\y3z2-\-x2yxz3 > 0.
This, k > 0 and w > 0 imply the inequality here: d\ + d2 + d3 + d* = Ak + At =
Aw + Axiy3z2 + 4z2yiz3 + Ak > 0.

CASE 6. + H . We divide Case 6 into six subcases. In subcases 6.1-6.4 we
consider d3 + d4 and we deal with the value h = — (fci — l)x2y3 — (&2 — 1)̂ 1-̂ 3 +xxy3 +
X2Z3. We always show that h ^ 0. This leads to the conclusion that d3 + dt > 0.
Since we have d3 + d4 = —2p + 2k + 2t = -2k3yi — 2*1322 — 2(&3 — l)yiZ2 + 2x\y3z2 +
2x2yiz3 + 2h + 2k > 0.

Prom (5) we conclude that ki + k2 - hk2 = kxfafc1 + k^1 - l ) < 0. We shall
apply this inequality in Subcases 6.3-6.6.

SUBCASE 6.1. When (fci - l ) - 1 Xi ^ x2 < ( & 2 - l ) x i . We have h = y3[xi -
(fci - l)x2] + z3[x2 - (k2 - l)xi] ^ 0.

SUBCASE 6.2. When (fci — l)y3 ^ z3 ^ (fc2 — 1)- Iy3- Similarly to the preceding
subcase h = xi [y3 - {k2 - l)z3] + x2 [z3 - (fci - l)y3] ^ 0.

SUBCASE 6.3. When x2 ^ (k2 - l )xi and z3 ^ (k2 - l ) " 1 ^ . There exists A ^ A;2-l
such that 2/3 = \z3. We have h = X1J/3 + x2z3 - (fcx - l)Ax2z3 - (k2 - l)xiz3 =

] - I)xi23 ^ xiy3+(k2 - l)xi*3[l-(fci - l)A]-(fc2

-(ki - l){k2 - l)Axiz3 = Xiy3-(fci - l)(fc2 - I)a;iy3 = (*i + k2- kik2)xiy3 ^ 0.

SUBCASE 6.4. When x2 ^ (h - l ) - 1 x i and z3 ^ (fci - l)y3. There exists A ^ ki~l
such that z3 = Ay3. We have h = Xiy3+x2z3-(ki - l)x2y3-(k2 - l)xiXy3 = Xiysf l -
(fc2 - 1)A] +X2Z3 - (*i - I)^2y3 ^ (fci - I)x2y3[l - (fo - 1)A] +x 2 z 3 - (fci - l)x2y3 =

x2z3 = (ki + k2- kik2)x2z3 ^ 0.

SUBCASE 6.5. When x2 ^ (k2 — l)x\ and 23 ^ (fci — l)y3. Consider the function
f(u,v) = kiu — k2v + uv for u € [0,1] and v € [—1,0]. Looking at the partial
derivatives, we deduce that if ui ^ u2 and v\ ^v2, then f(u\,vi) ^ f(u2,v2). Thus
k\x2 - k2z3 + x2z3 ^ ki(k2 - l)xi - k2(ki - l)y3 + (ki - l)(fc2 - l)x!y3. Moreover,
from the assumption of our subcase we get — (k\ — l)x2y3 ^ —(ki — l)(fc2 — l)xiy3

and — (fc2 — I)xi23 ^ — (fci — l)(fc2 — l)xiy3. In view of the above three inequalities
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we obtain (-k2xi + kiy3

(*2 - l)xiy3 - 2(fcx - l)(fc2 - l)xiy3 = (hk2 - *i - k2)[Xl(l - y3) - y3] ^ 0. Hence
dt = (-k2xi + fcij/3 + xiy3) + (kix2 - k2z3 + x2z3) - (fci - l)x2y3 - (*2 - l)xiz3 -
(k3 - l)[(yi + I)z2+yx]- (1 + xiy3)z2+(x2 - l)yi{z3 + l)-xiz2+y3z2+k is positive.

SUBCASE 6.6. When x2 < (ki - l )~xxi and z3 ^ (fc2 - 1) - I y3 • We can write
the assumptions of this subcase as x\ ^ (k\ — l)x2 and j>3 < (fc2 — 1)^3. Then the
considerations of the preceding case can be repeated for d3 instead of d4. 0

In the course of the proof of Theorem 2, we have shown that if k^1+k2~
1+k3

1 < 1,
then the interior of the octahedron Q with the vertices x, y, z, —x, —y, —z contains
at least one vertex of P. We formulate this as the first statement in the following
Corollary 2. We change the notation in order to unify it with the notation of the
forthcoming Conjecture 2. The second statement of Corollary 2 easily follows from the
first one.

COROLLARY 2 . Let Q be the octahedron with vertices pi = (pn,Pi2.Pi3), P2 =
(P21.P22.P23), P3 = (p31.P32.P33), - P i , -P2, ~P3 such that pu > 1 for i = 1,2,3
and |pij| ^ 1 for i ^ j . If p ^ 1 +p22

1 +P331 < 1> then the interior of Q contains at
least one point (ei ,e2 ,e3) , where e\,e2,e3 e {—1,1}. Moreover, the weak inequality
implies that just Q contains at least one such a point.

More generally, consider the crosspolytope Q = conv { p i , p i , . . . ,Pn»P^} in E",
where p< = (pn,...,pin) and pj = (pii , . . . ,Pin) such that pit ^ 1, p'u ^ - 1 for
i = 1 . . . n , and such that for every different i,j € { 1 , . . .n} the inequality |py| ^ 1
holds true.

The relationship between Theorem 2 and Corollary 2 can be expressed in the more
general form: the conjecture that for every convex body C and every parallelotope P

n
inscribed in C we have ^2 k{ ^ 1 is equivalent to Conjecture 2 below.

>=i
n

CONJECTURE 2. If £ {pu-p'o) < 1, then the interior of the crosspolytope Q
t=i

contains at least one point of the form (e\,..., en), where e» € {—1,1} for i = 1 , . . . n .
Let us show the equivalence by contradiction.
Assume that there exists a convex body C and a parallelotope P inscribed in C

n
such that 53 fc4 < 1. We may assume that ( e i , . . . , e,,) are the vertices of P. (We

i=l

just apply an affine transformation.) Support C by In hyperplanes parallel to the
facets of P . Denote by Pi and pj the points of support in C n Ki such that pu ^ 1
and pk ^ — 1. Since P is inscribed in C and since Q C C, no vertex of P in the
interior of Q. So Conjecture 2 is false.
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On the other hand, if Conjecture 2 is false, then there are points pi,p'i,... ,pn>Pn
with p»i ^ 1, pjj < —1 for i = 1 , . . . , n and with |py| < 1 for t ^ j such that

13 (P» — Pii)~ < 1 and such that the interior of Q does not contain all points of the

form ( c i , . . . , en), where e» € {—1,1} • Let C be the convex hull of the set of points

consisting from all the 2 n points ( c i , . . . , en) and of points Pup[, •. • ,pn,p'n • Of course,
n

P is inscribed in C but J^ kt <1.

From this equivalence and from the inequalities ki^Wi we conclude that Conjec-

ture 1 is stronger than Conjecture 2.

It is easy to show that Conjecture 2 is equivalent to the following related conjecture:

13 (Pit — Pit) ^ 1 implies that the crosspolytope Q contains at least one point of the

form ( e i , . . . , en), where e* € {—1,1}.
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