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We establish oracle inequalities for a version of the Lasso in high-dimensional fixed
effects dynamic panel data models. The inequalities are valid for the coefficients of
the dynamic and exogenous regressors. Separate oracle inequalities are derived for
the fixed effects. Next, we show how one can conduct uniformly valid inference on
the parameters of the model and construct a uniformly valid estimator of the asymp-
totic covariance matrix which is robust to conditional heteroskedasticity in the error
terms. Allowing for conditional heteroskedasticity is important in dynamic models
as the conditional error variance may be nonconstant over time and depend on the
covariates. Furthermore, our procedure allows for inference on high-dimensional
subsets of the parameter vector of an increasing cardinality. We show that the con-
fidence bands resulting from our procedure are asymptotically honest and contract
at the optimal rate. This rate is different for the fixed effects than for the remaining
parts of the parameter vector.

1. INTRODUCTION

Dynamic panel data models are widely used in economics and social sciences.
They are extremely popular as workers, firms, and countries often differ due to
unobserved factors. Furthermore, these units are often sampled repeatedly over
time in many modern applications thus allowing one to model their dynamic de-
velopment. However, so far no work has been done on how to conduct inference
in the high-dimensional dynamic fixed effects model
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yi,t =
L∑

l=1

αl yi,t−l + x ′
i,tβ+ηi + εi,t , i = 1, . . . ,N, and t = 1, . . . ,T (1.1)

with potentially more parameters than observation. Here the presence of L lags
of yi,t allows for autoregressive dependence of yi,t on its own past. xi,t is a
px × 1 vector of exogenous variables and ηi , i = 1, . . . ,N are the N individual
effects while εi,t are idiosyncratic error terms.1 Applications of panel data are
widespread: ranging from wage regressions where one seeks to explain work-
ers’ salaries, to models of economic growth determining the factors that impact
growth over time of a panel of countries as in Islam (1995).

Recent years have witnessed a surge in availability of big data sets includ-
ing many explanatory variables. For example, De Neve, Christakis, Fowler, and
Frey (2012) have considered the effect of genes on happiness/life satisfaction.
Controlling for many genes simultaneously clearly results in a vast set of ex-
planatory variables, hence calling for techniques which can handle such a set-
ting. High-dimensionality may also arise out of a desire to control for flexible
functional forms by including various transformations, such as cross products, of
the available explanatory variables. In the specific context of panel data models
Andersen, Bentzen, Dalgaard, and Selaya (2012) investigated the causal effect
of lightning density on economic growth using a US panel data set. These au-
thors had access to many control variables compared to the sample size. For this
reason, they decided to investigate the effect of lightning using several subsets
of control variables instead of including all control variables simultaneously as
one would ideally do. In this article we show how one can achieve this ideal
by proposing an inferential procedure for high-dimensional dynamic panel data
models.

Much progress has also been made on the methodological side of high-
dimensional models in the last decade. Among the most popular procedures is
the Lasso of Tibshirani (1996) which sparked a lot of research on its proper-
ties. However, until recently, not much work had been done on inference in high-
dimensional models for Lasso-type estimators as these possess a rather compli-
cated limiting distribution even in the low dimensional case, see Knight and Fu
(2000). This problem has been cleverly approached by unpenalized estimation
after double selection by Belloni, Chen, Chernozhukov, and Hansen (2012) and
Belloni, Chernozhukov, and Hansen (2014) or by desparsification in Zhang and
Zhang (2014), van de Geer, Bühlmann, Ritov, and Dezeure (2014), Javanmard
and Montanari (2013), and Caner and Kock (2018).

The focus in the above mentioned work has been almost exclusively on in-
dependent data and often on the plain linear regression model while high-
dimensional panel data has not been treated. Exceptions are Kock (2013) and
Belloni, Chernozhukov, Hansen, and Kozbur (2015) who have established
oracle inequalities and asymptotically valid inference for a low-dimensional pa-
rameter in static panel data models, respectively. Kock (2016) has studied high-
dimensional panel data models with correlated random effects while Caner and
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Zhang (2014) have studied the properties of penalized GMM, which can be used
to estimate dynamic panel data models, in the case of fewer parameters than ob-
servations. Lu and Su (2016) and Su, Shi, and Phillips (2016) have considered
shrinkage estimators in panel data models with special structures such as interac-
tive fixed effects or latent structures. To the best of our knowledge, no research
has been conducted on inference in high-dimensional dynamic panel data mod-
els with more parameters than observations. Note that high-dimensionality may
arise from three sources in the dynamic panel data model (1.1). These sources
are the coefficients pertaining to the lagged left hand side variables (αl ), the ex-
ogenous variables (β), as well as the fixed effects (ηi ). In particular, we shall see
that (joint) inference involving an ηi behaves in a markedly different way from
inference only involving the αl s and β. Furthermore, panel data differ from the
classic linear regression model in that one does not have independence across
t = 1, . . . ,T for any i as consecutive observations in time can be highly correlated
for any given individual. Ignoring this dependence may lead to gravely mislead-
ing inference even in low-dimensional panel data models. For that reason we shall
make no assumptions on this dependence structure across t = 1, . . . ,T for the
xi,t . Static panel data models are a special case of (1.1) corresponding to αl = 0,
l = 1, . . . ,L.

Traditional approaches to inference in low-dimensional static panel data mod-
els have considered the N fixed effects ηi as nuisance parameters which have been
removed by either taking first differences or demeaning the data over time for each
individual i , see, e.g., Wooldridge (2010), Arellano (2003), and Baltagi (2008).
In this article we take the stand that the fixed effects may be of intrinsic interest.
Estimating the ηi s precisely is essential for obtaining precise cross-sectional fore-
casts or predictions for each individual, like in credit scoring or in the estimation
of probabilities of tax fraud (Arellano, 2003, p11). Thus, we do not remove them
by first differencing or demeaning. This allows us to test hypotheses involving
α,β and the ηi s. An important recently developed approach focusing on how to
jointly determine group membership and parameter estimation is the Classifier-
Lasso of Su et al. (2016). The authors propose a novel penalty function to achieve
these goals.

In an alternative framework, some treat the N individual effects as N random
variables. We would like to remark that this is not the framework we are adopting
in most of the article.2 By treating ηi s as N parameters, we are essentially consid-
ering the N realisations of the N individual effects in the alternative framework.
We shall impose that (η1, . . . ,ηN ) is weakly sparse in a sense to be made precise
in Section 2.2.

In an interesting recent article dealing with the low-dimensional case,
Bonhomme and Manresa (2015) have assumed a different type of structure,
namely grouping, on the fixed effects. However, in the high-dimensional setting
we are considering, weak sparsity works well as just explained.

Our inferential procedure is closest in spirit to the one in van de Geer et al.
(2014), which in turn builds on Zhang and Zhang (2014), who cleverly used
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nodewise regressions to desparsify the Lasso and to construct an approximate
inverse of the noninvertible sample Gram matrix in the context of the linear re-
gression model. In particular, we show how nodewise regressions can be used to
construct one of the blocks of the approximate inverse of the empirical Gram ma-
trix in dynamic panel data models. As opposed to van de Geer et al. (2014), we
do not require the inverse covariance matrix of the covariates to be exactly sparse.
It suffices that the rows of the inverse covariance matrix are weakly sparse. Thus,
none of its entries needs to be zero.

We contribute by first establishing an oracle inequalities for a version of the
Lasso in dynamic panel data models for all groups of parameters. As can be ex-
pected, the fixed effects turn out to behave differently from the remaining pa-
rameters. Next, we show how joint asymptotically gaussian inference may be
conducted on the three types of parameters in (1.1). In particular, we show that
hypotheses involving an increasing number of parameters can be tested and pro-
vide a uniformly consistent estimator of the asymptotic covariance matrix which
is robust to conditional heteroskedasticity in the error terms. Thus, we introduce
a feasible procedure for inference in high-dimensional heteroskedastic dynamic
panel data models. Allowing for conditional heteroskedasticity is important in dy-
namic models like the one considered here as the conditional variance is known
to often depend on the current state of the process, see, e.g., Engle (1982). Thus,
assuming the error terms to be independent of the covariates and possessing a con-
stant variance is not reasonable. Next, we show that confidence bands constructed
by our procedure are asymptotically honest (uniform) in the sense of Li (1989)
over a certain subset of the parameter space. Finally, we show that the confidence
bands have uniformly the optimal rate of contraction for all types of parameters.
Thus, the honesty is not bought at the price of wide confidence bands as is the
case for sparse estimators, cf. Pötscher (2009). Simulations reveal that our proce-
dure performs well in terms of size, power, and coverage rate of the constructed
intervals.

The rest of the article is organized as follows. Section 2 introduces the
estimator and provides oracle inequalities for all types of parameters. Next,
Section 3 shows how limiting Gaussian inference may be conducted and provides
a feasible estimator of the covariance matrix which is robust to heteroskedas-
ticity even in the case where the number of parameter estimates for which we
seek the limiting distribution diverges with the sample size. Section 4 shows
that confidence intervals constructed by our procedure are honest and contract
at the optimal rate for all types of parameters. Section 5 studies our estimator
in Monte Carlo experiments while Section 6 concludes. Appendix A contains
sufficient conditions for some of our assumptions. Appendices B–E contain the
proofs for our oracle inequality, desparsification, inference, and honest confidence
intervals, respectively. Appendix F contains further auxiliary lemmas needed in
Appendices A–E. Appendix G contains some technical expositions omitted in the
main text.
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2. THE MODEL

2.1. Notation

For x ∈ R
n , let ‖x‖0 = ∑n

i=1 1(xi �= 0), ‖x‖ =
√∑n

i=1 x2
i , ‖x‖1 = ∑n

i=1 |xi | and
‖x‖∞ = max1≤i≤n |xi | denote the �0, �2, �1 and �∞ norms, respectively. Let em

denote the unit column vector with mth entry being 1 in some Euclidean space
whose dimension depends on the context. If the argument of ‖ · ‖∞ is a matrix,
then ‖ ·‖∞ denotes the maximal absolute element of the matrix. For some generic
set R ⊆ {1, . . . ,n}, let xR ∈ R

|R| denote the vector obtained by extracting the
elements of x ∈R

n whose indices are in R, where |R| denotes the cardinality of R;
Rc = {1, . . . ,n}\ R. For an n×n matrix A, AR denotes the submatrix consisting of
the rows and columns indexed by R. ⊗ is the Kronecker product. For real numbers
a,b let a ∨b and a ∧b denote max(a,b) and min(a,b), respectively. For two real
sequences (an) and (bn), an � bn means that an ≤ Cbn for some fixed, finite,
and positive constant C for all n ≥ 1. Similarly, we write an � bn if there exist
constants 0< a1 ≤ a2 such that a1bn ≤ an ≤ a2bn for all n ≥ 1. sgn(·) is the sign
function. maxeval(·) and mineval(·) are the maximal and minimal eigenvalues
of the argument, respectively. For some vector x ∈ R

n , diag(x) returns an n × n
diagonal matrix with x supplying the diagonal entries.

The model in (1.1) can be rewritten as

yi,t = z′
i,tα+ηi + εi,t , i = 1, . . . ,N, t = 1, . . . ,T, (2.1)

where zi,t := (yi,t−1, . . . , yi,t−L ,x ′
i,t )

′ and α := (α1, . . . ,αL ,β
′)′ are p ×1 vectors

(p = px + L). We shall adopt the joint asymptotics approach in the sense that
L, px , p, T and N diverge to infinity jointly. We assume that initial observations
yi,0, yi,−1, . . . , yi,1−L are available for i = 1, . . . ,N . We conjecture that (2.1) could
also be extended with time effects. However, to keep expressions and assumptions
reasonably simple, we do not pursue this possibility in this work.

The three sources of high-dimensionality in (2.1) are px , L, and N as all of
these can be increasing sequences. Sometimes one thinks of the number of lags,
L, as being fixed and in that case only two sources remain. Next, (2.1) may be
written more compactly as

yi = Z ′
iα+ηi ι+ εi ,

where Zi := (zi,1, . . . ,zi,T ) is a p × T matrix, yi := (yi,1, . . . , yi,T )
′, εi :=

(εi,1, . . . ,εi,T )
′, and ι is a T ×1 vector of ones. Then, one can write

y = (Z D)

(
α
η

)
+ ε =�γ + ε,

where Z := (Z1, . . . , Z N )
′, y := (y ′

1, . . . , y ′
N )

′, and ε := (ε′1, . . . ,ε
′
N )

′. η :=
(η1, . . . ,ηN )

′ contains the fixed effects, D := IN ⊗ ι, and � := (Z ,D). Finally,
γ := (α′,η′)′ contains all p + N parameters of the model. Thus, the dynamic

https://doi.org/10.1017/S0266466618000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466618000087


300 ANDERS BREDAHL KOCK AND HAIHAN TANG

panel data model (1.1) can be written more compactly as something resembling
a linear regression model. There are several differences, however. First, blocks of
rows in the data matrix�may be highly dependent. Second, we shall see that the
estimators of α and η have markedly different properties as a result of the fact that
the probabilistic properties of the blocks of a properly scaled version of the Gram
matrix pertaining to� are very different. Third, imposing weak sparsity on α and
η implies that the oracle inequalities which we use as a stepping stone towards
inference do not follow directly from the technique in, e.g., Bickel, Ritov, and
Tysbakov (2009). In fact, we do not get explicit expressions for the upper bounds
but instead characterize them as solutions to certain quadratic equations in two
variables.

2.2. Weak Sparsity and the Panel Lasso

As explained in the introduction, we treat η as a parameter to be estimated. How-
ever, η is not entirely unrestricted but assumed to be weakly sparse3 in the sense

N∑
i=1

|ηi |ν ≤ E

for some 0 < ν < 1 and E > 0. Weak sparsity does not require any of the fixed
effects to be zero but instead restricts the “sum” of all the fixed effects. E can be
large in the sense that it tends to infinity but the smaller it is, the sharper will our
results be. It is appropriate to stress that the fixed effects cannot be entirely unre-
stricted. In particular we shall see that the oracle inequalities (Theorem 1) require
E = O

(√
N(log(p ∨ N))3ν/T ν

)
whereas the CLT and uniform inference (The-

orems 2 and 3) require E = o
(√

N(log(p ∨ N))3ν/T ν
)
. Notice that this is more

restrictive than in classic low dimensional fixed effects models where E = O(N).
Thus, our framework also excludes many models of interest. We believe, how-
ever, that our results provide a useful first step towards uniform inference in high-
dimensional dynamic panel data models. Lemma A.1 in Appendix A provides suf-
ficient conditions and discussion for the rate assumptions on E mentioned above
to be satisfied, i.e., sufficient conditions for the fixed effects to be weakly sparse.
Our strengthened assumption allows us to use the Lasso in the high-dimensional
setting.

Note that the presence of many control variables in a high-dimensional model
leaves less variation to be explained by the unobserved heterogeneities and these
are therefore likely to be small in magnitude making the weak sparsity assumption
reasonable. Thus, weak sparsity actually becomes more reasonable the larger the
number of control variables is.

We also assume that α is weakly sparse, i.e.,

p∑
j=1

|αj |ν ≤ E1
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for some E1 > 0. Weak sparsity is a strict generalization of exact sparsity in the
sense that if only sα elements of α are nonzero and none of these exceeds a con-
stant K , then

∑p
j=1 |αj |ν ≤ sαK ν . Thus, E1 = sαK ν works. Alternatively, exact

sparsity of α can be handled as the boundary case as ν → 0 upon defining 00 = 0
such that E1 will equal the number of nonzero entries of α. We shall see that
the oracle inequalities (Theorem 1) require E1 = O

(√
N1−ν (log(p ∨ N))3ν/T ν

)
whereas the CLT and uniform inference (Theorems 2 and 3) require E1 =
o
(√

N1−ν (log(p ∨ N))3ν/T ν
)
.

Note that we use the same ν for both α and η simply for convenience.

2.3. The Objective Function and Assumptions

Our starting point for inference is the minimiser γ̂ = (α̂′, η̂′)′ of the following
panel Lasso objective function

L(γ )= ‖y −�γ ‖2 + 2λ‖α‖1 + 2
λ√
N

‖η‖1. (2.2)

As usual λ is a positive regularization sequence. Note that we penalize α and η
differently to reflect the fact that we have NT observations to estimate αj for
j = 1, . . . , p while only T observations are available to estimate each ηi . Pe-
nalizing the fixed effects is not new and was already done in Koenker (2004)
and Galvao and Montes-Rojas (2010) in a low dimensional panel-quantile model.
Furthermore, the penalization fits well with the weak sparsity assumption on the
fixed effects and may increase efficiency of α̂ as found in Galvao and Montes-
Rojas (2010).

For practical implementation it is very convenient that we only have one penalty
parameter λ instead of having separate penalty parameters for α and η. The min-
imization problem can be solved easily as it simply corresponds to a weighted
Lasso with known weights. However, the probabilistic analysis of the properly
scaled Gram matrix is different from the one for the standard Lasso as it must
be broken into several steps. We now turn to the assumptions imposed for our
inferential procedure.

Assumption 1. For each T ∈ N, {(x ′
i,1, . . . ,x

′
i,T ,ε

′
i )}N

i=1 is an independent se-
quence and

E[εi,t |yi,t−1, . . . , yi,1−L, xi,t , . . . , xi,1] = 0 for i = 1, . . . ,N, t = 1, . . . ,T .

Assumption 1 imposes independence across i = 1, . . . ,N which is standard
in the panel data literature, see, e.g., Wooldridge (2010) or Arellano (2003).
Note however, that we do not assume the data to be identically distributed across
i = 1, . . . ,N . Assumption 1 also implies, by iterated expectations, that the error
terms form a martingale difference sequence with respect to the filtration gener-
ated by the variables in the above conditioning set and thus restricts the degree
of dependence in the error terms across t (in particular, they are uncorrelated).4
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However, it still allows for considerable dependence over time, as higher moments
than the first are not restricted. Furthermore, the error terms need not be identi-
cally distributed over time for any individual. Note that the increasing number of
lags of yi,t also whiten the error terms in practice. We also note that Assumption
1 does not rule out that the error terms are conditionally heteroskedastic. In panel
data terminology, both lags of yi,t and xi,t are called predetermined or weakly
exogenous. Finally, one can of course also include lags of the xi,t in (1.1) as these
are also weakly exogenous.

In order to introduce the next assumption define the scaled empirical Gram
matrix

�N = S−1�′�S−1 =
(

1
NT Z ′Z 1

T
√

N
Z ′D

1
T

√
N

D′ Z IN

)
where S =

(√
NT Ip 0
0

√
T IN

)
.

When p + N > NT ,�N is singular. However, to conduct inference it suffices that
a compatibility type condition tailored to the panel data structure is satisfied. We
shall see that it actually suffices that

� =
(
�Z 0
0 IN

)
:=

( 1
NT

∑N
i=1

∑T
t=1E[zi,t z′

i,t ] 0
0 IN

)

satisfies such a compatibility condition since �N will be shown to be close to
� in an appropriate sense. To be precise, define for integers r1 ∈ {1, . . . , p} and
r2 ∈ {1, . . . ,N}

κ2(A,r1,r2) := min
R1⊆{1,...,p},|R1|≤r1
R2⊆{1,...,N},|R2 |≤r2

R:=R1∪(R2+p)

min
δ∈Rp+N \{0}

‖δRc ‖1≤4‖δR‖1

δ′ Aδ
1

r1+r2
‖δR‖2

1

,

which is reminiscent of the restricted eigenvalue condition in Bickel et al. (2009).
Define the auxiliary parameters

α∗
j := αj 1{|αj | ≥�1}, J1 = {j : α∗

j �= 0, j = 1, . . . , p} , s1 := |J1|,
η∗

i := ηi 1{|ηi | ≥�2} , J2 = {i : η∗
i �= 0, i = 1, . . . ,N} , s2 := |J2|,

for �1,�2 ≥ 0 the details of which will be made precise in Appendix B.

Assumption 2. κ2 := κ2 (�,s1,s2) is bounded away from zero.

Assumption 2 is rather innocent as it is trivially satisfied when the �Z is pos-
itive definite. Since �Z is the population second moment matrix of zi,t this is a
standard assumption. Compatibility type conditions are typical in the literature
and various versions and their interrelationship have been investigated in van de
Geer, Bühlmann et al. (2009).

Assumption 3. There exist absolute positive constants C and K such that
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(a) εi,t are uniformly subgaussian; that is, P(|εi,t | ≥ ε) ≤ 1
2 K e−Cε2

for every
ε ≥ 0, i = 1, . . . ,N and t = 1, . . . ,T .

(b) zi,t are uniformly subgaussian; that is, sup‖v‖≤1P(|v ′zi,t | ≥ ε)≤ 1
2 K e−Cε2

for every ε ≥ 0, i = 1, . . . ,N and t = 1, . . . ,T .

In the context of the high-dimensional plain static regression model it is com-
mon practice to assume the error terms as well as the covariates to be subgaus-
sian. However, this assumption is not as innocent in the context of the dynamic
panel data model (1.1) as yi,t is generated by the model and its properties are
thus completely determined by those of xi,t ,εi,t as well as the parameters of the
model. Lemma A.2 in Appendix A shows that yi,t is subgaussian if xi,t and εi,t

satisfy this property and the parameters are well-behaved. In particular, a wide
class of (causal) stationary processes are included, though GARCH processes
are excluded. Note also, that Assumption 3 imposes subgaussianity of the ini-
tial values yi,0, . . . , yi,1−L for all i = 1, . . . ,N . Belloni et al. (2012) have anal-
ysed high-dimensional IV models without imposing subgaussianity by utilising
moderate deviation inequalities for self-normalised sums of independent random
variables. However, the dynamic panel data setting considered here induces a
complicated dependence structure such that these tools are not readily applicable.
Further examples of articles which do not rely on subgaussianity are Belloni et al.
(2014) and Caner and Kock (2018) both of which work in a setting of independent
observations.

2.4. The Oracle Inequalities

With the above assumptions in place we are ready to state our first re-
sult. Set E1 = N− ν

2 E . The reason for such choice of E1 is to balance
the terms of the upper bounds of the oracle inequalities. Define F(ν,E) :={
α ∈ R

p :
∑p

j=1 |αj |ν ≤ N− ν
2 E

}× {
η ∈ R

N :
∑N

i=1 |ηi |ν ≤ E
}
.

THEOREM 1 (Oracle inequalities). Let Assumptions 1–3 hold. Choose λ =√
4M NT (log(p ∨ N))3 for some M > 0 (M does not depend on any other

constant). Then the following inequalities are valid with probability at least

1− Ap1−AM1/3 − AN1−AM1/3 − A(p2 + pN)exp

(
−B

{
N

E2
[
(log(p ∨ N))3/T

]−ν
}1/3)

provided E = O
(√

N(log(p ∨ N))3ν/T ν
)
, where A and B are generic positive

constants.

1

NT

∥∥�(γ̂ −γ )∥∥2 ≤
(240

κ2
+ 40

) λ√
N NT

E

(
λ√
N T

)1−ν

‖α̂−α‖1 ≤
(240

κ2
+ 40

) 1√
N

E

(
λ√
N T

)1−ν
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‖η̂−η‖1 ≤
(240

κ2 + 40
)

E

(
λ√
N T

)1−ν
.

Theorem 1 provides oracle inequalities for the prediction error as well as the
estimation error of the parameter vectors. Moreover, the above bounds are valid
uniformly over F(ν,E). While these bounds are of independent interest, we pri-
marily use them as means towards our ultimate end of conducting (joint) inference
on α and η. We stress that the bounds in Theorem 1 are finite sample bounds; they
hold for any fixed values of N and T . The novel feature of our oracle inequalities
is that E , the “size” of η or α, is allowed to grow even when we want the upper
bound of ‖η̂− η‖1 or ‖α̂−α‖1 go to zero. The special case of exact sparsity of
α corresponds to ν = 0 upon defining 00 = 0 and N− ν

2 E = E1 being the sparsity
index of α.

Theorem 1 or its corollary (Corollary A.1 in Appendix B) imply that for fixed

T , it is possible for ‖α̂− α‖1
p−→ 0 by allowing N → ∞ only, provided that E

does not grow too fast. Hence our panel Lasso estimator α̂ does not run into the
problem of Nickell bias (i.e., inconsistency) (see Nickell, 1981). This fact is due to
the weak sparsity assumption we imposed on the model and use of an estimator
consistent with this assumption. This framework does, however, exclude many
models of interest.

We also note that the oracle inequalities are not obtained in an entirely standard
manner as the weak sparsity in dynamic panel data models calls for a different
proof technique which yields the upper bounds as solutions to certain quadratic
equations. Furthermore, we remark that in analogy to oracle inequalities in the
plain linear regression model the number of covariates in xi,t (px ) may increase
at an exponential rate in NT without hindering the right hand sides of the oracle
inequalities in converging to zero. Finally, we do not assume independence across
t = 1, . . . ,T for any individual thus extending the standard probabilistic analysis
as well. Instead we use concentration inequalities for martingales to obtain bounds
almost as sharp as in the completely independent case. However, there is a small
cost of not assuming independence: λ has a factor

√
(log(p ∨ N))3 instead of√

log(p ∨ N). If one restricts the dependence structure of {xi,t }T
t=1 for every i =

1, . . . ,N to be, e.g., strongly mixing then one can use concentration inequalities
for mixing processes such as in Merlevède, Peligrad, and Rio (2011). Restricting
the dependence structure this way will allow E to increase faster. The focus on
the �1-norm in the oracle inequalities for α and η is due to the fact that an upper
bound in this norm will be particularly useful when developing our uniformly
valid inference procedure in the following sections.

3. INFERENCE

In this section we show how to conduct inference on γ and first discuss how
desparsification as proposed in van de Geer et al. (2014) works in our context.
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3.1. The Desparsified Lasso Estimator γ̃

First, observe that L(γ ) in (2.2) is convex in γ and in order for γ̂ to be a minimiser
of L, 0 must belong to the subdifferential of L(γ ) at γ̂ , i.e.,

0 ∈ ∂L(γ̂ )=
(

−2Z ′(y −�γ̂ )+ 2λκ̂1

−2D′(y −�γ̂ )+ 2 λ√
N
κ̂2

)

where κ̂1 and κ̂2 are p ×1 and N ×1 vectors, respectively, such that κ̂1 j ∈ [−1,1]
with κ̂1 j = sgn(α̂j ) if α̂j �= 0 for j = 1, . . . , p. Similarly, κ̂2i ∈ [−1,1] with κ̂2i =
sgn(η̂i ) if η̂i �= 0 for i = 1, . . . ,N . Hence,

−�′ (y −�γ̂ )+
(
λκ̂1
λ√
N
κ̂2

)
= 0. (3.1)

Using that y =�γ + ε and multiplying by S−1 from the left yields

�N S
(
γ̂ −γ )+ S−1

(
λκ̂1
λ√
N
κ̂2

)
= S−1�′ε.

In order to derive the limiting distribution of S(γ̂ −γ ) one would usually proceed
by isolating S(γ̂ −γ ) which implies inverting�N . However, when p + N > NT ,
�N is not invertible. The idea of van de Geer et al. (2014) and Javanmard and
Montanari (2014) is to circumvent this problem by using an approximate inverse
of �N and controlling the asymptotic approximation error. Suppose that a ma-
trix �̂ is a reasonable approximation to the inverse of �N . We shall explicitly
construct �̂ in the next section. Then we may write

γ̂ = γ − S−1�̂S−1

(
λκ̂1
λ√
N
κ̂2

)
+ S−1�̂S−1�′ε− S−1�,

where� := (
�̂�N − I

)
S (γ̂ −γ ) is the error resulting from using an approximate

inverse �̂ of �N as opposed to an exact inverse. The term S−1�̂S−1

(
λκ̂1
λ√
N
κ̂2

)
in

the above display is the bias incurred by γ̂ due to shrinkage of the parameters in
(2.2). As this bias term is known one may add it back to γ̂ in order to define the
debiased estimator

γ̃ = γ̂ + S−1�̂S−1

(
λκ̂1
λ√
N
κ̂2

)
= γ + S−1�̂S−1�′ε− S−1�.

The new estimator γ̃ is no longer sparse as it includes a bias correction term to
the sparse Lasso estimator γ̂ . Therefore, we will also refer to it as the desparsified
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Lasso estimator in the dynamic panel context. For any (p + N)×1 vector ρ with
‖ρ‖ = 1 we shall study the asymptotic behaviour of

ρ′S (γ̃ −γ )= ρ′�̂S−1�′ε−ρ′�. (3.2)

A central limit theorem for ρ′�̂S−1�′ε as well as asymptotic negligibility of
ρ′� will yield asymptotically gaussian inference. Furthermore, we shall provide
a uniformly consistent estimator of the asymptotic variance of ρ′�̂S−1�′ε even
in the presence of conditional heteroskedasticity. A leading special case of (3.2) is
when one is only interested in the asymptotic distribution of γ̃j corresponding to
ρ = ej being the j th basis vector of Rp+N . In general, we will be interested in the
asymptotic distribution of a subset H ⊆ {1, . . . , p + N} of the indices of γ with
cardinality h and shall show that asymptotically honest (uniformly valid) gaussian
inference is possible in the presence of heteroskedasticity even for h → ∞ and H
involving elements of α and η.

3.2. Construction of �̂

As is clear from the discussion above we need a good choice for �̂. In particular
we shall show that

�̂=
(
�̂Z 0

0 IN

)

works well. Here �̂Z will be constructed using nodewise regressions as in van de
Geer et al. (2014) and we show that this is possible even when the rows of Z are
not independent and identically distributed. The construction of �̂Z parallels the
one in van de Geer et al. (2014) to a high extent but importantly for our context
we do not need the rows of�−1

Z to be sparse for the nodewise regressions to work
well. The details of the construction of �̂Z are given in Appendix G.

3.3. Asymptotic Properties of the Approximate Inverse

In order to show that ρ′�̂S−1�′ε is asymptotically Gaussian one needs to un-
derstand the limiting behaviour of �̂ constructed above. We show that �̂ is close
to

�=
(
�Z 0

0 IN

)
:=

(
�−1

Z 0

0 IN

)

in an appropriate sense. To this end, note that by Yuan (2010)

�Z , j, j =
[
�Z , j, j −�Z , j,− j�

−1
Z ,− j,− j�Z ,− j, j

]−1
and �Z , j,− j = −�Z , j, j�Z , j,− j�

−1
Z ,− j,− j ,

(3.3)
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where �Z , j, j is the j th diagonal entry of �Z , �Z , j,− j is the 1 × (p − 1) vector
obtained by removing the j th entry of the j th row of �Z , �Z ,− j,− j is the sub-
matrix of �Z with the j th row and column removed, �Z , j,− j is the j th row of
�Z with its j th entry removed, and �Z ,− j, j is the j th column of �Z with its j th
entry removed. Next, let zi,t, j be the j th element of zi,t and zi,t,− j be all elements
except the j th. Define the (p − 1)×1 vector

φj := argmin
δ∈Rp−1

1

NT

N∑
i=1

T∑
t=1

E[zi,t, j − z′
i,t,− j δ]

2

such that

φj =
(

1

NT

N∑
i=1

T∑
t=1

E[zi,t,− j z′
i,t,− j ]

)−1(
1

NT

N∑
i=1

T∑
t=1

E[zi,t,− j zi,t, j ]

)
=�−1

Z ,− j,− j�Z ,− j, j .

(3.4)

Therefore, �Z , j,− j = −�Z , j, jφ
′
j showing that �Z , j,− j and φ′

j only differ by
a multiplicative constant. In particular, j th row of �Z is exactly sparse if and
only if φj is exactly sparse. More generally, we shall exploit below that weak
sparsity of one implies weak sparsity of the other. Furthermore, defining ζj,i,t :=
zi,t, j − z′

i,t,− jφj we may write

zi,t, j = z′
i,t,− jφj + ζj,i,t , for i = 1, . . . ,N, t = 1, . . . ,T,

where by the definition of φj

1

NT

N∑
i=1

T∑
t=1

E[zi,t,− j ζj,i,t ] = 0. (3.5)

Thus, in light of Theorem 1, it is sensible that the Lasso estimator φ̂j defined
in (G.1) is close to the population regression coefficients φj (we shall make this
more formal in Appendix C). Next, defining

τ 2
j := E

[ 1

N T

N∑
i=1

T∑
t=1

(zi,t, j − z ′
i,t,− jφj )

2
]

=�Z , j, j −�Z , j,− j�
−1
Z ,− j,− j�Z ,− j, j = 1

�Z , j, j

observe �Z , j,− j = −φ′
j/τ

2
j . Thus, we can write �Z = T −1C , where T =

diag(τ 2
1 , . . . ,τ

2
p ) and C is defined similarly to Ĉ but with φj replacing φ̂j for

j = 1, . . . , p. Finally, let �Z , j denote the j th row of �Z written as a column
vector. In Lemma C.9 in Appendix C we will see that φ̂j and τ̂ 2

j are close to φj

and τ 2
j , respectively, such that �̂Z , j is close to �Z , j which is the desired control

of �̂Z , j . Write ρ = (ρ′
1,ρ

′
2)

′ with ‖ρ‖ = 1, where ρ1 ∈ R
p and ρ2 ∈ R

N . Hence
define

H = H1 ∪ (
H2 + p

)
:= {j : ρ1 j �= 0}∪ ({i : ρ2i �= 0}+ p

)
,
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with |H1| = h1,N = h1, |H2| = h2,N = h2, and |H | = h = h1 + h2. In dynamic
panel data models it may not be reasonable to assume that the rows of the inverse
second moment matrix �−1

Z = �Z , i.e., �Z , j are sparse. Paralleling Section 2.2
we shall instead assume that the �Z , j are weakly sparse and assume that

p−1∑
k=1

|φj,k|ϑ = τ 2ϑ
j

p∑
l �= j

|�Z , j,l|ϑ ≤ Gj (3.6)

for some 0< ϑ < 1 and Gj > 0. Define Ḡ := maxj∈H1 Gj .

Assumption 4. (a) mineval(�Z ) is uniformly bounded away from zero and
maxeval(�Z ) is uniformly bounded from above.

(b) Ḡλ1−ϑ
node = O(1).

(c) There exist positive constants C and K such that ζj,i,t are uniformly sub-

gaussian; that is, P(|ζj,i,t | ≥ ε) ≤ 1
2 K e−Cε2

for every ε > 0, i = 1, . . . ,N ,
t = 1, . . . ,T and j = 1, . . . , p.

Assumption 4(a) is standard and strengthens Assumption 2 slightly. Recall that
the population matrix �Z can have full rank even when the empirical counter-
part �N has rank zero—which it has when p + N > NT . Note that Assumption
4(a) implies that τ 2

j is uniformly bounded away from zero as τ 2
j = 1/�Z , j, j ≥

1/maxeval(�Z ) = mineval(�Z ). Similarly, τ 2
j ≤ maxeval(�Z ) implying that τ 2

j
is bounded in (3.6). Therefore, weak sparsity of φj,k translates into weak sparsity
of the rows of �. Notice that we generalize the cross sectional results of van de
Geer et al. (2014) by not imposing the inverse covariance (second moment matrix)
of zi,t to have sparse rows. When zi,t is gaussian exact sparsity of �−1

Z is related
to the notion of conditional independence: the ( j,k)th entry of �−1

Z being zero is
equivalent to zi,t, j being independent of zi,t,k conditional on the remaining vari-
ables in zi,t . This is hard to justify in dynamic panel data models. First, it does not
sound reasonable for xi,t s to be mostly conditionally independent given the lagged
variables. Second, adjacent lagged variables yi,t−l and yi,t−l−1 (l = 1, . . . ,L +1)
are not independent even after conditioning on all the other variables in zi,t . Thus,
it is important to relax the exact sparsity assumption on the rows of �Z in the
context of dynamic panel data models.

Part (b) restricts the rate of growth of Ḡ. As we shall choose λnode �
√

log3(p)
N

it implies in particular that Ḡ = O
(
(N/ log3(p))

1−ϑ
2
)
. Part (c) imposes subgaus-

sianity on the error terms from the nodewise regressions.

3.4. The Asymptotic Distribution of γ̃

In this section we formalise the discussion in Section 3.1 as Theorem 2. To this
end, define
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��ε = E(S−1�′εε′�S−1)=
(

E
[
Z ′εε′Z/(N T )

]
E
[
Z ′εε′ D/(

√
N T )

]
E
[
D′εε′Z/(

√
N T )

]
E
[
D′εε′D/T

]
)

=
(
�1,N �2,N

�′
2,N �3,N

)

and note that

�1,N = E

⎡
⎣ 1

NT

N∑
i=1

N∑
j=1

Ziεiε
′
j Z ′

j

⎤
⎦= 1

NT

N∑
i=1

E
[
Ziεi ε

′
i Z ′

i

]= 1

NT

N∑
i=1

T∑
t=1

E

[
ε2

i,t zi,t z′
i,t

]
,

where the second and third equalities both follow from Assumption

1. Likewise, �3,N = 1
T

∑N
i=1 E

[
diεiε

′
i d

′
i

] = 1
T

∑N
i=1

∑T
t=1E

[
ε2

i,t di,t d ′
i,t

]
=

diag( 1
T

∑T
t=1E[ε2

1,t ], . . . ,
1
T

∑T
t=1E[ε2

N,t ]), where d ′
i is the i th T × N block of D,

and di,t is a N ×1 zero vector with the i th entry replaced by 1. In the same man-

ner,�2,N = 1√
N T

∑N
i=1 E

[
ziεiε

′
i d

′
i

]= 1√
N T

∑N
i=1

∑T
t=1E

[
ε2

i,t zi,t d ′
i,t

]
. In words,

�2,N is a p × N matrix with its i th column being 1√
N T

∑T
t=1E[zi,t ε

2
i,t ]. Finally,

motivated by the above, define the feasible sample counterpart of ��ε as

�̂�ε =
(
�̂1,N �̂2,N

�̂′
2,N �̂3,N

)
:=

⎛
⎝ 1

NT

∑N
i=1

∑T
t=1 ε̂

2
i,t zi,t z′

i,t
1√
N T

∑N
i=1

∑T
t=1 ε̂

2
i,t zi,t d ′

i,t

1√
N T

∑N
i=1

∑T
t=1 ε̂

2
i,t di,t z′

i,t
1
T

∑N
i=1

∑T
t=1 ε̂

2
i,t di,t d ′

i,t

⎞
⎠ ,

where ε̂i,t := yi,t − z′
i,t α̂− η̂i . One could also consider constructing ε̂i,t based

on the desparsified estimates. However, this would require running the nodewise
regressions for all variables and not only those pertaining to the coefficients in
the hypothesis being tested resulting in a much more computationally demanding
procedure. The following assumptions are imposed to establish the validity of
asymptotically gaussian inference of our procedure.

Assumption 5. Let p̃ := p ∨ N ∨ T and assume

(a)

(h1 ∨h21{h1 �= 0})2Ḡ2
[
(log p)3

N

]−ϑ
(log p̃)7

N
= o(1),

(log(N ∨ T ))31{h2 �= 0}
T

= o(1).

(b)

(
h2

1Ḡ2
[
(log p)3

N

]−ϑ ∨ Nh2
2

)[
E
(
(log(p∨N))3

T

)−ν/2]
(log p̃)5

NT
= o(1).

(c)

(h1 ∨ h2)
[(

Ḡ
[
(log p)3

N

]−ϑ/2
∨ (log p̃)2

)
1{h1 �= 0}∨ 1{h2 �= 0}

][
E2

(
(log(p∨N))3

T

)−ν]
(log p̃)4

N
= o(1).
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(d) mineval(��ε) is uniformly bounded away from zero and maxeval(�1,N ) is
uniformly bounded from above.

Assumption 5 is slightly stronger than what we actually need in order to prove
Theorem 2 but it is less cluttered in terms of notation. Assumption 5 restricts the
rate at which p, T , E , Ḡ, h1 and h2 are allowed to increase as none of these
are assumed to be bounded. First, note that p = L + px only enters through its
logarithm. Thus, we can allow for very high-dimensional models. Furthermore,
h1 as well as h2 are allowed to increase with the sample size such that hypotheses
of an increasing dimension involving α and η can be tested. In the classic setting
where one is only interested in testing hypotheses on α one has that h2 = 0 and
Assumption 5 simplifies. The case of hypotheses only involving the fixed effects
η corresponds to h1 = 0 and again the assumptions simplify. We also note that

Assumption 5 requires Ḡ and h1 necessarily to be o(N
1−ϑ

2 ), E necessarily to be
o(
√

N(log(p ∨ N))3ν/T ν), and h2 necessarily to be o(T 1/2). The restrictions on
h1 and h2, i.e., the number of common coefficients and fixed effects involved in
the hypothesis, thus clearly encompass the classical setting where one tests only
a fixed number of parameters (h1 and h2 fixed). Assumption 5 is satisfied if, for
example, p = N,T = N1/2,ν = ϑ = 0.5,E = N1/6, and Ḡ = N1/7. Thus, while
we allow these quantities to diverge, the rate at which they do so cannot be too
fast.

THEOREM 2. Let Assumptions 1, 3, 4, and 5 be satisfied. If, furthermore,
{εi,t }T

t=1 is an independent sequence for all i = 1, . . . ,N, then

ρ′S (γ̃ −γ )√
ρ′�̂�̂�ε�̂′ρ

d−→ N(0,1), (3.7)

where ρ = (ρ′
1,ρ

′
2)

′ is any (p+ N)×1 vector, with ‖ρ‖ = 1, ρ1 ∈R
p and ρ2 ∈R

N .
Moreover,

sup
γ∈F(ν,E)

|ρ′�̂�̂�ε�̂′ρ−ρ′���ε�′ρ| = op(1). (3.8)

Finally, for every fixed set H ⊆ {1, . . . ,N + p} with cardinality h, we have

[SH (γ̃H −γH )]′
(
�̂�̂�ε�̂

′)−1
H [SH (γ̃H −γH )]

d−→ χ2
h . (3.9)

Theorem 2 provides sufficient conditions under which our procedure allows for
asymptotically gaussian inference. We stress again that hypotheses involving an
increasing number of parameters can be tested and that the total number of param-
eters in the model may be much larger than the sample size. Furthermore, the error
terms are allowed to be conditionally heteroskedastic and we provide a consistent
estimator of the asymptotic covariance matrix even for the case of hypotheses
involving an increasing number of parameters. Indeed, this estimator converges
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uniformly over F(ν,E) even for high-dimensional covariance matrices—a prop-
erty we use in Theorem 3 to establish the honesty (uniform validity) over F(ν,E)
of confidence intervals based on (3.7). van de Geer et al. (2014) have derived sim-
ilar results in the setting of the homoskedastic linear cross sectional model for the
case of inference on a low-dimensional parameter. Thus, our results can be seen
as an extension to dynamic panel data models as well as to inference involving
many parameters. We stress again that we relax their assumption of the inverse co-
variance matrix �Z being exactly sparse which is important in dynamic models
like ours. Furthermore, relaxing the homoskedasticity assumption is important as
volatility is known to vary over time in dynamic models, see, e.g., Engle (1982),
and the conditional volatility often depends on the state of the process. Theorem 2
is also related to Belloni et al. (2015) who consider inference in static panel data
models for a low-dimensional parameter of interest.

The classic setup where one is only interested in inference on α corresponds
to ρ2 = 0 such that

√
NT ρ′

1 (α̃−α) is asymptotically gaussian with variance
equal to the limit of ρ′

1�Z�1,N�
′
Zρ1 (assumed to exist for illustration). If, fur-

thermore, εi,t is homoskedastic with variance σ 2 and independent of zi,t for all
i = 1, . . . ,N and t = 1, . . . ,T , it follows from the definition of �1,N that this
variance equals the limit of σ 2ρ′

1�Zρ1 = σ 2ρ′
1�

−1
Z ρ1. The leading special case

where one is interested in testing a hypothesis on the j ’th entry of α corre-
sponds to ρ1 = ej . Similar reasoning shows that in the case where one is testing
hypotheses involving fixed effects only, corresponding to ρ1 = 0, one has that
ρ′

2

√
T (η̃−η) is asymptotically gaussian with variance σ 2. This simple form of

the variance follows from the asymptotic independence of the components of η̃.
Note that the different rates of convergence for α̃ and η̃ are in accordance with
Theorem 1.

(3.9) is a straightforward consequence of (3.7) and reveals that classical χ2 in-
ference can be carried out in the usual manner. Thus, asymptotically valid χ2-
inference can be performed in order to test a hypothesis involving h param-
eters. Wald tests of general restrictions of the type H0 : g(γ ) = 0 (where g :
R

p+N → R
h is differentiable in an open neighborhood around γ and has deriva-

tive matrix of rank h) can now also be constructed in the usual manner, see, e.g.,
Davidson (2000) Chapter 12, even when p + N > NT which has hitherto been
impossible.

Finally, the independence assumption on εi,t across t is needed only if one tests
hypotheses involving {ηi }N

i=1 (h2 �= 0). Weaker assumptions on the error terms,
such as strong mixing, are possible at the expense of more involved expressions
but will not be pursued here.5

4. HONEST CONFIDENCE INTERVALS

In this section we show that the confidence bands based on (3.7) are honest (uni-
formly valid) and contract at the optimal rate. The precise result is contained in
the following theorem.
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THEOREM 3. Let Assumptions 1, 3, 4, and 5 be satisfied. If, furthermore,
{εi,t }T

t=1 is an independent sequence for all i = 1, . . . ,N, then, for all ρ ∈ R
p+N

with ‖ρ‖ = 1,

sup
t∈R

sup
γ∈F(ν,E)

∣∣∣∣P
(

ρ′S (γ̃ −γ )√
ρ′�̂�̂�ε�̂′ρ

≤ t

)
−�(t)

∣∣∣∣ = o(1), (4.1)

where �(·) is the CDF of the standard normal distribution. Furthermore, de-

fine σ̃α, j :=
√

[�̂Z �̂1,N �̂Z ]j j and σ̃η,i :=
√

[�̂3,N ]ii for j = 1, . . . , p and i =
1, . . . ,N, respectively. Then,

liminf
N→∞ inf

γ∈F(ν,E)
P

(
αj ∈

[
α̃j − z1−δ/2

σ̃α, j√
NT

, α̃j + z1−δ/2
σ̃α, j√

NT

])
≥ 1 − δ, (4.2)

liminf
N→∞ inf

γ∈F(ν,E)
P

(
ηi ∈

[
η̃i − z1−δ/2

σ̃η,i√
T
, η̃i + z1−δ/2

σ̃η,i√
T

])
≥ 1 − δ, (4.3)

for j = 1, . . . , p and i = 1, . . . ,N, respectively, where z1−δ/2 is the 1 − δ/2 per-
centile of the standard normal distribution. Finally, letting diam([a,b]) = b − a
be the length of an interval [a,b] in the real line, we have

sup
γ∈F(ν,E)

diam
([
α̃j − z1−δ/2

σ̃α, j√
NT

, α̃j + z1−δ/2
σ̃α, j√

NT

])
= Op

( 1√
NT

)
, (4.4)

sup
γ∈F(ν,E)

diam
([
η̃i − z1−δ/2

σ̃η,i√
T
, η̃i + z1−δ/2

σ̃η,i√
T

])
= Op

( 1√
T

)
, (4.5)

for j = 1, . . . , p and i = 1, . . . ,N, respectively.

(4.1) reveals that the convergence to the normal distribution in Theorem 2 is
uniform over F(ν,E). Since the desparsified Lasso is not a sparse estimator this
uniform convergence does not contradict the work of Leeb and Pötscher (2005).
Next, (4.2) is a direct consequence of (4.1) and reveals that the desparsified Lasso
produces confidence bands which are honest (uniform) overF(ν,E). Honest con-
fidence bands are important in practical applications of dynamic panel data mod-
els as they guarantee the existence of an N0, not depending on γ ∈ F(ν,E), such

that
[
α̃j − z1−δ/2 σ̃α, j√

NT
, α̃j + z1−δ/2 σ̃α, j√

NT

]
covers αj with probability not much

smaller than 1 − δ. Here the important point is that one and the same N0 guar-
antees this coverage, irrespective of the true value of γ ∈ F(ν,E). On the other
hand, pointwise consistent confidence bands only guarantee that

inf
γ∈F(ν,E)

liminf
N→∞ P

(
αj ∈

[
α̃j − z1−δ/2

σ̃α, j√
NT

, α̃j + z1−δ/2
σ̃α, j√

NT

])
≥ 1 − δ,

implying that the value of N needed in order to guarantee a coverage of close
to 1 − δ may depend on the unknown true parameter. Thus, for some parameter
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values one may have to sample more data points to achieve the desired coverage
than for others which is unfortunate as one does not know for which parameters
this is the case. An honest confidence set SN for αj can of course trivially be
obtained by setting SN = R. However, this is clearly not very informative and
therefore (4.4) is reassuring as it guarantees that the length of the honest confi-
dence interval contracts at the optimal rate. In particular, the confidence bands
are uniformly narrow over F(ν,E) in the sense that for any ε > 0 there exists

an M > 0 such that diam
([
α̃j − z1−δ/2

σ̃α, j√
NT
, α̃j + z1−δ/2

σ̃α, j√
NT

])
≤ M√

NT
for all

γ ∈ F(ν,E) with probability at least 1 − ε. Therefore, our confidence bands are
not only honest, they are also very informative as they contract as fast as possible
and this contraction is uniform over F(ν,E). Since the desparsified Lasso is not a
sparse estimator, this fast contraction does not contradict inequality 6 in Theorem
2 of Pötscher (2009) who shows that honest confidence bands based on sparse
estimators must be large.

Similarly to the confidence bands pertaining to α, the ones for the fixed ef-
fects are also honest and contract at the optimal rate. Note that this rate is
again slower than the one for α. It is also worth remarking that the above
inference results are valid without any sort of lower bound on the nonzero
coefficients.

5. MONTE CARLO

In this section we investigate the finite sample properties of our estimator by
means of simulations. In the panel Lasso regression because the regularization
parameter for α is 2λ while that for η is 2λ/

√
N , the option penalty.factor

in the command glmnet is used to adjust this. The options standardize and
intercept in the command glmnet are set to TRUE and FALSE, respectively.6

The results only changed marginally when we tried other combinations. In the
nodewise regression, the option penalty.factor in the command glmnet is not
needed. The options standardize and intercept in the command glmnet are,
again, set to TRUE and FALSE, respectively. The results only changed marginally
when we tried standardize=FALSE. We suppressed the intercept because it is
not needed in the nodewise regression.

Both λ and λnode are chosen via BIC by the formula given in (9.4.9) in David-
son (2000). For example, in the panel Lasso regression, the λ chosen by BIC
minimises

log‖y −�γ̂ (λ∗)‖2 + log(NT )

NT
‖γ̂ (λ∗)‖0,

among a grid of 100 values of λ∗ chosen by glmnet. Ten-fold cross validation
(cv.glmnet) was also considered, but this did not alter the results much while
being considerably slower. One could also consider adapting the data dependent
choice proposed by Belloni et al. (2012) in the context of IV models to the set-
ting of dynamic panel data. We leave it for future work to establish theoretical
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performance guarantees on these procedures in the setting of high-dimensional
dynamic panel data models.

The data generating process is (1.1) and in all experiments (α1,α2,α3,α4) =
(0.9,0,0,−0.3) such that the roots of the corresponding lag polynomial lie out-
side the unit disk implying stationarity of {yt }. In practice, one might not know
the true lag length and it is usual to specify a reasonably large number of lags (to
test downwards). To reflect this in our simulations, we always included 5 lags but
also experimented with more than 5 lags. The results were not sensitive to this.

For each i = 1, . . . ,N , the xi,t are generated according to the autoregressive
structure

xi,t = ax xi,t−1 + edistur,i,t ,

where the edistur,i,t are px × 1 random disturbance vectors independent across i
and t . ax is an autoregressive scalar which controls the temporal dependence of
xi,t . For simplicity, we restrict ax to be the same across i . When ax = 0, we have
temporal independence across t for xi,t . Since Assumption 1 does not restrict any
temporal dependence of xi,t , we set ax = 0.5. Our simulation results are reason-
ably robust to the choice of ax . The covariance matrix of edistur,i,t is chosen to
have a Toeplitz structure with the (i, j)th entry equal to ρ|i− j | with ρ = 0.75. We
also experimented with other choices of ρ which did not change the results dra-
matically. Furthermore, we also tried to let the covariance matrix of edistur,i,t be
block-diagonal. Again, this did not alter our results.

We allow the fixed effect ηi to depend on the initial observation of xi :

ηi = x ′
i,1bη/

√
log px i = 1, . . . ,N,

where bη is a px × 1 vector whose entries are drawn from standard normal
and normalized to have unit �1-norm. Note that |ηi | ≤ ‖xi,1/

√
log px‖∞‖bη‖1 =

‖xi,1/
√

log px‖∞. If xi,1 is multivariate normal, then ‖xi,1‖∞ = Op(
√

log px). In
this sense, ηi is bounded. However, η is not necessarily weakly sparse and thus we
actually also investigate how robust our results are to violations of this assump-
tion. Of course our estimator performed much better in the truly weakly sparse
setting than the setting we present here (results available upon request).

As our theory allows for heteroskedasticity, we also investigate the ef-
fect of this. To be precise, we consider error terms of the form εi,t =
ui,t

(
xi,t,1/

√
2+ bx xi,t,2

)
, where ui,t is independent of yi,t−1, . . . , yi,1−L and

xi,t , . . . ,xi,1. bx is chosen such that the unconditional variance of εi,t is the same
as the one of ui,t which in turn equals the one from the homoskedastic case. A
simple calculation reveals that bx = (−√

2ρ+√
2ρ2 + 2 − 4a2

x

)
/2. Note that εi,t

constructed this way satisfies Assumption 1. The reason we ensure that the un-
conditional variance is the same as in the homoskedastic case is that we do not
want any findings in the heteroskedastic case to be driven by a plain change in the
unconditional variance.
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Our estimator is compared to the least squares oracle which only includes vari-
ables with nonzero coefficients in addition to those variables we wish to test hy-
potheses about. Thus, it is an oracle which knows the relevant control variables.
When sample size allows it, that is when p + N ≤ NT , we also implement naive
least squares including all variables. This estimator is numerically equivalent to
the often used within estimator. Finally, we implemented the desparsified conser-
vative Lasso of Caner and Kock (2018). However, this only improved the results
slightly and so we do not report these results here. The number of Monte Carlo
replications is 1,000 for all setups and we consider the performance of our esti-
mator along the following dimensions:

1. Estimation Error: We compute the root mean square errors (RMSE) of all
procedures averaged over the Monte Carlo replications.

2. Coverage Rate: We calculate the coverage rate of a gaussian confidence
interval constructed as in Theorem 3. This is done for three coefficients of
regressors in xi,t .

3. Length of Confidence Interval: We calculate the length of the three confi-
dence intervals considered in point 2 above.

4. Size: We evaluate the size of the χ2-test in Theorem 2 for a hypothesis
involving the same three parameters for which we construct confidence in-
tervals in point 2 above.

5. Power: We evaluate the power of the χ2-test in point 4 above.

All tests are carried out at the 5% level of significance and all confidence inter-
vals have a nominal coverage of 95%. Furthermore, as the oracle inequalities in
Theorem 1 are for the plain Lasso, the root mean square errors are reported for
this instead of the desparsified Lasso. Moreover, to compute the estimation error
of the desparsified Lasso, one needs to run nodewise regressions for all p columns
of Z . Note that, to conduct joint inference on h coefficients, one only needs to run
nodewise regressions for the h variables whose coefficients are involved in the hy-
pothesis being tested. As our models are dynamic, we allow for a burn-in period
of 1,000 observations when generating the data.

The following experiments were carried out:

• Experiment 1: (Moderate-dimensional setting): N = 20 and T = 10. β
is 100 × 1 with five equidistant nonzero entries equaling one. Thus, p =
105 and the number of nonzero entries in α is seven. In total, γ = (α′,η′)′
is 125 × 1. The disturbances of xi,t , edistur,i,t , are gaussian and εi,t are
standard gaussian. We test the true hypothesis

H0 : (γ7,γ27,γ47)= (0,0,0)
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by the χ2
3 test described in Theorem 2 in order to gauge the size of the test.

The power is investigated by the hypothesis

H0 : (γ7,γ27,γ47)= (0.4,0,0).

The following variations of this setting are considered:

(a) The baseline case described so far.

(b) Same as (a) but with heteroskedastic errors.

(c) Same as (b) but edistur,i,t and εi,t are t-distributed with 3 degrees of
freedom. In this case, ηi may not even be Op(1).

• Experiment 2: (High-dimensional setting): N = 20 and T = 10. β is 400×
1 with five equidistant nonzero entries equaling one. Thus, p = 405 and
the number of nonzero entries in α is seven. In total, γ = (α′,η′)′ is 425 ×
1. The disturbances of xi,t , edistur,i,t , are gaussian and εi,t are standard
gaussian. We test the true hypothesis

H0 : (γ7,γ87,γ167)= (0,0,0)

by the χ2
3 test described in Theorem 2 in order to gauge the size of the test.

The power is investigated by the hypothesis

H0 : (γ7,γ87,γ167)= (0.4,0,0).

The following variations of this setting are considered:

(a) The baseline case described so far.

(b) Same as (a) but with heteroskedastic errors.

(c) Same as (b) but edistur,i,t and εi,t are t-distributed with 3 degrees of
freedom. In this case, ηi may not even be Op(1).

• Experiment 3: (Increase T ): As Experiment 2 but with T = 40.

• Experiment 4: (Increase N): As Experiment 2 but with N = 40.

• Experiment 5: (High-dimensional setting 2): N = 20 and T = 40. β is
1,005 × 1 with 15 equidistant nonzero entries equaling one. Thus, p =
1,010 and the number of nonzero entries in α is seventeen. In total, γ =
(α′,η′)′ is 1,030 × 1. The disturbances of xi,t , edistur,i,t , are gaussian and
εi,t are standard gaussian. We test the true hypothesis

H0 : (γ7,γ74,γ141)= (0,0,0)

by the χ2
3 test described in Theorem 2 in order to gauge the size of the test.

The power is investigated by the hypothesis

H0 : (γ7,γ74,γ141)= (0.4,0,0).

The following variations of this setting are considered:
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(a) The baseline case described so far.

(b) Same as (a) but with heteroskedastic errors.

(c) Same as (b) but edistur,i,t and εi,t are t-distributed with 3 degrees of
freedom. In this case, ηi may not even be Op(1).

Table 1 contains the results of experiment 1. Setting 1(a) reveals that the RMSE
of the Lasso are lower than those for least squares including all variables but
higher than those of least squares only including the relevant variables. This is
the case for α as well as the fixed effects. Next, it is very encouraging that the
coverage probabilities for the desparsified Lasso are close to the ones based on
the oracle. The lengths of the confidence intervals are also comparable for those
two procedures while the ones based on the within estimator are considerably
wider while still having a lower coverage. The oracle and the desparsified Lasso
both produce tests which are a bit oversized but they are still much better than the
within estimator. The same is true when it comes to power.

Experiment 1(b) adds heteroskedasticity to the error terms and none of the pro-
cedures is affected by this.

In Panel 1(c) the random variables have heavy tails. Overall, and as expected,
all procedures suffer from this. However, it is worth mentioning that the coverage
rate of the confidence intervals does not decrease. Instead, the length of these
intervals increases to reflect the larger uncertainty. The size of the significance
test is not affected either while the power suffers.

Next, we turn to experiment 2(a) which is high-dimensional. The results can
be found in Table 2. As expected, the estimation error is higher for the Lasso
than for the oracle. However, it is encouraging that the confidence intervals pro-
duced by the desparsified Lasso have coverage which is as almost as good as the

TABLE 1. Experiment 1. LS, DL, and Ora: least squares including all variables,
desparsified Lasso and least squares oracle. RMSE: root mean square error. Cov-
erage: the coverage rate of the asymptotic 95% confidence intervals. Length: the
average length of the asymptotic 95% confidence intervals. Size: size of the cor-
rect hypothesis H0 : (γ7,γ27,γ47)= (0,0,0). Power: the probability to reject the
false H0 : (γ7,γ27,γ47)= (0.4,0,0)

RMSE Coverage Length

α η γ7 γ27 γ47 γ7 γ27 γ47 Size Power

1(a)
LS 23.744 16.382 0.762 0.786 0.766 0.552 0.549 0.553 0.412 0.741
DL 3.061 8.528 0.892 0.918 0.884 0.395 0.396 0.396 0.150 0.852
Ora 0.523 7.226 0.933 0.939 0.919 0.402 0.403 0.404 0.074 0.907

1(b)
LS 23.796 16.444 0.732 0.760 0.747 0.548 0.543 0.547 0.453 0.747
DL 3.011 8.298 0.920 0.914 0.903 0.408 0.389 0.391 0.135 0.846
Ora 0.524 7.079 0.920 0.931 0.937 0.401 0.393 0.398 0.092 0.904

1(c)
LS 46.140 51.979 0.753 0.772 0.743 0.910 0.883 0.889 0.432 0.605
DL 4.747 23.939 0.912 0.901 0.883 0.619 0.544 0.567 0.159 0.632
Ora 1.200 23.596 0.907 0.937 0.913 0.662 0.617 0.617 0.091 0.651
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TABLE 2. Experiment 2. LS, DL, and Ora: least squares including all variables,
desparsified Lasso and least squares oracle. RMSE: root mean square error. Cov-
erage: the coverage rate of the asymptotic 95% confidence intervals. Length: the
average length of the asymptotic 95% confidence intervals. Size: size of the cor-
rect hypothesis H0 : (γ7,γ87,γ167)= (0,0,0). Power: the probability to reject the
false H0 : (γ7,γ87,γ167)= (0.4,0,0)

RMSE Coverage Length

α η γ7 γ87 γ167 γ7 γ87 γ167 Size Power

2(a)
LS
DL 4.209 8.333 0.875 0.893 0.881 0.386 0.385 0.386 0.189 0.841
Ora 0.513 7.103 0.919 0.918 0.924 0.402 0.403 0.403 0.110 0.922

2(b)
LS
DL 4.165 8.322 0.896 0.872 0.861 0.407 0.379 0.381 0.189 0.825
Ora 0.535 7.074 0.906 0.913 0.929 0.401 0.396 0.397 0.101 0.899

2(c)
LS
DL 7.602 22.895 0.916 0.868 0.882 0.622 0.543 0.551 0.193 0.602
Ora 1.074 21.724 0.922 0.944 0.944 0.657 0.619 0.632 0.076 0.674

one for the oracle. In fact, the coverage rate is close to identical to the one in
the above moderate-dimensional simulation. The confidence bands based on the
desparsified Lasso are actually slightly shorter than the ones based on the oracle
which may explain their slightly lower coverage. The significance test is again a
bit oversized for the oracle as well as the desparsified Lasso but the size is not
far from the one in Table 1. Power is also virtually unaffected by the increase in
dimension.

Experiment 2(b) adds heteroskedasticity and the results are not affected by this.
Finally, the addition of heavy tails in Experiment 2(c) makes the estimators less

TABLE 3. Experiment 3. LS, DL, and Ora: least squares including all variables,
desparsified Lasso and least squares oracle. RMSE: root mean square error. Cov-
erage: the coverage rate of the asymptotic 95% confidence intervals. Length: the
average length of the asymptotic 95% confidence intervals. Size: size of the cor-
rect hypothesis H0 : (γ7,γ87,γ167)= (0,0,0). Power: the probability to reject the
false H0 : (γ7,γ87,γ167)= (0.4,0,0)

RMSE Coverage Length

α η γ7 γ87 γ167 γ7 γ87 γ167 Size Power

3(a)
LS 40.341 7.367 0.815 0.827 0.796 0.266 0.266 0.268 0.325 0.993
DL 1.208 2.121 0.931 0.918 0.925 0.190 0.190 0.190 0.098 1.000
Ora 0.223 3.208 0.943 0.945 0.933 0.186 0.187 0.187 0.052 1.000

3(b)
LS 40.351 7.376 0.800 0.823 0.813 0.267 0.265 0.267 0.318 0.993
DL 1.169 2.139 0.923 0.915 0.924 0.200 0.189 0.189 0.104 1.000
Ora 0.233 3.235 0.955 0.940 0.953 0.189 0.185 0.186 0.060 1.000

3(c)
LS 88.649 29.738 0.766 0.813 0.837 0.460 0.452 0.448 0.315 0.821
DL 2.630 7.689 0.931 0.922 0.913 0.359 0.309 0.319 0.090 0.926
Ora 0.610 10.759 0.930 0.963 0.951 0.329 0.299 0.302 0.056 0.962
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precise. However, and as in the moderate-dimensional setting above, the coverage
remains high since the confidence bands get wider. The size of the significance test
is unaffected while the power goes down for the oracle as well as the desparsified
Lasso.

In Table 3, T has been increased to 40 compared to Table 2. This results in
lower estimation errors for the Lasso as well as oracle assisted least squares. The
coverage rates of the confidence bands also improve and get closer to the nominal
rate. At the same time, the bands also become more narrow. The size of the signif-
icance test also improves and the power of the oracle and the desparsified Lasso
is 1. As above, adding heteroskedasticity does not alter the results. The conse-
quences of heavy tails are also the same: higher estimation error, no change in
coverage of the confidence bands, wider bands, unchanged size, but lower power.

Table 4 increases N to 40 compared to Table 2. This results in more fixed
effects to be estimated. Thus, it is not surprising that the estimation error for α
goes down while the one for η increases. The coverage rates of the oracle as well
as the desparsified Lasso improve compared to Table 2. However, the length of
the confidence bands does not decrease as much as when T was increased in the
previous experiment. The size of the significance test decreases when increasing
N while power is close to 1. Adding heteroskedasticity has no consequences while
the presence of heavy tails has the usual effect.

Table 5 contains a setting with more than 1,000 variables. The main message
of the previous tables prevails even in this setting: the coverages of the Lasso-
based confidence intervals are almost as high as the ones based on the oracle. On
the other hand, the bands of the former are now slightly wider than the ones of
the latter. Both procedures have power close to one while the Lasso-based test
is a bit oversized compared to the oracle based test. Heteroskedasticity does not

TABLE 4. Experiment 4. LS, DL, and Ora: least squares including all variables,
desparsified Lasso and least squares oracle. RMSE: root mean square error. Cov-
erage: the coverage rate of the asymptotic 95% confidence intervals. Length: the
average length of the asymptotic 95% confidence intervals. Size: size of the cor-
rect hypothesis H0 : (γ7,γ87,γ167)= (0,0,0). Power: the probability to reject the
false H0 : (γ7,γ87,γ167)= (0.4,0,0)

RMSE Coverage Length

α η γ7 γ87 γ167 γ7 γ87 γ167 Size Power

4(a)
LS
DL 2.145 14.002 0.924 0.891 0.920 0.261 0.262 0.263 0.123 0.988
Ora 0.351 13.570 0.936 0.934 0.930 0.282 0.283 0.285 0.065 0.999

4(b)
LS
DL 2.145 14.073 0.933 0.904 0.911 0.275 0.260 0.263 0.114 0.979
Ora 0.368 13.469 0.926 0.931 0.940 0.283 0.281 0.282 0.076 1.000

4(c)
LS
DL 4.305 42.303 0.917 0.899 0.903 0.456 0.386 0.390 0.139 0.825
Ora 0.782 41.269 0.926 0.934 0.926 0.465 0.428 0.435 0.087 0.870
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TABLE 5. Experiment 5. LS, DL, and Ora: least squares including all variables,
desparsified Lasso and least squares oracle. RMSE: root mean square error. Cov-
erage: the coverage rate of the asymptotic 95% confidence intervals. Length: the
average length of the asymptotic 95% confidence intervals. Size: size of the cor-
rect hypothesis H0 : (γ7,γ74,γ141)= (0,0,0). Power: the probability to reject the
false H0 : (γ7,γ74,γ141)= (0.4,0,0)

RMSE Coverage Length

α η γ7 γ74 γ141 γ7 γ74 γ141 Size Power

5(a)
LS
DL 3.342 2.463 0.922 0.903 0.912 0.209 0.209 0.208 0.124 0.997
Ora 0.546 3.305 0.956 0.942 0.949 0.187 0.187 0.187 0.062 1.000

5(b)
LS
DL 3.327 2.432 0.913 0.916 0.896 0.218 0.207 0.208 0.127 0.998
Ora 0.556 3.261 0.942 0.951 0.921 0.190 0.186 0.186 0.065 1.000

5(c)
LS
DL 7.294 7.273 0.936 0.910 0.916 0.363 0.307 0.304 0.101 0.920
Ora 1.072 9.693 0.952 0.936 0.951 0.326 0.297 0.293 0.061 0.955

affect the results. The consequences of heavy tails are the same as in the previous
experiments.

6. CONCLUSION

This article has considered inference in high-dimensional dynamic panel data
models with fixed effects. In particular we have shown how hypotheses involving
an increasing number of parameters can be tested. These hypotheses can involve
parameters from all groups of variables in the model. As a stepping stone towards
this inference we constructed a uniformly valid estimator of the covariance matrix
of the parameter estimates which is robust towards conditional heteroskedasticity.
We also stress that our theory does not require the inverse covariance matrix of
the covariates to be exactly sparse.

Next, we showed that confidence bands based on our procedure are asymptoti-
cally honest and contract at the optimal rate. This rate of contraction depends on
which type of parameter is under consideration. Simulations revealed that our pro-
cedure works well in finite samples. Future work may include relaxing the weak
sparsity assumption on the inverse covariance matrix�Z as well as extending our
results to nonlinear panel data models.

NOTES

1. Alternative names for ηi s are fixed effects and unobserved heterogeneities. In this article we
shall use these three names interchangeably.

2. The two exceptions are in Section 5 (Monte Carlo) and Appendix A, where we need to adopt
the alternative framework to specify a data generating process for the individual effects and to justify
the weak sparsity on the N realised values of individual effects, respectively.

3. The term weakly sparse is borrowed from Negahban et al. (2012).
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4. It can also be verified that {εi,t }T
t=1 forms a martingale difference sequence with respect to the

natural filtration for all i = 1, . . . ,N . This is because the εi,t are (linear) functions of the variables in
the conditioning set in Assumption 1.

5. The reason that the martingale difference assumption on εi,t across t (i.e., Assumption 1) is not
enough for Theorem 2 is that when one is estimating the asymptotic variance ρ′���ε�′ρ in Theo-
rem 2, one needs to invoke a concentration inequality for T −1∑T

t=1(ε
2
i,t −E[ε2

i,t ]) (see the second
display above (D.25) in Appendix D) and squares of martingale differences need not be martingale
differences.

6. We use the publically available glmnet package, Friedman et al. (2010), for R, Team (2000).
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APPENDIX A

A.1. Examples of Weakly Sparse Fixed Effects

The following lemma provides sufficient conditions for the required weak sparsity of the
fixed effects ηi .

LEMMA A.1. Let 0 < ν < 1 be given and assume that max1≤i≤N E|ηi |ν =
O
(√
(log(p ∨ N))3ν/(NT ν)

)
and max1≤i≤N E|ηi |rν = O

(√
(log(p ∨ N))3rν /T rν

)
for

some r ≥ 2. Then,
∑N

i=1 |ηi |ν = Op
(√

N(log(p ∨ N))3ν /T ν
)
. (If the big Os are replaced

by small os in the hypothesis of the lemma the big O in the conclusion of the lemma can
also be replaced by a small o.) The sufficient conditions are met if, for example,
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1. ηi ∼ N(0,σ 2
i ) with max1≤i≤N σ

2
i = O

(
(log(p ∨ N))3/(N1/νT )

)
2. ηi ∼ Uni f orm[−a,a] with a = O

(√
(log(p ∨ N))3/(N1/νT )

)
.

Proof. It suffices to show that
∑N

i=1 E|ηi |ν = O
(√

N(log(p ∨ N))3ν/T ν
)

and∣∣∑N
i=1 (|ηi |ν −E|ηi |ν)

∣∣ = Op
(√

N(log(p ∨ N))3ν/T ν
)
. First,

N∑
i=1

E|ηi |ν ≤ N max
1≤i≤N

E|ηi |ν = O
(√

N(log(p ∨ N))3ν /T ν
)

since max1≤i≤N E|ηi |ν = O
(√
(log(p ∨ N))3ν/(NT ν)

)
.

Second, for any t > 0 it follows by Rosenthal’s inequality that for any r ≥ 2 (the constant
C may change from line to line)

P

(∣∣∣ N∑
i=1

(|ηi |ν −E|ηi |ν
)∣∣∣> t

)
≤ C

[∑N
i=1 E

(|ηi |ν −E|ηi |ν
)2
]r/2 +∑N

i=1 E
∣∣|ηi |ν −E|ηi |ν

∣∣r
tr

≤ C

[∑N
i=1 E|ηi |2ν

]r/2 +∑N
i=1 E|ηi |rν

tr

≤ C
Nr/2 max1≤i≤N E|ηi |rν + N max1≤i≤N E|ηi |rν

tr

≤ C
Nr/2 max1≤i≤N E|ηi |rν

tr
,

where the second and third inequalities both use the convexity of x �→ xa for a ≥ 1 to
invoke Jensen’s inequality repeatedly. Thus, setting t = M ·

√
N(log(p ∨ N))3ν/T ν for

some constant M > 0, it is seen that it suffices that max1≤i≤N E|ηi |rν = O((log(p ∨
N))

3
2 rν/T

1
2 rν).

The primitive conditions for the normal and uniform distributions follow from the fact
that E|ηi |s ∼ σ s

i , as , respectively. �
Note that the sufficient conditions for weak sparsity of the fixed effects are given entirely

in terms of their moments. The lemma does not restrict the correlation between the fixed
effects and the common covariates. By choosing r = 2 one sees that the ηi need not even
have two moments. The specific example of the normal distribution shows that the maximal
variance of the fixed effects must tend to zero. While this is not an innocent assumption
and restricts the size of the ηi recall that the dimension p of zi,t in

yi,t = z′
i,tα+ηi +εi,t , i = 1, . . . ,N, t = 1, . . . ,T

can grow almost exponentially in the sample size leaving very little of the variation in yi,t
to be explained by ηi . Put differently, the observed covariates in zi,t will be so numerous
that very little variation is left for the fixed effects to explain.

A.2. Sufficient Conditions for yi,t to be Subgaussian

The following lemma provides sufficient conditions for yi,t to inherit the subgaussianity
from the covariates and the error terms. It allows for a wide range of models but rules out
dynamic panel data models which are explosive or contain unit roots.
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LEMMA A.2. Let xi,t and εi,t be uniformly subgaussian for i = 1, . . . ,N, t = 1, . . . ,T
(as defined in Assumption 3(b) and 3(a), respectively) and assume that ‖β‖ ≤ C for some
C > 0. Furthermore, max1≤i≤N |ηi | is bounded uniformly in N. Then, if all roots of 1 −∑L

j=1αj z j (α1, . . . ,αL fixed) are outside the unit disc, yi,t is uniformly subgaussian for
i = 1, . . . ,N and t = 1, . . . ,T .

Proof of Lemma A.2. Let yt = ∑L
j=1αj yt− j + ut be an AR(L) process with roots

outside the unit disc. Write the companion form as ξt = Fξt−1 + vt . Then, by the mono-
tone convergence theorem for Orlicz norms, see van der Vaart and Wellner (1996) exer-
cise 6, page 105,

∥∥‖ξt ‖∥∥ψ2
≤∥∥∑∞

j=1 ‖F j ‖�2 ‖vt− j ‖
∥∥
ψ2

= ∑∞
j=1 ‖F j ‖�2

∥∥‖vt− j ‖
∥∥
ψ2

=∑∞
j=1 ‖F j ‖�2 ‖ut− j ‖ψ2

, where ‖ · ‖�2 is the �2 induced norm, and the last equality used
that vt is L ×1 with only one nonzero entry equaling ut . By Corollary 5.6.14 in Horn and
Johnson (1990) there exists a 1 > δ > 0 such that ‖F j ‖�2 ≤ (1 − δ) j for j sufficiently
large. Thus, if ‖ut ‖ψ2

is uniformly bounded we conclude ‖yt‖ψ2
≤ ∥∥‖ξt‖∥∥ψ2

≤ K for

some K > 0. Thus, in our context it suffices to show that ‖x ′
i,tβ+ηi +εi,t ‖ψ2

is uni-

formly bounded as yi,t = ∑L
j=1αj yi,t− j + x ′

i,tβ+ηi + εi,t = ∑L
j=1αj yi,t− j +ui,t with

ui,t = x ′
i,tβ + ηi + εi,t . But ‖x ′

i,tβ+ηi +εi,t ‖ψ2
≤ ‖β′xi,t ‖ψ2

+ ‖ηi‖ψ2
+ ‖εi,t ‖ψ2

≤
‖β‖ sup‖v‖≤1 ‖v ′xi,t ‖ψ2

+ ‖ηi‖ψ2
+ ‖εi,t ‖ψ2

which is bounded by the assumptions
made. �

APPENDIX B

B.1. Proof of Theorem 1

This appendix proves Theorem 1. To this end, we introduce some auxiliary lemmas. Define
the events

A =
{
‖Z ′ε‖∞ ≤ λ

2
, ‖D′ε‖∞ ≤ λ

2
√

N

}
, B =

{
κ2(�N ,s1,s2)≥ κ2

2

}
.

LEMMA B.3. On the event A, the following inequalities are valid

‖�(γ̂ −γ )‖2 +λ‖α̂−α‖1 + λ√
N

‖η̂−η‖1 ≤ 4λ‖α̂J1 −αJ1‖1 + 4λ√
N

‖η̂J2 −ηJ2‖1 +4λE1�
1−ν
1 + 4λ√

N
E�1−ν

2 ;
(B.1)

‖α̂J c
1
−αJ c

1
‖1 + 1√

N
‖η̂J c

2
−ηJ c

2
‖1 ≤ 3‖α̂J1 −αJ1‖1 + 3√

N
‖η̂J2 −ηJ2‖1 + 4E1�

1−ν
1 + 4√

N
E�1−ν

2 . (B.2)

Proof. By the minimizing property of the Lasso,

‖y −�γ̂ ‖2 +2λ‖α̂‖1 +2
λ√
N

‖η̂‖1 ≤ ‖y −�γ ‖2 +2λ‖α‖1 +2
λ√
N

‖η‖1

such that inserting y =�γ +ε yields

‖�(γ̂ −γ )‖2 ≤ 2ε′�(γ̂ −γ )+2λ(‖α‖1 −‖α̂‖1)+2
λ√
N
(‖η‖1 −‖η̂‖1). (B.3)
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Note that on A
2ε′�(γ̂ −γ ) ≤ 2‖ε′ Z‖∞‖α̂−α‖1 +2‖ε′ D‖∞‖η̂−η‖1 ≤ λ‖α̂−α‖1 + λ√

N
‖η̂−η‖1.

Using this and adding λ‖α̂−α‖1 + λ√
N

‖η̂−η‖1 to both sides of (B.3) gives

‖�(γ̂ −γ )‖2 +λ‖α̂−α‖1 + λ√
N

‖η̂−η‖1

≤ 2λ(‖α‖1 −‖α̂‖1 +‖α̂−α‖1)+2
λ√
N
(‖η‖1 −‖η̂‖1 +‖η̂−η‖1)

≤ 2λ(‖αJ1 ‖1 −‖α̂J1 ‖1 +‖α̂J1 −αJ1‖1 +2E1�
1−ν
1 )+2

λ√
N
(‖ηJ2 ‖1 −‖η̂J2‖1 +‖η̂J2 −ηJ2‖1 +2E�1−ν

2 )

≤ 4λ‖α̂J1 −αJ1‖1 +4
λ√
N

‖η̂J2 −ηJ2‖1 +4λE1�
1−ν
1 + 4λ√

N
E�1−ν

2 ,

where the second inequality is due to, taking η as an illustration,

‖ηJ c
2
‖1 −‖η̂J c

2
‖1 +‖η̂J c

2
−ηJ c

2
‖1 ≤ 2‖ηJ c

2
‖1 = 2

N∑
i=1

|ηi |1{|ηi |<�2}

< 2�1−ν
2

N∑
i=1

|ηi |ν1{|ηi |<�2} ≤ 2E�1−ν
2 .

We proved (B.1). (B.2) follows trivially from this. �

B.2. Deterministic Oracle Inequalities

Here we provide oracle inequalities which are valid on A∩B.

LEMMA B.4. Let E1 = N− ν
2 E. Choose �1 = λN /(NT ) and �2 = λ/(

√
N T ). Let

Assumption 2 hold. Then on the event A∩B one has for any positive constant λ,

∥∥�(γ̂ −γ )∥∥2 ≤
(240

κ2
+40

) λ√
N

E

(
λ√
N T

)1−ν

‖α̂−α‖1 ≤
(240

κ2
+40

) 1√
N

E

(
λ√
N T

)1−ν

‖η̂−η‖1 ≤
(240

κ2
+40

)
E

(
λ√
N T

)1−ν
.

Proof. By (B.1) of Lemma B.3, which is valid on A,

‖�(γ̂ −γ )‖2 ≤ 4λ‖α̂J1 −αJ1‖1 +4
λ√
N

‖η̂J2 −ηJ2‖1 +4λE1�
1−ν
1 +4

λ√
N

E�1−ν
2 .

(B.4)

Consider the auxiliary event

C :=
{

E1�
1−ν
1 + 1√

N
E�1−ν

2 ≤ 1

4
‖α̂J1 −αJ1‖1 + 1

4
√

N
‖η̂J2 −ηJ2‖1

}
.

On the event A∩C, from (B.2) of Lemma B.3, we have
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‖α̂J c
1

−αJ c
1
‖1 + 1√

N
‖η̂J c

2
−ηJ c

2
‖1 ≤ 4‖α̂J1 −αJ1‖1 +4

1√
N

‖η̂J2 −ηJ2‖1. (B.5)

In order to apply the compatibility condition, reparametrise the vector δ in the definition of
the compatibility condition as follows. Let b1 and b2 be p × 1 and N × 1 vectors, respec-
tively, with b = (b1′

,b2′
)′ defined as

(
b1

b2

)
:=

(
Ip 0

0
√

N IN

)(
δ1

δ2

)
.

Hence, that κ2(�N ,r1,r2) is bounded away from zero for integers r1 ∈ {1, . . . , p} and
r2 ∈ {1, . . . ,N} is equivalent to

κ2(�N ,r1,r2) := min
R1⊆{1,...,p},|R1|≤r1
R2⊆{1,...,N},|R2 |≤r2

R:=R1∪(R2+p)

min
b∈Rp+N \{0},

‖b1
Rc

1
‖1+ 1√

N
‖b2

Rc
2
‖1

≤4‖b1
R1

‖1+ 4√
N

‖b2
R2

‖1

‖�b‖2

NT
r1+r2

∥∥∥∥
(

b1
R1

b2
R2
/
√

N

)∥∥∥∥
2

1

> 0.

(B.6)

By (B.5), our estimator satisfies the constraint of the just introduced version of the com-
patibility condition and so

‖�(γ̂ −γ )‖2 ≥ κ2(�N ,s1,s2)NT

s1 + s2

∥∥∥∥
(

α̂J1 −αJ1

(η̂J2 −ηJ2)/
√

N

)∥∥∥∥
2

1

≥ κ2(�N ,s1,s2)NT

s1 + s2

(
‖α̂J1 −αJ1‖2

1 + 1

N
‖η̂J2 −ηJ2‖2

1

)

≥ κ2NT

2(s1 + s2)

(
‖α̂J1 −αJ1‖2

1 + 1

N
‖η̂J2 −ηJ2‖2

1

)
,

where the last inequality is valid on B. Hence, on A∩B∩C upon combining with (B.4)
one has,

κ2NT

2(s1 + s2)

(
‖α̂J1 −αJ1‖2

1 + 1

N
‖η̂J2 −ηJ2‖2

1

)

≤ 4λ‖α̂J1 −αJ1‖1 + 4λ√
N

‖η̂J2 −ηJ2‖1 +4λE1�
1−ν
1 + 4λ√

N
E�1−ν

2

≤ 5λ‖α̂J1 −αJ1‖1 + 5λ√
N

‖η̂J2 −ηJ2‖1,

which, since κ2 > 0 by Assumption 2, is equivalent to

‖α̂J1 −αJ1‖2
1 − 10λ(s1 + s2)

κ2 N T
‖α̂J1 −αJ1‖1 + 1

N
‖η̂J2 −ηJ2‖2

1 − 10λ(s1 + s2)

κ2 N3/2T
‖η̂J2 −ηJ2‖1 ≤ 0.

Let x = ‖α̂J1 −αJ1‖1, y = ‖η̂J2 −ηJ2‖1, a = 10λ(s1+s2)
κ2 NT

, b = 1
N and c = 10λ(s1+s2)

κ2 N3/2 T
. Thus

one has

x2 −ax +by2 −cy ≤ 0. (B.7)
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First bound x = ‖α̂J1 −αJ1‖1. For every y the values of x that satisfy the above quadratic
inequality form an interval in R+. The right end point of this interval is the desired upper
bound on x . Clearly, by the solution formula for the roots of a second degree polynomial,
this right end point is a decreasing function in by2 − cy. Hence, we first minimize the
polynomial by2 − cy to find the largest possible value of x which satisfies (B.7). This
yields y = c/2b and the corresponding value of by2 −cy is −c2/(4b). Hence, our desired

upper bound on x is the largest solution of x2 − ax − c2

4b ≤ 0. By the standard solution
formula for the roots of a quadratic polynomial this yields

‖α̂J1 −αJ1‖1 = x ≤ a +
√

a2 +c2/b

2
≤ a + c

2
√

b
. (B.8)

Switching the roles of x and y, one gets a similar bound on y = ‖η̂J2 −ηJ2‖1, namely

‖η̂J2 −ηJ2‖1 = y ≤ c +
√

c2 +ba2

2b
≤ c

b
+ a

2
√

b
. (B.9)

Inserting the definitions of a,b, and c into (B.8) and (B.9), we get

‖α̂J1 −αJ1‖1 ≤ 15λ(s1 + s2)

κ2NT
(B.10)

‖η̂J2 −ηJ2‖1 ≤ 15λ(s1 + s2)

κ2N1/2T
. (B.11)

Therefore, on A∩B∩C, it follows from (B.1) that

∥∥�(γ̂ −γ )∥∥2 ≤ 4λ‖α̂J1 −αJ1‖1 + 4λ√
N

‖η̂J2 −ηJ2‖1 +4λE1�
1−ν
1 + 4λ√

N
E�1−ν

2

≤ 120λ2(s1 + s2)

κ2NT
+4λE1�

1−ν
1 + 4λ√

N
E�1−ν

2

‖α̂−α‖1 ≤ 4‖α̂J1 −αJ1‖1 + 4√
N

‖η̂J2 −ηJ2‖1 +4E1�
1−ν
1 + 4√

N
E�1−ν

2

≤ 120λ(s1 + s2)

κ2NT
+4E1�

1−ν
1 + 4√

N
E�1−ν

2

‖η̂−η‖1 ≤ 4
√

N‖α̂J1 −αJ1‖1 +4‖η̂J2 −ηJ2‖1 +4
√

N E1�
1−ν
1 +4E�1−ν

2

≤ 120λ(s1 + s2)

κ2
√

N T
+4

√
N E1�

1−ν
1 +4E�1−ν

2 .

On A∩Cc one has trivial oracle inequalities via (B.1) of Lemma B.3. To be precise,

‖�(γ̂ −γ )‖2 ≤ 20λE1�
1−ν
1 +20λ

E�1−ν
2√
N

‖α̂−α‖1 ≤ 20E1�
1−ν
1 +20

E�1−ν
2√
N

‖η̂−η‖1 ≤ 20
√

N E1�
1−ν
1 +20E�1−ν

2 .
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These inequalities are valid on event A∩B∩Cc too. Synchronising constants, using that
(A∩B∩Cc)∪ (A∩B∩C)= A∩B, and recognising that

s1 :=
p∑

j=1

1{|αj | ≥�1} =
p∑

j=1

1{|αj |ν ≥�ν1} ≤ E1�
−ν
1

s2 :=
N∑

i=1

1{|ηi | ≥�2} =
N∑

i=1

1{|ηi |ν ≥�ν2} ≤ E�−ν
2 ,

we arrive at

∥∥�(γ̂ −γ )∥∥2 ≤ 120λ2(E1�
−ν
1 + E�−ν

2 )

κ2NT
+20λE1�

1−ν
1 +20λ

E�1−ν
2√
N

‖α̂−α‖1 ≤ 120λ(E1�
−ν
1 + E�−ν

2 )

κ2 NT
+20E1�

1−ν
1 +20

E�1−ν
2√
N

‖η̂−η‖1 ≤ 120λ(E1�
−ν
1 + E�−ν

2 )

κ2
√

N T
+20

√
N E1�

1−ν
1 +20E�1−ν

2 .

The deterministic oracle inequalities follow upon choosing �1 = λ
NT ,�2 = λ√

N T
and

E1 = N−ν/2 E . �

B.3. A Lower Bound on P(A)
For the proof of Lemma B.5 below, we shall use Orlicz norms as defined in van der Vaart
and Wellner (1996): Letψ :R+ →R+ be a nondecreasing, convex function withψ(0)= 0
and limx→∞ψ(x)= ∞. Then, the Orlicz norm of a random variable X is given by

‖X‖ψ = inf{C > 0 : Eψ (|X |/C) ≤ 1} ,

where, as usual, inf∅ = ∞. We will use Orlicz norms for ψ(x) = ψb(x) = exb − 1 for
various values of b. The following lemma provides a lower bound on the probability of A.

LEMMA B.5. Let λ= √
4M NT (log(p ∨ N))3 for some M > 0. By Assumptions 1 and

3, we have

P(A) ≥ 1− Ap1−B M1/3 − AN1−B M1/3
,

for positive constants A and B.

Proof. Consider the event {‖Z ′ε‖∞ >λ/2} first. To this end, let zj,l denote the j th entry
of the lth column of Z , i.e., the j th entry of (z1,1,l , z1,2,l , . . . , z1,T ,l , z2,1,l , . . . , zN,T ,l )

′.
Similarly, we write εj for the j th entry of ε. Now note that j �→ (� j

T �, j − � j
T �T )

is a bijection from {1, . . . ,NT } to {1, . . . ,N} × {1, . . . ,T } where �x� denotes
the greatest integer strictly less than x and �x� the smallest integer greater
than or equal to x ∈ R. In case the lth column of Z corresponds to one of the
lags of the left hand side variable, assume for concreteness the kth lag, define
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Fn = σ (y� j
T �, j−� j

T �T
, . . . , y� j

T �, j−� j
T �T −L

,ε� j
T �, j−� j

T �T
,1 ≤ j ≤ n, y� n+1

T �,0, . . . , y� n+1
T �,1−L

)
and Sn,l = ∑n

j=1 zj,lεj = ∑n
j=1 y� j

T �, j−� j
T �T −k

ε� j
T �, j−� j

T �T
. Thus,

E[Sn,l |Fn−1] =
n−1∑
j=1

y� j
T �, j−� j

T �T −kε� j
T �, j−� j

T �T +E
[
y� n

T �, j−� n
T �T −kε� n

T �,n−� n
T �T |Fn−1

]
= Sn−1,l + y� n

T �, j−� n
T �T −kE

[
ε� n

T �,n−� n
T �T |Fn−1

]
.

Using that
(� n

T �,n −� n
T �T

)
is a unique pair (i, t) ∈ {1, . . . ,N}×{1, . . . ,T } we have that

E
[
ε� n

T �,n−� n
T �T |Fn−1

] = E[εi,t |Fn−1] = E[εi,t |σ(yi,t−1, . . . , yi,1−L ,εi,t−1, . . . ,εi,1)],

(For t = 1, the last expression in the above display is to be read as absence of condition-
ing on the error terms.) where the last equality follows from the assumption of indepen-
dence across 1 ≤ i ≤ N (Assumption 1). By Assumption 1, this conditional expectation
equals zero as the εi,s is a linear function of yi,s , . . . , yi,s−L and xi,s for 1 ≤ s ≤ t − 1.
Thus, Sn,l is a martingale with mean zero (i.e., the increments are martingale differences
by the above argument). A similar argument applies when the lth column of Z equals
(x1,1,k, . . . , x1,T ,k, x2,1,k, . . . , xN,T ,k )

′ for some 1 ≤ k ≤ px such that every row of Z ′ε is
a zero mean martingale.

Next, note that by Assumption 3, for all 1 ≤ j ≤ NT , 1 ≤ l ≤ p and ε > 0, one has

P(|zj,lεj | ≥ ε)≤ P(|zj,l | ≥ √
ε)+P(|εj | ≥ √

ε) ≤ K e−Cε .

It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖zj,lεj ‖ψ1 ≤
(1 + K )/C . Then, by the definition of the Orlicz norm, E

[
eC/(1+K )|zj,lεj |] ≤ 2. Now

use Proposition F.2 in Appendix F with D = C/(1+ K ), α = 1/3 and C1 = 2 to conclude

P

(
‖Z ′ε‖∞ >

λ

2

)
≤

p∑
l=1

P

(∣∣∣∣
N T∑
j=1

z j,lεj

∣∣∣∣> λ

2N T
N T

)
= p Ae−B log(p∨N)M1/3 ≤ Ap1−B M1/3

.

Note also that the upper bound of the preceding probability becomes arbitrarily small for
sufficiently large N and M such that we also conclude

‖Z ′ε‖∞ = Op(λ). (B.12)

Next, consider the event {‖D′ε‖∞ > λ/(2
√

N )}. Using Assumption 1 a small calcu-
lation shows that all entries of D′ε are zero mean martingales with respect to the nat-
ural filtration. As above, Assumption 3 and Lemma 2.2.1 in van der Vaart and Well-

ner (1996) yield ‖εi,t ‖ψ2 ≤ ( 1+K/2
C

)1/2
such that by the second to last inequality on

page 95 in van der Vaart and Wellner (1996) one has ‖εi,t ‖ψ1 ≤ ‖εi,t ‖ψ2(log2)−1/2 ≤( 1+K/2
C

)1/2
(log2)−1/2 for all i and t . Then using the definition of the Orlicz norm,

E
[
exp

(( C
1+K/2

)1/2
(log2)1/2|εi,t |

)] ≤ 2 and Proposition F.2 in Appendix F with D =( C
1+K/2

)1/2
(log2)1/2, α = 1/3 and C1 = 2 implies
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P

(
‖D′ε‖∞ >

λ

2
√

N

)
≤

N∑
i=1

P

(∣∣∣ T∑
t=1

εi,t

∣∣∣> λ

2
√

N T
T
)

≤ ANe−B(log(p∨N)M1/3 ≤ AN1−B M1/3
.

Note also that the upper bound of the preceding probability becomes arbitrarily small for
sufficiently large N and M , such that we may also conclude

‖D′ε‖∞ = Op

(
λ√
N

)
. (B.13)

�

B.4. A Lower Bound on P(B)
The following lemma shows that κ2(�N ,s1,s2) and κ2(�,s1,s2) are close if �N and �
are in some sense close.

LEMMA B.6. Let A and B be two positive semidefinite (p + N)× (p + N) matrices
and δ := max1≤i, j≤p+N |Ai j − Bi j |. For any integers r1 ∈ {1, . . . , p} and r2 ∈ {1, . . . ,N},
one has

κ2(B,r1,r2) ≥ κ2(A,r1,r2)− δ25(r1 +r2).

Proof. Let x be a (p + N)× 1 nonzero vector, satisfying ‖xRc‖1 ≤ 4‖xR‖1 for R =
R1 ∪ (R2 + p) where R1 ⊆ {1, . . . , p} with |R1| ≤ r1, and R2 ⊆ {1, . . . ,N} with |R2| ≤ r2.
Now,

|x ′ Ax − x ′ Bx| = |x ′(A − B)x| ≤ ‖x‖1‖(A − B)x‖∞ ≤ ‖x‖2
1δ = δ (‖xR‖1 +‖xRc ‖1)

2

≤ δ (‖xR‖1 +4‖xR‖1)
2 = δ25‖xR‖2

1.

Hence,

x ′ Bx
1

r1+r2
‖xR‖2

1

≥ x ′ Ax
1

r1+r2
‖xR‖2

1

− δ25(r1 +r2)≥ κ2(A,r1,r2)− δ25(r1 +r2),

where the last inequality is true because of the definition of κ2(A,r1,r2). Minimising the
left-hand side over nonzero x satisfying ‖xRc ‖1 ≤ 4‖xR‖1 yields the claim. �

Define

B̃ =
{

max
1≤i, j≤p+N

∣∣�N,i j −�i j
∣∣ ≤ κ2(�,s1,s2)

100E
(

λ√
N T

)−ν
}
.

Setting A =�, B =�N it follows from Lemma B.6 that B̃ ⊆B. Thus, we just need to find
a lower bound on P(B̃) in order to prove Theorem 1.

LEMMA B.7. Let Assumptions 1, 2, and 3 hold. Assume that E
(

λ√
N T

)−ν
�

√
N.

Then, there exist positive constants A, B such that
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P(Bc)≤ P(B̃c)≤ A(p2 + pN)exp

(
−B

{
N/

[
E
( λ√

N T

)−ν]2}1/3)
.

Proof. Since the lower right N × N blocks of �N and � are identical, it suffices to
bound the entries of 1

NT Z ′ Z − 1
NT E[Z ′ Z] and 1

T
√

N
Z ′ D. A typical element of 1

NT Z ′ Z −
1

NT E[Z ′ Z] is of the form 1
NT

∑N
i=1

∑T
t=1(zi,t,l zi,t,k −E[zi,t,l zi,t,k ]) for some l,k ∈

{1, . . . , p}. By Assumption 3 we have for every ε > 0

P(|zi,t,l zi,t,k | ≥ ε)≤ P(|zi,t,l | ≥ √
ε)+P(|zi,t,k | ≥ √

ε) ≤ K e−Cε .

It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖zi,t,l zi,t,k‖ψ1 ≤
(1+ K )/C . Hence, by subadditivity of the Orlicz norm and Jensen’s inequality

∥∥∥∥ 1

T

T∑
t=1

(
zi,t,l zi,t,k −E[zi,t,l zi,t,k ]

)∥∥∥∥
ψ1

≤ 2 max
1≤t≤T

‖zi,t,l zi,t,k‖ψ1 ≤ 2(1+ K )

C
.

Thus, by the definition of the Orlicz norm,
Eexp

( C
2(1+K )

∣∣ 1
T
∑T

t=1(zi,t,l zi,t,k −E[zi,t,l zi,t,k ])
∣∣) ≤ 2. Using independence across i

(Assumption 1) to invoke Proposition F.2 in Appendix F with D = C
2(1+K ) , α = 1/3 and

C1 = 2 such that for every x � 1√
N

P

(∣∣∣ N∑
i=1

1

T

T∑
t=1

(zi,t,l zi,t,k −E[zi,t,l zi,t,k ])
∣∣∣≥ Nx

)
≤ Ae−B(x2N)1/3 , (B.14)

for positive constants A and B.
Next, consider 1

T
√

N
Z ′ D. A typical element can be written as 1√

N T

∑T
t=1 zi,t,l for

some i ∈ {1, . . . ,N} and l ∈ {1, . . . , p}. By Assumption 3, we have P(|zi,t,l | ≥ ε) ≤
1
2 K e−Cε2

for all ε > 0 and it follows from Lemma 2.2.1 in van der Vaart and Wellner

(1996) that ‖zi,t,l ‖ψ2 ≤ ( 1+K/2
C

)1/2
. Hence,

∥∥∥∥ 1√
N T

T∑
t=1

zi,t,l

∥∥∥∥
ψ2

≤ 1√
N

max
1≤t≤T

‖zi,t,l ‖ψ2 ≤ 1√
N

(1+ K/2

C

)1/2
=:

C ′
√

N
.

Thus, it follows by Markov’s inequality, positivity and increasingness of ψ2(x), as well as

1∧ψ2(x)
−1 = 1∧ (ex2 −1)−1 ≤ 2e−x2

that for any x > 0

P

(∣∣∣ 1√
N T

T∑
t=1

zi,t,l

∣∣∣> x
)

≤ 1∧ 1

e(x
√

N/C ′)2 −1
≤ 2e

− Nx2

C′2 ≤ Ae−Bx2 N , (B.15)
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where the last estimate follows by choosing A and B sufficiently large/small for (B.14)

and (B.15) both to be valid. Setting x = κ2

100E
(

λ√
N T

)−ν = κ2

100
1

E
(

λ√
N T

)−ν , using that

1

E
(

λ√
N T

)−ν � 1√
N

and κ2 being bounded away from 0 (Assumption 2), we have

P(Bc)≤ P(B̃c)= P

(
max

1≤i, j≤p+N
|�N,i j −�i j |> x

)

≤ A(p2 + pN)

[
exp

(
−B

{[
κ2/100

E
(

λ√
NT

)−ν
]2

N

}1/3)
∨ exp

(
−B

[
κ2/100

E
(

λ√
N T

)−ν
]2

N

)]

≤ A(p2 + pN)exp

(
−B

{
N/

[
E
( λ√

N T

)−ν]2}1/3)
,

where the last estimate has merged (κ2/100)2/3 into B. �

Proof of Theorem 1. Theorem 1 follows by combining Lemmas B.4, B.5, and B.7. �

B.5. Rates of Convergence

COROLLARY A.1. Let the conditions of Theorem 1 hold. For large enough M > 0

and assuming
(log(p∨N))3 E2

[
(log(p∨N))3/T

]−ν
N = o(1), we have the following stochastic

orders valid uniformly over F(ν,E).

1

NT

∥∥�(γ̂ −γ )∥∥2 = Op

(
λ√

N NT
E
( λ√

N T

)1−ν)
,

‖α̂−α‖1 = Op

(
1√
N

E
( λ√

N T

)1−ν)
,

‖η̂−η‖1 = Op

(
E
( λ√

N T

)1−ν)
.

Proof of Corollary A.1. First note that Ap1−AM1/3
and AN1−AM1/3

become arbitrar-

ily small for large enough M > 0. By
(log(p∨N))3 E2

[
(log(p∨N))3/T

]−ν
N = o(1),

A(p2 + pN)exp

(
−A

{
N

E2
[
(log(p ∨ N))3/T

]−ν
}1/3)

→ 0.

Thus the lower bound on the probability in Theorem 1 goes to one as N,T, p → ∞ for
large enough M > 0 and the conclusion follows from Theorem 1. �
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APPENDIX C

C.1. Properties of the Nodewise Lasso

The following lemma gives the rates of the uniform prediction and estimation errors for
nodewise regression. It is used in the proof of Lemma C.9.

LEMMA C.8. Let Assumptions 1, 3 and 4 hold. Let λnode = √
16M(log p)3/N for

some M > 0. For M sufficiently large, we have

max
j∈H1

1

NT
‖Z− j (φ̂j −φj )‖2 = Op

(
Ḡλ2−ϑ

node

)
(C.1)

max
j∈H1

‖φ̂j −φj ‖1 = Op

(
Ḡλ1−ϑ

node

)
(C.2)

max
j∈H1

1

NT
‖Z ′− j ζj ‖∞ = Op(λnode). (C.3)

Proof. We say that a (p − 1)× (p − 1) matrix A satisfies the compatibility condition
CC(r) for some integer r ∈ {1, . . . , p −1} if

κ2 (A,r) := min
R⊆{1,...,p−1}

|R|≤r

min
δ∈Rp−1\{0}

‖δRc ‖1≤3‖δR‖1

δ′ Aδ
1
r ‖δR‖2

1

> 0.

Define a (p −1)×1 vector φ∗
j such that

φ∗
j,k := φj,k1{|φj,k | ≥ λnode} k = 1, . . . , p −1

and its active set J∗
j as well as its sparsity index s∗

j

J∗
j := {k : φ∗

j,k �= 0,k = 1, . . . , p −1} 1 ≤ s∗
j := |J∗

j | ≤ p −1.

Consider the events

D =
{

max
j∈H1

1

NT
‖Z ′− j ζj ‖∞ ≤ λnode

4

}
,

Ej =
{
κ2

( 1

NT
Z ′− j Z− j ,s

∗
j

)
≥
κ2(�Z ,− j,− j ,s

∗
j )

2

}
,

and

F =
{∥∥∥∥ 1

NT
Z ′ Z −�Z

∥∥∥∥∞
≤ λnode

}
.

Using the same technique as in Section 6.2.3 of Bühlmann and van de Geer (2011), we
arrive at the following oracle inequality, which is almost the same as the one on the top of
p111 of Bühlmann and van de Geer (2011): for each j ∈ H1, on D∩Ej

1

N T
‖Z− j (φ̂j −φj )‖2 +λnode‖φ̂j −φj ‖1 ≤ 3

N T
‖Z− j (φ

∗
j −φj )‖2 + 48λ2

node s∗
j

κ2( 1
N T Z ′− j Z− j ,s∗

j )
+λnode‖φ∗

j −φj ‖1

≤ 3

N T
‖Z− j (φ

∗
j −φj )‖2 + 96λ2

node s∗
j

κ2(�Z ,s∗
j )

+λnode‖φ∗
j −φj ‖1, (C.4)
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where the second inequality is due to event Ej and that κ2 (�Z ,− j,− j ,r
) ≥ κ2 (�Z ,r) for

all j = 1, . . . , p and r = 1, . . . , p −1.
We now bound the three terms on the right hand side of (C.4). Let bj := φ∗

j −φj .

1

NT
‖Z− j (φ

∗
j −φj )‖2 = b′

j�Z ,− j,− j bj +b′
j

(
1

NT
Z ′− j Z− j −�Z ,− j,− j

)
bj

≤ maxeval(�Z ,− j,− j )‖bj‖2 +
∥∥∥∥ 1

NT
Z ′− j Z− j −�Z ,− j,− j

∥∥∥∥∞
‖bj ‖2

1 ≤ maxeval(�Z )‖bj‖2 +λnode‖bj ‖2
1,

where the last inequality holds on event F . Note that

‖bj ‖2 =
p−1∑
k=1

|φj,k |21{|φj,k |< λnode} ≤ λ2−ϑ
node

p−1∑
k=1

|φj,k |ϑ1{|φj,k |< λnode} ≤ Gjλ
2−ϑ
node.

‖bj ‖1 =
p−1∑
k=1

|φj,k |1{|φj,k |< λnode} ≤ λ1−ϑ
node

p−1∑
k=1

|φj,k |ϑ1{|φj,k |< λnode} ≤ Gjλ
1−ϑ
node.

(C.5)

1 ≤ s∗
j =

p−1∑
k=1

1{|φj,k | ≥ λnode} =
p−1∑
k=1

1{|φj,k |ϑ ≥ λϑnode} ≤ Gjλ
−ϑ
node. (C.6)

Thus, for each j ∈ H1, on D∩Ej ∩F
1

NT
‖Z− j (φ̂j −φj )‖2 +λnode‖φ̂j −φj ‖1

≤ maxeval(�Z )Gjλ
2−ϑ
node +G2

j λ
3−2ϑ
node + 96

κ2(�Z ,s
∗
j )

Gjλ
2−ϑ
node +Gjλ

2−ϑ
node

=
(

maxeval(�Z )+ 96

κ2(�Z ,s
∗
j )

+1

)
Gjλ

2−ϑ
node +G2

j λ
3−2ϑ
node

from where we can extract two oracle inequalities

1

NT
‖Z− j (φ̂j −φj )‖2 ≤

(
maxeval(�Z )+ 96

κ2(�Z ,s
∗
j )

+1

)
Gjλ

2−ϑ
node +G2

j λ
3−2ϑ
node ,

‖φ̂j −φj ‖1 ≤
(

maxeval(�Z )+ 96

κ2(�Z ,s
∗
j )

+1

)
Gjλ

1−ϑ
node +G2

j λ
2−2ϑ
node .

As the oracle inequalities in the above display are valid simultaneously on D∩(∩j∈H1Ej )∩
F we conclude that

max
j∈H1

1

N T
‖Z− j (φ̂j −φj )‖2 ≤

(
maxeval(�Z )+ 96

minj∈H1 κ
2(�Z , s∗

j )
+1

)
Ḡλ2−ϑ

node + Ḡ2λ3−2ϑ
node ,

max
j∈H1

‖φ̂j −φj ‖1 ≤
(

maxeval(�Z )+ 96

minj∈H1 κ
2(�Z ,s

∗
j )

+1

)
Ḡλ1−ϑ

node + Ḡ2λ2−2ϑ
node ,

(C.7)

on D∩ (∩j∈H1Ej )∩F .
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Next, we establish a lower bound on the probability of D∩ (∩j∈H1Ej )∩F . Consider D
first. A typical element of Z ′− j ζj is of the form

∑N
i=1

∑T
t=1 zi,t,lζj,i,t for some l �= j . By

(3.5), one has 1
NT

∑N
i=1

∑T
t=1 zi,t,lζj,i,t = 1

NT
∑N

i=1
∑T

t=1(zi,t,l ζj,i,t −E[zi,t,lζj,i,t ])
for l �= j . By Assumptions 3 and 4(c), it holds for any ε > 0 that

P(|zi,t,l ζj,i,t |> ε)≤ P(|zi,t,l |>
√
ε)+P(|ζj,i,t |>

√
ε)≤ K e−Cε .

such that Lemma 2.2.1 in van der Vaart and Wellner (1996) yields that ‖zi,t,lζj,i,t ‖ψ1 ≤
(1+ K )/C . Therefore, by Jensen’s inequality and subadditivity of the Orlicz norm∥∥∥∥∥∥

1

T

T∑
t=1

(
zi,t,l ζj,i,t −E[zi,t,lζj,i,t ]

)∥∥∥∥∥∥
ψ1

≤ 2 max
1≤t≤T

‖zi,t,l ζj,i,t ‖ψ1 ≤ 2(1+ K )

C
.

Using the definition of the Orlicz norm Eexp
( C

2(1+K )

∣∣ 1
T
∑T

t=1 (zi,t,lζj,i,t −E[zi,t,lζj,i,t ])
∣∣)

≤ 2. Using independence across i (Assumption 1) to invoke Proposition F.2 in Appendix
F with D = C/(1 + K ), α = 1/3, C1 = 2 and ε = λnode/4 � 1√

N
, we conclude (using

h1 ≤ p)

P

(
max
j∈H1

1

NT
‖Z ′− j ζj ‖∞ > ε

)
≤ h1 pP

(∣∣∣ N∑
i=1

1

T

T∑
t=1

(zi,t,lζj,i,t −E[zi,t,l ζj,i,t ])
∣∣∣> εN

)

≤ Ah1 pe−B(ε2 N)1/3 ≤ Ap2e−B M1/3 log p = Ap2−B M1/3

for positive constants A and B. The upper bound of the preceding probability becomes
arbitrarily small for M sufficiently large such that

max
j∈H1

1

NT
‖Z ′− j ζj ‖∞ = Op(λnode),

which is (C.3). In order to provide a lower bound on the probability of
(∩j∈H1Ej

)
define

the event

Ẽj :=
{

max
1≤l,k≤p−1

∣∣∣∣
[

1

NT
Z ′− j Z− j

]
lk

− [�Z ,− j,− j ]lk

∣∣∣∣ ≤ κ2(�Z ,− j,− j ,s
∗
j )

32s∗
j

}
⊆ Ej

by Proposition F.1 in Appendix F with A = �Z ,− j,− j , B = 1
NT Z ′− j Z− j , r = s∗

j and

δ = κ2(�Z ,− j,− j ,s∗
j )

32s∗
j

. Observe that the relation

max
1≤l,k≤p−1

∣∣∣∣
[

1

NT
Z ′− j Z− j

]
lk

− [
�Z ,− j,− j

]
lk

∣∣∣∣≤ max
1≤l,k≤p

∣∣∣∣
[

1

NT
Z ′ Z

]
lk

− [�Z ]lk

∣∣∣∣
≤
κ2(�Z ,maxj∈H1 s∗

j )

32Ḡλ−ϑ
node

≤
κ2(�Z ,− j,− j ,s

∗
j )

32s∗
j

implies E :=
{

max1≤l,k≤p
∣∣[ 1

NT Z ′ Z]lk − [�Z ]lk
∣∣ ≤ κ2(�Z ,maxj∈H1 s∗

j )

32Ḡλ−ϑ
node

}
⊆ Ẽj ⊆ Ej for all

j ∈ H1 and hence E ⊆ ∩j∈H1Ej . It remains to provide a lower bound on P(E). A typi-

cal element of 1
NT Z ′ Z −�Z is of the form 1

NT
∑N

i=1
∑T

t=1(zi,t,l zi,t,k −E[zi,t,l zi,t,k ])
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for some l,k ∈ {1, . . . , p}. Invoking (B.14) with x = κ2(�Z ,maxj∈H1 s∗
j )

32Ḡλ−ϑ
node

� 1√
N

(using

Ḡλ1−ϑ
node = O(log3/2 p), implied by Assumption 4(b))

P

(∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(zi,t,l zi,t,k −E[zi,t,l zi,t,k ])
∣∣∣ ≥ x

)
≤ Ae−B(x2N)1/3 ,

for positive constants A and B. Therefore,

P(Ec)= P

(
max

1≤l,k≤p

∣∣∣∣
[

1

NT
Z ′ Z

]
lk

− [�Z ]lk

∣∣∣∣≥ x

)
≤ p2 Ae−B(x2N)1/3 .

The upper bound of the preceding probability becomes arbitrarily small for M sufficiently
large (using Ḡλ1−ϑ

node = O(1), implied by Assumption 4(b)). In a similar manner, invoke

(B.14) with x = λnode =
√

16M(log p)3
N � 1√

N
(M > 0),

P(Fc)= P

(
max

1≤l,k≤p

∣∣∣[ 1

NT
Z ′ Z

]
lk

− [�Z ]lk
∣∣∣ ≥ x

)
≤ Ap2e−B(x2N)1/3 = Ap2−B M1/3

,

for positive constants A and B, letting B absorb the extra constants. The upper bound of
the preceding probability becomes arbitrarily small for sufficiently large N and M . We also
have

∥∥∥∥ Z ′ Z
NT

−�Z

∥∥∥∥∞
= Op(λnode)= Op

(√ (log p)3

N

)
. (C.8)

Lastly, use Assumption 4(b) in the display (C.7) to get the claimed orders. �

C.2. Proof of Lemma C.9

Lemma C.9 below is used as a stepping stone towards the establishing asymptotically gaus-
sian inference as it provides the rate at which �̂Z approaches �Z uniformly over H1

LEMMA C.9. Let Assumptions 1, 3, and 4 hold. Define λnode = √
16M(log p)3/N for

some M > 0. Then, for M sufficiently large,

max
j∈H1

|τ̂2
j − τ2

j | = Op

(
Ḡ1/2

[
(log p)3

N

] 2−ϑ
4
)

(C.9)

max
j∈H1

1

τ̂2
j

= Op(1) (C.10)

max
j∈H1

∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣ = Op

(
Ḡ1/2

[
(log p)3

N

] 2−ϑ
4
)

(C.11)

max
j∈H1

∥∥∥�̂Z , j −�Z , j

∥∥∥
1

= Op

(
Ḡ

[
(log p)3

N

] 1−ϑ
2
)

(C.12)
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max
j∈H1

∥∥�̂Z , j −�Z , j
∥∥= Op

(
Ḡ1/2

[
(log p)3

N

] 2−ϑ
4
)

(C.13)

max
j∈H1

∥∥�̂Z , j
∥∥

1 = Op

(
Ḡ1/2

[
(log p)3

N

]− ϑ
4
)
. (C.14)

Note that for H1 = {1, . . . , p}, (C.12) provides an upper bound on the induced �∞-
distance between �̂Z and �Z . However, we only need to control this distance for those
indices corresponding to the parameters whose joint limit distribution is sought. On the
other hand, it should be stressed that the uniformity over H1 of the above results is
crucial in establishing the limiting gaussian inference and providing a feasible estima-
tor of the covariance matrix of the parameter estimates. In case one is only interested
in one entry of γ , H1 reduces to a singleton if this entry is in α. If this entry is in
η, Lemma C.9 is actually superfluous as the lower right hand corners of �̂ and � are
identical.

Proof of Lemma C.9. Recall (G.3) and use zj = Z− jφj + ζj :

τ̂2
j = 1

NT
ζ ′

j ζj + 1

NT
ζ ′

j Z− jφj − 1

NT
(φ̂j −φj )

′ Z ′− j ζj − 1

NT
(φ̂j −φj )

′ Z ′− j Z− jφj .

Thus,

max
j∈H1

|τ̂2
j − τ2

j | ≤ max
j∈H1

∣∣∣ 1

NT
ζ ′

j ζj − τ2
j

∣∣∣+ max
j∈H1

∣∣∣ 1

NT
ζ ′

j Z− jφj

∣∣∣
+ max

j∈H1

∣∣∣ 1

NT
(φ̂j −φj )

′ Z ′− j ζj

∣∣∣+ max
j∈H1

∣∣∣ 1

NT
(φ̂j −φj )

′ Z ′− j Z− jφj

∣∣∣ .
(C.15)

Consider the first term on the right of the inequality in (C.15). By Assumption 4(c), we
have for all ε > 0, P(|ζ 2

j,i,t | ≥ ε) = P(|ζj,i,t | ≥ √
ε) ≤ 1

2 K e−Cε . It follows from Lemma

2.2.1 in van der Vaart and Wellner (1996) that ‖ζ 2
j,i,t ‖ψ1 ≤ (1 + K/2)/C . Therefore, by

Jensen’s inequality and subadditivity of the Orlicz norm∥∥∥∥∥∥
1

T

T∑
t=1

(
ζ 2

j,i,t −E[ζ 2
j,i,t ]

)∥∥∥∥∥∥
ψ1

≤ 2 max
1≤t≤T

‖ζ 2
j,i,t ‖ψ1 ≤ 2+ K

C
.

Using the definition of the Orlicz norm, Eexp
( C

2+K

∣∣ 1
T
∑T

t=1 (ζ
2
j,i,t −E[ζ 2

j,i,t ])
∣∣)≤ 2. Us-

ing independence across i = 1, . . . ,N (Assumption 1) to invoke Proposition F.2 in Ap-
pendix F with D = C/(2+ K ), α = 1/3 and C1 = 2 for x � 1√

N
,

P

(∣∣∣ 1

N

N∑
i=1

1

T

T∑
t=1

(ζ 2
j,i,t −E[ζ 2

j,i,t ])
∣∣∣ ≥ x

)
≤ Ae−B(x2N)1/3 ,

for positive constants A and B. Setting x =
√

M(logh1)3

N for some M > 0, we have
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P

(
max
j∈H1

∣∣∣ 1

N

N∑
i=1

1

T

T∑
t=1

(ζ 2
j,i,t −E[ζ 2

j,i,t ])
∣∣∣ ≥

√
M(logh1)

3

N

)

≤
∑

j∈H1

P

(∣∣∣ 1

N

N∑
i=1

1

T

T∑
t=1

(ζ 2
j,i,t −E[ζ 2

j,i,t ])
∣∣∣≥

√
M(logh1)

3

N

)
≤ Ah1−B M1/3

1 .

Recognising that the upper bound of the preceding probability becomes arbitrarily small
for sufficiently large N and M , we have

max
j∈H1

∣∣∣ 1

NT
ζ ′

j ζj − τ2
j

∣∣∣ = Op

(√ (logh1)
3

N

)
= Op(λnode).

Now consider the second term on the right of the inequality in (C.15). Recall that

C =

⎛
⎜⎜⎜⎝

1 −φ1,2 · · · −φ1,p
−φ2,1 1 · · · −φ2,p
...

...
. . .

...
−φp,1 −φp,2 · · · 1

⎞
⎟⎟⎟⎠

such that Cj is the j th row of C but written as a p ×1 vector. Then

max
j∈H1

‖φj ‖1 = max
j∈H1

‖φ∗
j −φj −φ∗

j ‖1 ≤ max
j∈H1

‖φ∗
j −φj ‖1 + max

j∈H1
‖φ∗

j ‖1 ≤ Ḡλ1−ϑ
node + max

j∈H1
‖φ∗

j ‖1

≤ Ḡλ1−ϑ
node + max

j∈H1

√
s∗

j ‖φ∗
j ‖ ≤ Ḡλ1−ϑ

node + max
j∈H1

√
s∗

j ‖φj ‖ ≤ Ḡλ1−ϑ
node + max

j∈H1

√
s∗

j ‖Cj ‖

≤ Ḡλ1−ϑ
node + max

j∈H1

√
s∗

j

√
C ′

j�Z Cj

mineval(�Z )
= Ḡλ1−ϑ

node + max
j∈H1

√
s∗

j

√
�Z , j, j −�Z , j,− j�

−1
Z ,− j,− j�Z ,− j, j

√
mineval(�Z )

≤ Ḡλ1−ϑ
node + max

j∈H1

√
s∗

j

√
�Z , j, j

√
mineval(�Z )

≤ Ḡλ1−ϑ
node + max

j∈H1

√
s∗

j

√
maxeval(�Z )

√
mineval(�Z )

= O(Ḡ1/2λ
−ϑ/2
node ), (C.16)

where the second inequality is due to (C.5), the second equality is due to (3.4), the seventh
inequality is due to that Assumption 4(a) implies that �−1

Z ,− j,− j is positive definite for all
j ∈ H1, and the last equality is due to (C.6) and Assumption 4(b). Now,

max
j∈H1

∣∣∣∣ 1

NT
ζ ′

j Z− jφj

∣∣∣∣ ≤ max
j∈H1

(∥∥∥∥ 1

NT
ζ ′

j Z− j

∥∥∥∥∞

∥∥φj
∥∥

1

)
= Op(λnode)O(Ḡ

1/2λ
−ϑ/2
node )= Op(Ḡ

1/2λ
1−ϑ/2
node ),

where the first equality is due to (C.3).
The third term in (C.15) is bounded as

max
j∈H1

∣∣∣ 1

NT
(φ̂j −φj )

′ Z ′− j ζj

∣∣∣ ≤ max
j∈H1

(∥∥∥φ̂j −φj

∥∥∥
1

∥∥∥∥ 1

NT
Z ′− j ζj

∥∥∥∥∞

)
= Op(Ḡλ

2−ϑ
node),

where the equality is due to (C.2) and (C.3).
To bound the fourth term on the right of the inequality in (C.15), recall (G.5) and ma-

nipulate to get 1
NT Z ′− j Z− j (φ̂j −φj )= 1

NT Z ′− j ζj −λnodewj . Thus,∥∥∥∥ 1

NT
(φ̂j −φj )

′ Z ′− j Z− j

∥∥∥∥∞
≤
∥∥∥∥ 1

NT
Z ′− j ζj

∥∥∥∥∞
+λnode‖wj ‖∞ = Op(λnode),
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where the equality is due to (C.3). Thus,

max
j∈H1

∣∣∣∣ 1

N T
(φ̂j −φj )

′ Z ′− j Z− jφj

∣∣∣∣ ≤ max
j∈H1

∥∥∥∥ 1

N T
(φ̂j −φj )

′ Z ′− j Z− j

∥∥∥∥∞
max
j∈H1

‖φj ‖1 = Op(Ḡ
1/2λ

1−ϑ/2
node ),

where the last equality is due to (C.16). Summing up all four terms on the right of the
inequality in (C.15), we get

max
j∈H1

|τ̂ 2
j − τ 2

j | ≤ Op (λnode)+ Op(Ḡ
1/2λ

1−ϑ/2
node )+ Op(Ḡλ

2−ϑ
node)= Op(Ḡ

1/2λ
1−ϑ/2
node )= op(1),

where the first equality is due to that Op(Ḡ1/2λ
1−ϑ/2
node ) dominates Op(Ḡλ

2−ϑ
node) by As-

sumption 4(b), and the second equality is also due to Assumption 4(b). This establishes
(C.9).

We now prove (C.10). We first recall

τ 2
j = E

[ 1

NT

N∑
i=1

T∑
t=1

(zi,t, j − z′
i,t,− jφj )

2
]

=�Z , j, j −�Z , j,− j�
−1
Z ,− j,− j�Z ,− j, j = 1

�Z , j, j
,

Furthermore,

�Z , j, j ≡
e′

j�Z ej

‖ej ‖2
≤ max
δ∈Rp\{0}

δ′�Z δ

‖δ‖2
= maxeval(�Z )= 1

mineval(�Z )
.

The preceding inequality is uniform in j . Thus, minj∈H1 τ
2
j ≥ mineval(�Z ), which is

uniformly bounded away from zero by Assumption 4(a). Therefore,

min
j∈H1

τ̂2
j = min

j∈H1
(τ̂2

j − τ2
j + τ2

j )≥ min
j∈H1

τ2
j − max

j∈H1
|τ̂2

j − τ2
j | ≥ mineval(�Z )−op(1).

Hence, we conclude that minj∈H1 τ̂
2
j is bounded away from zero for N large enough and

maxj∈H1
1
τ̂ 2

j
= Op(1) which establishes (C.10).

Hence,

max
j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣ ≤ maxj∈H1 |τ2
j − τ̂2

j |
minj∈H1 τ

2
j

· max
j∈H1

1

τ̂2
j

= max
j∈H1

|τ2
j − τ̂2

j |O(1)Op(1)= Op(Ḡ
1/2λ

1−ϑ/2
node ),

which establishes (C.11).
We can now bound maxj∈H1 ‖�̂Z , j −�Z , j‖1. Use the definition of Cj and (3.3) to

recognise that �Z , j = Cj�Z , j, j = Cj/τ
2
j .

max
j∈H1

∥∥∥�̂Z , j −�Z , j

∥∥∥
1

= max
j∈H1

∥∥∥∥∥ Ĉj

τ̂2
j

− Cj

τ2
j

∥∥∥∥∥
1

= max
j∈H1

∣∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣∣+ max
j∈H1

∥∥∥∥∥ φ̂j

τ̂2
j

− φj

τ2
j

∥∥∥∥∥
1

≤ max
j∈H1

∣∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣∣+ max
j∈H1

∥∥∥∥∥ φ̂j

τ̂2
j

− φj

τ̂2
j

∥∥∥∥∥
1

+ max
j∈H1

∥∥∥∥∥φj

τ̂2
j

− φj

τ2
j

∥∥∥∥∥
1

= max
j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣+ max
j∈H1

1

τ̂2
j

∥∥∥φ̂j −φj

∥∥∥
1
+ max

j∈H1
‖φj ‖1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣ = Op(Ḡλ
1−ϑ
node),
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which establishes (C.12). Next, we bound maxj∈H1 ‖�̂Z , j −�Z , j ‖. Since∣∣∣∣(Ĉj −Cj )
′ Z ′ Z

NT
(Ĉj −Cj )− (Ĉj −Cj )

′�Z (Ĉj −Cj )

∣∣∣∣ ≤
∥∥∥∥ Z ′ Z

NT
−�Z

∥∥∥∥∞

∥∥∥Ĉj −Cj

∥∥∥2

1
,

max
j∈H1

∣∣∣(Ĉj − Cj )
′�Z (Ĉj − Cj )

∣∣∣ ≤ max
j∈H1

∣∣∣∣(Ĉj − Cj )
′ Z ′ Z

N T
(Ĉj − Cj )

∣∣∣∣+
∥∥∥∥ Z ′ Z

N T
−�Z

∥∥∥∥∞
max
j∈H1

∥∥∥Ĉj − Cj

∥∥∥2

1
.

(C.17)

Consider the first term on the right hand side of (C.17).

max
j∈H1

∣∣∣(Ĉj − Cj )
′ Z ′ Z

NT
(Ĉj − Cj )

∣∣∣ = max
j∈H1

1

NT

∥∥∥Z(Ĉj − Cj )
∥∥∥2 = max

j∈H1

1

NT

∥∥∥Z− j (φ̂j −φj )
∥∥∥2 = Op(Ḡλ

2−ϑ
node),

where the last equality is due to (C.1). Next, consider the second term on the right of the
inequality (C.17). We have∥∥∥∥ Z ′ Z

NT
−�Z

∥∥∥∥∞
max
j∈H1

∥∥∥Ĉj −Cj

∥∥∥2

1
=
∥∥∥∥ Z ′ Z

NT
−�Z

∥∥∥∥∞
max
j∈H1

∥∥∥φ̂j −φj

∥∥∥2

1
= Op

(
Ḡ2λ3−2ϑ

node

)
,

where the first equality is due to the definitions of Ĉj and Cj , and the second equality is
due to (C.2) and (C.8). Adding up the two terms, we have

max
j∈H1

∣∣∣(Ĉj −Cj )
′�Z (Ĉj −Cj )

∣∣∣≤ Op(Ḡλ
2−ϑ
node)+ Op

(
Ḡ2λ3−2ϑ

node

)
= Op(Ḡλ

2−ϑ
node),

where the last equality is due to Assumption 4(b). Since
maxj∈H1 |(Ĉj −Cj )

′�Z (Ĉj −Cj )| ≥ mineval(�Z )maxj∈H1 ‖Ĉj − Cj‖2 and

mineval(�Z ) is uniformly bounded away from zero we have maxj∈H1 ‖φ̂j − φj ‖ =
maxj∈H1 ‖Ĉj −Cj ‖ = Op(Ḡ1/2λ

1−ϑ/2
node ). Then,

max
j∈H1

∥∥∥�̂Z , j −�Z , j

∥∥∥= max
j∈H1

∥∥∥ Ĉj

τ̂2
j

− Cj

τ2
j

∥∥∥ ≤ max
j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣+ max
j∈H1

∥∥∥ φ̂j

τ̂2
j

− φj

τ2
j

∥∥∥
≤ max

j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣+ max
j∈H1

1

τ̂2
j

∥∥∥φ̂j −φj

∥∥∥+ max
j∈H1

‖φj ‖
∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣ = Op(Ḡ
1/2λ

1−ϑ/2
node ),

where in the last equality we have used that maxj∈H1 ‖φj ‖ = O(1), which follows from
inspecting the arguments in (C.16). We have hence established (C.13). Finally, recall that
�Z , j = Cj�Z , j, j = Cj/τ

2
j . Thus,

max
j∈H1

‖�Z , j‖1 = max
j∈H1

|1/τ2
j |+ max

j∈H1
‖φj ‖1 max

j∈H1
1/τ2

j = O(Ḡ1/2λ
−ϑ/2
node ). (C.18)

Therefore,

max
j∈H1

∥∥∥�̂Z, j

∥∥∥
1

≤ max
j∈H1

∥∥∥�̂Z, j −�Z, j

∥∥∥
1
+ max

j∈H1
‖�Z, j‖1 = Op(Ḡλ

1−ϑ
node)+ O(Ḡ1/2λ

−ϑ/2
node )= Op (Ḡ

1/2λ
−ϑ/2
node ),

where the last equality is due to Assumption 4(b). �
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APPENDIX D

D.1. Proof of Theorem 2

Proof of Theorem 2. The following assumption is implied by Assumption 5. (To be pre-
cise, Assumption 5(a) implies Assumption 6(a) by recognising that h1 ≥ 1 if h1 �= 0, and

Ḡ
[
(log p)3

N

]−ϑ/2
≥ s∗

j ≥ 1. Assumption 5(b) implies Assumption 6(b) by recognising that√
(log(p∨T ))7

N = o(1) and
√
(log(N∨T ))3

T = o(1), implied by Assumption 5(a) provided
h1 �= 0 and h2 �= 0, respectively. Last, Assumption 5(c) implies Assumption 6(c).) How-
ever, as Assumption 5 is much simpler, we have chosen to use the latter in the main text
even though it is slightly less general than the following assumption. Note again how the
assumptions simplify when either h1 or h2 equals 0.

Assumption 6. (a) (i)
h2

1Ḡ2
[
(log p)3

N

]−ϑ
(log(p∨T ))5

N = o(1);

(ii)
h1h2Ḡ

[
(log p)3

N

]−ϑ/2
(log(p∨N∨T ))3

N = o(1);

(iii)
h1Ḡ2

[
(log p)3

N

]−ϑ
(log p)3(log(p∨N))3

N = o(1);

(iv)
h1Ḡ

[
(log p)3

N

]−ϑ/2
(log(N∨T ))2(log p)2

NT = o(1);

(v) (log(N∨T ))21{h2 �=0}
T = o(1).

(b) Let

a :=

[
E
(
(log(p∨N))3

T

)−ν/2]
(log(p ∨ N))3

NT
.

(i) h2
1Ḡ2

[
(log p)3

N

]−ϑ (
1∨

√
(log(p∨T ))7

N

)
a = o(1);

(ii) h1Ḡ
[
(log p)3

N

]−ϑ/2
log(p ∨ N ∨ T )a = o(1);

(iii) h1h2Ḡ
[
(log p)3

N

]−ϑ/2
(log(p ∨ N ∨ T ))2a = o(1);

(iv)

√
h1h2Ḡ

[
(log p)3

N

]−ϑ/2
N log(p ∨ N ∨ T )a = o(1);

(v) Nh2
2

(
1∨

√
(log N)3

T

)
a = o(1).

(c)

(h1 ∨h2)(log(p ∨ N))3
[

E2
(
(log(p∨N))3

T

)−ν]
b

N
= o(1),
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where b :=
[(

Ḡ
[
(log p)3

N

]−ϑ/2
log(p ∨ N)∨ (log p)3

)
1{h1 �= 0}

]
∨[

log(p ∨ N)1{h2 �= 0}
]
.

(d) mineval(��ε) is uniformly bounded away from zero and maxeval(�1,N ) is uniformly
bounded from above.

We show that

t = ρ′S (γ̃ −γ )√
ρ′�̂�̂�ε�̂′ρ

d−→ N(0,1).

To this end, note that by (3.2) one may write t = t1 + t2, where

t1 = ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

and t2 = −ρ′�√
ρ′�̂�̂�ε�̂′ρ

.

Defining

t ′1 = ρ′�S−1�′ε√
ρ′���ε�′ρ

,

it suffices to show that t ′1
d−→ N(0,1), t ′1 − t1 = op(1), and t2 = op(1). In the sequel we

first show that t1 − t ′1 = op(1), then t ′1
d−→ N(0,1) and finally t2 = op(1). To show that

t1 − t ′1 = op(1), it suffices to show that the denominators as well as the numerators of t1
and t ′1 are asymptotically equivalent since

ρ′���ε�′ρ ≥ mineval(��ε)(mineval(�))2 = mineval(��ε)

(maxeval(�))2
, (D.1)

which is uniformly bounded away from zero by Assumptions 4(a) and 6(d).

D.1.1. Denominators of t1 and t ′1. We first show that the denominators of t1 and t ′1 are
asymptotically equivalent, i.e.,

|ρ′�̂�̂�ε�̂′ρ−ρ′���ε�′ρ| = op(1). (D.2)

Write∣∣∣∣∣(ρ′
1,ρ

′
2)

(
�̂Z �̂1,N �̂

′
Z �̂Z �̂2,N

�̂′
2,N �̂

′
Z �̂3,N

)(
ρ1
ρ2

)
− (ρ′

1,ρ
′
2)

(
�Z�1,N�

′
Z �Z�2,N

�′
2,N�

′
Z �3,N

)(
ρ1
ρ2

)∣∣∣∣∣
≤ |ρ′

1�̂Z �̂1,N �̂
′
Zρ1 −ρ′

1�Z�1,N�
′
Zρ1| (D.3)

+2|ρ′
1�̂Z �̂2,Nρ2 −ρ′

1�Z�2,Nρ2| (D.4)

+|ρ′
2�̂3,Nρ2 −ρ′

2�3,Nρ2|. (D.5)

To establish (D.2), we show that (D.3), (D.4), and (D.5) are op(1), respectively.
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(D.3) is op(1). Define �̃1,N := 1
NT

∑N
i=1

∑T
t=1 ε

2
i,t zi,t z′

i,t . To show that (D.3) is
op(1), it suffices to show that

|ρ′
1�̂Z �̂1,N �̂

′
Zρ1 −ρ′

1�̂Z �̃1,N �̂
′
Zρ1| = op(1) (D.6)

|ρ′
1�̂Z �̃1,N �̂

′
Zρ1 −ρ′

1�̂Z�1,N �̂
′
Zρ1| = op(1) (D.7)

|ρ′
1�̂Z�1,N �̂

′
Zρ1 −ρ′

1�Z�1,N�
′
Zρ1| = op(1). (D.8)

We prove (D.6) first. Note that

|ρ′
1�̂Z �̂1,N �̂

′
Zρ1 −ρ′

1�̂Z �̃1,N �̂
′
Zρ1| ≤ ‖�̂1,N − �̃1,N ‖∞ ‖�̂′

Zρ1‖2
1 .

First,

‖�̂′
Zρ1‖1 =

∥∥∥∥∑
j∈H1

�̂Z , jρ1 j

∥∥∥∥
1

≤
∑

j∈H1

|ρ1 j |
∥∥∥�̂Z , j

∥∥∥
1

= Op(h
1/2
1 Ḡ1/2λ

−ϑ/2
node ), (D.9)

where the last equality is due to (C.14). We now bound
∥∥∥�̂1,N − �̃1,N

∥∥∥∞. Since ε̂i,t =
yi,t − z′

i,t α̂− η̂i = εi,t − z′
i,t (α̂−α)− (η̂i −ηi )=: εi,t −πi,t (γ̂ −γ ), substituting for ε̂i,t ,

we have

∥∥∥�̂1,N − �̃1,N

∥∥∥∞ =
∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ε̂2
i,t zi,t z′

i,t − 1

NT

N∑
i=1

T∑
t=1

ε2
i,t zi,t z′

i,t

∥∥∥∥
∞

≤ 2

∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

zi,t z′
i,t εi,tπ

′
i,t (γ̂ −γ )

∥∥∥∥
∞

+
∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

zi,t z′
i,t [π ′

i,t (γ̂ −γ )]2
∥∥∥∥
∞
.

(D.10)

Consider the first term of (D.10). A typical element of 1
NT

∑N
i=1

∑T
t=1 zi,t z′

i,t εi,tπ
′
i,t (γ̂ −

γ ) is

1

NT

NT∑
j=1

zj,l zj,kεjπ
′
j (γ̂ −γ ) ≤ 1

NT

(NT∑
j=1

z2
j,l z

2
j,kε

2
j

)1/2(NT∑
j=1

[π ′
j (γ̂ −γ )]2

)1/2

=
(

1

NT

N∑
i=1

T∑
t=1

z2
i,t,l z2

i,t,kε
2
i,t

)1/2( 1

NT

∥∥�(γ̂ −γ )∥∥2
)1/2

(D.11)

for some l,k ∈ {1, . . . , p}, where the inequality is due to Cauchy–Schwarz inequality. Use
independence across i (Assumption 1) and subgaussianity (Assumption 3) to invoke Propo-
sition F.3 in Appendix F, such that

max
1≤l≤p

max
1≤k≤p

∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(z2
i,t,l z2

i,t,kε
2
i,t −E[z2

i,t,l z2
i,t,kε

2
i,t ])

∣∣∣ = Op

(√ (log(p2T ))7

N

)

and

max
1≤l≤p

max
1≤k≤p

max
1≤i≤N

max
1≤t≤T

E[z2
i,t,l z2

i,t,kε
2
i,t ] ≤ A = O(1)
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for some positive constant A. Then, by the triangle inequality,

max
1≤l≤p

max
1≤k≤p

∣∣∣ 1

NT

N∑
i=1

T∑
t=1

z2
i,t,l z2

i,t,kε
2
i,t

∣∣∣ = Op

(√
(log(p ∨ T ))7

N

)
+ O(1). (D.12)

Combining (D.11) and (D.12), we have

∥∥∥∥ 1

N T

N∑
i=1

T∑
t=1

zi,t z
′
i,tεi,tπ

′
i,t (γ̂ −γ )

∥∥∥∥
∞

= Op

(
(log(p ∨ T ))7/4

N1/4
∨1

)( 1

N T

∥∥�(γ̂ −γ )∥∥2
)1/2

.

(D.13)

We now consider the second term of (D.10). A typical element of
1

NT
∑N

i=1
∑T

t=1 zi,t z′
i,t [π ′

i,t (γ̂ − γ )]2 is 1
NT

∑N
i=1

∑T
t=1 zi,t,l zi,t,k [π ′

i,t (γ̂ − γ )]2 ≤
max1≤i≤N max1≤t≤T |zi,t,l zi,t,k | 1

NT ‖�(γ̂ −γ )‖2 for some l,k ∈ {1, . . . , p}. Recall that
we have proved in the proof of Lemma B.7 that ‖zi,t,l zi,t,k‖ψ1 ≤ (1 + K )/C . Using the

definition of the Orlicz norm, we have Ee
C

1+K |zi,t,l zi,t,k | ≤ 2. Using Markov’s inequality,
we have for any ε > 0

P

(
max

1≤l≤p
max

1≤k≤p
max

1≤i≤N
max

1≤t≤T
|zi,t,l zi,t,k | ≥ ε

)
≤

p∑
l=1

p∑
k=1

N∑
i=1

T∑
t=1

Ee
C

1+K |zi,t,l zi,t,k |

e
C

1+K ε
≤ 2N T p2e− C

1+K ε .

Set ε = M log(p2 NT ) for some M > 0 and note that the upper bound of the preceding
probability becomes arbitrarily small for N and M sufficiently large. Thus,

max
1≤l≤p

max
1≤k≤p

max
1≤i≤N

max
1≤t≤T

|zi,t,l zi,t,k | = Op(log(p2NT ))

and we get∥∥∥∥∥∥
1

NT

N∑
i=1

T∑
t=1

zi,t z′
i,t [π ′

i,t (γ̂ −γ )]2

∥∥∥∥∥∥∞
= Op(log(p ∨ N ∨ T ))

1

NT
‖�(γ̂ −γ )‖2. (D.14)

Combining (D.13) and (D.14), conclude∥∥∥�̂1,N − �̃1,N

∥∥∥∞

= Op

(
(log(p ∨ T ))7/4

N1/4
∨ 1

)( 1

N T

∥∥�(γ̂ −γ )∥∥2
)1/2

+ Op(log(p ∨ N ∨ T ))
1

N T
‖�(γ̂ −γ )‖2.

Therefore, combining the preceding rates with (D.9) one gets

|ρ′
1�̂Z �̂1,N �̂

′
Zρ1 −ρ′

1�̂Z �̃1,N �̂
′
Zρ1|

= Op(h1Ḡλ−ϑ
node)Op

(
(log(p ∨ T ))7/4

N1/4
∨1

)[
1

NT

∥∥�(γ̂ −γ )∥∥2
]1/2

+ Op(h1Ḡλ−ϑ
node)Op(log(p ∨ N ∨ T ))

1

NT
‖�(γ̂ −γ )‖2

= op(1),
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where the last equality is also due to Assumption 6(b)(i)–(ii), which establishes (D.6).
Next, turn to (D.7). Note that

|ρ′
1�̂Z �̃1,N �̂

′
Zρ1 −ρ′

1�̂Z�1,N �̂
′
Zρ1| ≤∥∥�̃1,N −�1,N

∥∥∞
∥∥�̂′

Zρ1
∥∥2

1 .

Given (D.9), we only need to consider ‖�̃1,N −�1,N ‖∞. Using independence across i
(Assumption 1) and subgaussianity (Assumption 3) to invoke Proposition F.3 in Appendix
F such that

∥∥�̃1,N −�1,N
∥∥∞ = max

1≤l≤p
max

1≤k≤p

∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(zi,t,l zi,t,kε
2
i t −E[zi,t,l zi,t,kε

2
i,t ])

∣∣∣ = Op

(√
(log(p2T ))5

N

)
.

(D.15)

Thus,

|ρ′
1�̂Z �̃1,N �̂

′
Zρ1 −ρ′

1�̂Z�1,N �̂
′
Zρ1| = Op

⎛
⎝
√
(log(p ∨ T ))5

N
h1Ḡλ−ϑ

node

⎞
⎠= op(1),

where the last equality is due to Assumption 6(a)(i), establishing (D.7).
To prove (D.8) invoke Lemma F.10 in Appendix F:

|ρ′
1�̂Z�1,N �̂

′
Zρ1 −ρ′

1�Z�1,N�
′
Zρ1| ≤ ‖�1,N ‖∞‖(�̂′

Z −�′
Z )ρ1‖2

1 + 2‖�1,N�
′
Zρ1‖‖(�̂′

Z −�′
Z )ρ1‖

≤ ‖�1,N ‖∞‖(�̂′
Z −�′

Z )ρ1‖2
1 + 2maxeval(�1,N )‖�′

Zρ1‖‖(�̂′
Z −�′

Z )ρ1‖.
First, note that ‖�1,N ‖∞ is uniformly bounded as every entry is an average of uniformly
bounded population moments (see Proposition F.3 in Appendix F).

‖(�̂′
Z −�′

Z )ρ1‖1 ≤
∑

j∈H1

∥∥�̂Z , j −�Z , j
∥∥

1 |ρ1 j | ≤ max
j∈H1

∥∥�̂Z , j −�Z , j
∥∥

1

√
h1

= Op

(
Ḡ

[
(log p)3

N

] 1−ϑ
2 √

h1

)
= op(1), (D.16)

where the first equality is due to (C.12), and the last equality is due to Assumption 6(a)(i).
Next, ‖�′

Zρ1‖ ≤ maxeval(�Z )‖ρ1‖ ≤ maxeval(�Z ) = 1/mineval(�Z ), which is uni-
formly bounded from above by Assumption 4(a). Furthermore,

‖(�̂′
Z −�′

Z )ρ1‖ =
∥∥∥∑

j∈H1

(�̂Z , j −�Z , j )ρ1 j

∥∥∥≤
∑

j∈H1

∥∥∥�̂Z , j −�Z , j

∥∥∥ |ρ1 j |

≤ max
j∈H1

∥∥�̂Z , j −�Z , j
∥∥√h1 = Op

(
Ḡ1/2

[
(log p)3

N

] 2−ϑ
4 √

h1

)
= op(1),

where the second last equality is due to (C.13), and the last equality is due to (D.16). Thus,
we have established (D.8) concluding the proof of (D.3) is op(1).

(D.4) is op(1). Define �̃2,N := 1√
N T

∑N
i=1

∑T
t=1 ε

2
i,t zi,t d ′

i,t . It suffices to show

|ρ′
1�̂Z �̂2,Nρ2 −ρ′

1�̂Z �̃2,Nρ2| = op(1) (D.17)

|ρ′
1�̂Z �̃2,Nρ2 −ρ′

1�̂Z�2,Nρ2| = op(1) (D.18)

|ρ′
1�̂Z�2,Nρ2 −ρ′

1�Z�2,Nρ2| = op(1). (D.19)
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Consider (D.17) first. Note that

|ρ′
1�̂Z �̂2,Nρ2 −ρ′

1�̂Z �̃2,Nρ2| ≤
∥∥∥ρ′

1�̂Z

(
�̂2,N − �̃2,N

)∥∥∥∞ ‖ρ2‖1

≤∥∥ρ′
1�̂Z

∥∥
1

∥∥�̂2,N − �̃2,N
∥∥∞

√
h2 = Op

(√
h1h2Ḡλ−ϑ

node

)∥∥�̂2,N − �̃2,N
∥∥∞ ,

where the last equality is due to (D.9). In addition,

∥∥∥�̂2,N − �̃2,N

∥∥∥∞ =
∥∥∥∥ 1√

N T

N∑
i=1

T∑
t=1

ε̂2
i,t zi,t d ′

i,t − 1√
N T

N∑
i=1

T∑
t=1

ε2
i,t zi,t d ′

i,t

∥∥∥∥
∞

≤ 2

∥∥∥∥ 1√
N T

N∑
i=1

T∑
t=1

zi,t d ′
i,t εi,tπ

′
i,t (γ̂ −γ )

∥∥∥∥
∞

+
∥∥∥∥ 1√

N T

N∑
i=1

T∑
t=1

zi,t d ′
i,t [π ′

i,t (γ̂ −γ )]2
∥∥∥∥
∞
.

(D.20)

Consider the first term of (D.20). A typical element of
1√
N T

∑N
i=1

∑T
t=1 zi,t d ′

i,t εi,tπ
′
i,t (γ̂ −γ ) is

1√
N T

NT∑
j=1

zj,ldj,kεjπ
′
j (γ̂ −γ )≤ 1√

N T

( NT∑
j=1

z2
j,ld

2
j,kε

2
j

)1/2( NT∑
j=1

[π ′
j (γ̂ −γ )]2

)1/2

=
(

1

T

N∑
i=1

T∑
t=1

z2
i,t,l d

2
i,t,k ε

2
i,t

)1/2
1√
N T

∥∥�(γ̂ −γ )∥∥=
(

1

T

T∑
t=1

z2
k,t,l ε

2
k,t

)1/2
1√
N T

∥∥�(γ̂ −γ )∥∥
for some l ∈ {1, . . . , p} and k ∈ {1, . . . ,N} where the inequality is due to Cauchy–Schwarz
inequality. By subgaussianity, Assumption 3, we can use the same technique as in (F.3) in

Proposition F.3 in Appendix F to prove Ee
D
∣∣∣ 1

T

∑T
t=1 z2

i,t,l ε
2
i,t

∣∣∣1/2 ≤ BT for positive constants
D, B. Using Markov’s inequality, we have for ε > 0

P

(
max

1≤l≤p
max

1≤k≤N

∣∣∣ 1

T

T∑
t=1

z2
k,t,lε

2
k,t

∣∣∣ ≥ ε

)
≤

p∑
l=1

N∑
k=1

Ee
D
∣∣∣ 1

T

∑T
t=1 z2

k,t,lε
2
k,t

∣∣∣1/2
eDε1/2 ≤ BpNT e−Dε1/2

.

Set ε = M(log(pNT ))2 for some M > 0 and note that the upper bound of the pre-
ceding probability becomes arbitrarily small for N and M sufficiently large. Thus,

max1≤l≤p max1≤k≤N

∣∣∣ 1
T
∑T

t=1 z2
k,t,lε

2
k,t

∣∣∣ = Op((log(pNT ))2). Therefore,

∥∥∥∥ 1√
N T

N∑
i=1

T∑
t=1

zi,t d ′
i,t εi,tπ

′
i,t (γ̂ −γ )

∥∥∥∥
∞

≤
(

max
1≤l≤p

max
1≤k≤N

1

T

T∑
t=1

z2
k,t,lε

2
k,t

)1/2
1√
N T

∥∥�(γ̂ −γ )∥∥
≤ Op(log(pN T ))

1√
N T

∥∥�(γ̂ −γ )∥∥ . (D.21)

Now consider the second term of (D.20). A typical element of
1√
N T

∑N
i=1

∑T
t=1 zi,t d ′

i,t [π ′
i,t (γ̂ −γ )]2 is

1√
N T

N∑
i=1

T∑
t=1

zi,t,l di,t,k [π ′
i,t (γ̂ −γ )]2 ≤ max

1≤i≤N
max

1≤t≤T

√
N |zi,t,l di,t,k | 1

NT
‖�(γ̂ −γ )‖2

≤ max
1≤t≤T

√
N |zk,t,l | 1

NT
‖�(γ̂ −γ )‖2
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for some l ∈ {1, . . . , p}, k ∈ {1, . . . ,N}. Using Markov’s inequality, we have for any ε > 0

P

(
max

1≤l≤p
max

1≤k≤N
max

1≤t≤T
|zk,t,l | ≥ ε

)
≤

p∑
l=1

N∑
k=1

T∑
t=1

P
(|zk,t,l | ≥ ε

)≤ pNT
K

2
e−Cε2

.

Set ε = √
M log(pNT ) for some M > 0 to see that the upper bound of the pre-

ceding probability becomes arbitrarily small for N and M sufficiently large. Thus,
max1≤l≤p max1≤k≤N max1≤t≤T |zk,t,l | = Op(

√
log(pNT )). In total,

∥∥∥∥ 1√
N T

N∑
i=1

T∑
t=1

zi,t d
′
i,t [π

′
i,t (γ̂ −γ )]2

∥∥∥∥
∞

≤ max
1≤l≤p

max
1≤k≤N

max
1≤t≤T

√
N |zk,t,l | 1

NT
‖�(γ̂ −γ )‖2

= Op(
√

N log(pNT ))
1

NT
‖�(γ̂ −γ )‖2. (D.22)

Therefore, combining (D.21) and (D.22)

|ρ ′
1�̂Z �̂2,Nρ2 −ρ ′

1�̂Z �̃2,Nρ2| ≤∥∥�̂2,N − �̃2,N
∥∥∞ Op(

√
h1h2Ḡλ−ϑ

node)

= Op
(√

h1h2Ḡλ−ϑ
node log(pN T )

) 1√
N T

∥∥�(γ̂ −γ )∥∥+ Op
(√

h1h2Ḡλ−ϑ
node N log(pN T )

) 1

N T
‖�(γ̂ −γ )‖2

= op(1),

where the last equality is due to Assumption 6(b)(iii)–(iv), which establishes (D.17).
Next, turn to (D.18). Note that

|ρ′
1�̂Z �̃2,Nρ2 −ρ′

1�̂Z�2,Nρ2| ≤∥∥�̃2,N −�2,N
∥∥∞

∥∥�̂′
Zρ1

∥∥
1

√
h2.

Given (D.9), it suffices to consider

∥∥�̃2,N −�2,N
∥∥∞ = max

1≤l≤p
max

1≤k≤N

∣∣∣∣ 1√
N T

N∑
i=1

T∑
t=1

(zi,t,l di,t,kε
2
i,t −E[zi,t,l di,t,kε

2
i,t ])

∣∣∣∣
= max

1≤l≤p
max

1≤k≤N

∣∣∣∣ 1√
N T

T∑
t=1

(zk,t,lε
2
k,t −E[zk,t,lε

2
k,t ])

∣∣∣∣ .
By subgaussianity, Assumption 3, we can use the same technique as in (F.3) in Proposition

F.3 in Appendix F to prove EeD| 1
T

∑T
t=1(zk,t,l ε

2
k,t −E[zk,t,l ε

2
k,t ])|2/3 ≤ BT for some positive

constant B. Using Markov’s inequality, we have for any ε > 0

P

(
max

1≤l≤p
max

1≤k≤N

∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t −E[zk,t,lε

2
k,t ])

∣∣∣ ≥ ε

)
≤

p∑
l=1

N∑
k=1

P

(∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t −E[zk,t,lε

2
k,t ])

∣∣∣ ≥ ε

)

≤
p∑

l=1

N∑
k=1

Ee
D
∣∣∣ 1

T

∑T
t=1 (zk,t,l ε

2
k,t −E[zk,t,l ε

2
k,t ])

∣∣∣2/3
eDε2/3 ≤ BpNT e−Dε2/3

.

Set ε =
√

M(log(pNT ))3 for some M > 0 and note that the upper bound of the preceding
probability becomes arbitrarily small for N and M sufficiently large. Thus,

max
1≤l≤p

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t −E[zk,t,lε

2
k,t ])

∣∣∣ = Op
(√
(log(pNT ))3

)
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and so

∥∥�̃2,N −�2,N
∥∥∞ = 1√

N
max

1≤l≤p
max

1≤k≤N

∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t −E[zk,t,lε

2
k,t ])

∣∣∣= Op

(√ (log(pN T ))3

N

)
.

(D.23)

In total,

|ρ′
1�̂Z �̃2,Nρ2 −ρ′

1�̂Z�2,Nρ2| = Op

(√ (log(p ∨ N ∨ T ))3h1h2Ḡλ−ϑ
node

N

)
= op(1),

where the last equality is due to Assumption 6(a)(ii), establishing (D.18).
We now establish (D.19).

|ρ′
1�̂Z�2,Nρ2 −ρ′

1�Z�2,Nρ2| ≤ ‖�2,N ‖∞‖(�̂′
Z −�′

Z )ρ1‖1
√

h2

= ‖�2,N ‖∞Op(Ḡλ
1−ϑ
node

√
h1h2)= O (1/

√
N )Op(Ḡλ

1−ϑ
node

√
h1h2)= op(1),

where the first equality is due to (D.16), the second equality is due to the definition of
�2,N and (F.1), and the last equality is due to Assumption 6(a)(ii) and 4(b). Thus, we have
established (D.19), concluding the proof that (D.4) is op(1).

(D.5) is op(1). We now prove that (D.5) is op(1). First,

|ρ′
2�̂3,Nρ2 −ρ′

2�3,Nρ2| ≤∥∥�̂3,N −�3,N
∥∥∞ h2 ≤ h2

(∥∥�̂3,N − �̃3,N
∥∥∞ +∥∥�̃3,N −�3,N

∥∥∞
)
,

where �̃3,N := 1
T
∑N

i=1
∑T

t=1 ε
2
i,t di,t d ′

i,t . We consider
∥∥�̂3,N − �̃3,N

∥∥∞ first.

∥∥∥�̂3,N − �̃3,N

∥∥∥∞ =
∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

ε̂2
i,t di,t d ′

i,t − 1

T

N∑
i=1

T∑
t=1

ε2
i,t di,t d ′

i,t

∥∥∥∥
∞

≤ 2

∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

di,t d ′
i,t εi,tπ

′
i,t (γ̂ −γ )

∥∥∥∥
∞

+
∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

di,t d ′
i,t [π ′

i,t (γ̂ −γ )]2
∥∥∥∥
∞
. (D.24)

Consider the first term of (D.24). A typical element of 1
T
∑N

i=1
∑T

t=1 di,t d ′
i,t εi,tπ

′
i,t (γ̂ −

γ ) is

1

T

NT∑
j=1

dj,l dj,kεjπ
′
j (γ̂ −γ ) ≤ 1

T

(NT∑
j=1

d2
j,l d

2
j,kε

2
j

)1/2(NT∑
j=1

[π ′
j (γ̂ −γ )]2

)1/2

=
(

1

T

N∑
i=1

T∑
t=1

d2
i,t,l d

2
i,t,kε

2
i,t

)1/2
1√
T

∥∥�(γ̂ −γ )∥∥=
(

1

T

T∑
t=1

ε2
k,t

)1/2
1√
T

∥∥�(γ̂ −γ )∥∥
for some l,k ∈ {1, . . . ,N}, where the inequality is due to Cauchy–Schwarz inequality. By
Assumption 3 we have P(|ε2

i,t | ≥ ε) ≤ P(|εi,t | ≥ ε1/2)≤ 1
2 K e−Cε for every ε > 0. It fol-

lows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖ε2
i,t ‖ψ1 ≤ (1+ K/2)/C

for all i and t . Hence, by subadditivity of the Orlicz norm and Jensen’s inequality,
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‖ε2
i,t −E[ε2

i,t ]‖ψ1 ≤ 2‖ε2
i,t ‖ψ1 ≤ (2+ K )/C . Using the definition of the Orlicz norm, we

have Eexp( C
2+K |ε2

i,t −E[ε2
i,t ]|) ≤ 2. Use independence of εi,t across t to invoke Proposi-

tion F.2 in Appendix F for D = C
2+K and α = 1/3 to conclude

P

(∣∣∣ T∑
t=1

(ε2
i,t −E[ε2

i,t ])
∣∣∣≥ T ε

)
≤ Ae−B(ε2T )1/3 ,

for positive constants A and B. Setting ε =
√

M(log N)3
T for some M > 0

(
ε � 1√

T

)
, one

has

P

(
max

1≤k≤N

∣∣∣ T∑
t=1

(ε2
k,t −E[ε2

k,t ])
∣∣∣ ≥ T ε

)
≤

N∑
k=1

P

(∣∣∣ T∑
t=1

(ε2
k,t −E[ε2

k,t ])
∣∣∣ ≥ T ε

)
≤ AN1−B M1/3

.

The upper bound of the preceding probability becomes arbitrarily small for N and M
sufficiently large. Hence,

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(ε2
k,t −E[ε2

k,t ])
∣∣∣= Op

(√
(log N)3

T

)
. (D.25)

Furthermore, since max1≤k≤N max1≤t≤T E[ε2
k,t ] ≤ max1≤k≤N max1≤t≤T ‖ε2

k,t ‖ψ1 ≤
(1+ K/2)/C = O(1)

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

ε2
k,t

∣∣∣≤ max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(ε2
k,t −E[ε2

k,t ])
∣∣∣+ max

1≤k≤N
max

1≤t≤T
E[ε2

k,t ] = Op

(√ (log N )3

T

)
+ O(1).

(D.26)

Therefore,∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

di,t d ′
i,t εi,tπ

′
i,t (γ̂ −γ )

∥∥∥∥
∞

= Op

( (log N)3/4

T 1/4
∨1

) 1√
T

‖�(γ̂ −γ )‖. (D.27)

Now consider the second term of (D.24). A typical element of
1
T
∑N

i=1
∑T

t=1 di,t d ′
i,t [π ′

i,t (γ̂ −γ )]2 is

1

T

N∑
i=1

T∑
t=1

di,t,l di,t,k [π ′
i,t (γ̂ −γ )]2 ≤ max

1≤i≤N
max

1≤t≤T
|di,t,l di,t,k | 1

T
‖�(γ̂ −γ )‖2 = 1

T
‖�(γ̂ −γ )‖2,

(D.28)

uniformly over l,k ∈ {1, . . . ,N}. Combining (D.27) and (D.28), we have∥∥∥�̂3,N − �̃3,N

∥∥∥∞ = Op

( (log N)3/4

T 1/4
∨1

) 1√
T

‖�(γ̂ −γ )‖+ 1

T
‖�(γ̂ −γ )‖2. (D.29)

Next, consider
∥∥∥�̃3,N −�3,N

∥∥∥∞.

∥∥∥�̃3,N −�3,N

∥∥∥∞ = max
1≤l≤N

max
1≤k≤N

∣∣∣ 1

T

N∑
i=1

T∑
t=1

(ε2
i,t di,t,l di,t,k −E[ε2

i,t di,t,l di,t,k ])
∣∣∣

= max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(ε2
k,t −E[ε2

k,t ])
∣∣∣ = Op

(√
(log N)3

T

)
, (D.30)
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where the last equality is due to (D.25). Summing up (D.29) and (D.30) yields

|ρ′
2�̂3,Nρ2 −ρ′

2�3,Nρ2|

= h2Op

( (log N)3/4

T 1/4
∨1

) 1√
T

‖�(γ̂ −γ )‖+h2
1

T
‖�(γ̂ −γ )‖2 + Op

(
h2

√
(log N)3

T

)
= op(1),

where the last equality is due to Assumptions 6(b)(v), which, in turns, implies that (D.5) is
op(1).

Thus, we have proved (D.2). (3.8) then follows trivially since the conclusions of Theo-
rem 1 and Corollary A.1 are uniform over the set F(ν,E) and the true parameter vector
only entered the above arguments when these results were used.

D.1.2. Numerators of t1 and t ′1. We now show that the numerators of t1 and t ′1 are
asymptotically equivalent, i.e.,

|ρ′�̂S−1�′ε−ρ′�S−1�′ε| = op(1). (D.31)

Note that

|ρ ′�̂S−1�′ε−ρ ′�S−1�′ε| ≤ ‖ρ ′(�̂−�)‖1‖S−1�′ε‖∞ = ‖ρ ′
1(�̂Z −�Z )‖1‖S−1�′ε‖∞

= Op(Ḡλ
1−ϑ
node

√
h1)

( 1√
NT

∥∥Z ′ε
∥∥∞ ∨ 1√

T

∥∥D′ε
∥∥∞

)
= Op(Ḡλ

1−ϑ
node

√
h1)Op (

√
(log(p ∨ N))3)= op(1),

where the second equality is due to (D.16), and the third equality is due to (B.12) and
(B.13), and the last equality is due to Assumption 6(a)(iii).

D.1.3. t ′1
d−→ N(0,1). We now prove that t ′1 is asymptotically distributed as a standard

normal by verifying (i)–(iii) of Theorem F.2 in Appendix F. Note that

t ′1 := ρ′�S−1�′ε√
ρ′���ε�′ρ

=
ρ′�S−1∑N

i=1
∑T

t=1

( zi,t εi,t
di,t εi,t

)
√
ρ′���ε�′ρ

=
ρ′�S−1∑k

j=1

( zj εj
dj εj

)
√
ρ′���ε�′ρ

,

where k := NT . In the proof of Lemma B.5, we have shown that t ′1 is a martingale differ-
ence array with variance

var(t ′1)= E[t ′21 ] = ρ′�S−1
E[�′εε′�]S−1�′ρ
ρ′���ε�′ρ = 1,

where we have used the definition of ��ε . We have already shown in (D.1) that the de-
nominator of t ′1 is uniformly bounded away from zero. Thus, verifying that t ′1 satisfies (i)
and (ii) of Theorem F.2 in Appendix F is equivalent to verifying that the numerator of t ′1
satisfies (i) and (ii) of Theorem F.2. First, note that

∥∥ρ′
1�Z

∥∥
1 =

∥∥∥∥∑
j∈H1

ρ1 j�
′
Z , j

∥∥∥∥
1

≤
∑

j∈H1

|ρ1 j |
∥∥∥�′

Z , j

∥∥∥
1

= O(
√

h1Ḡλ−ϑ
node), (D.32)
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where the last equality is due to (C.18). Next,∣∣∣ρ′�S−1
( zi,tεi,t

di,tεi,t

)∣∣∣ ≤ ∣∣∣ρ′
1�Z

zi,tεi,t√
N T

∣∣∣+∣∣∣ρ2,iεi,t√
T

∣∣∣ ≤ ∥∥ρ′
1�Z

∥∥
1 max

1≤l≤p

∣∣∣ zi,t,lεi,t√
N T

∣∣∣+ ‖ρ2‖∞|εi,t |√
T

�
√

h1Ḡλ−ϑ
node max

1≤l≤p

∣∣∣ zi,t,lεi,t√
N T

∣∣∣+ ‖ρ2‖∞|εi,t |√
T

,

where the last inequality due to (D.32). We have already shown in the proof of Lemma B.5
that zi,t,lεi,t has uniformly bounded ψ1-Orlicz norm. The same is the case for εi,t . Hence,

∥∥∥√h1Ḡλ−ϑ
node max

1≤l≤p

∣∣∣ zi,t,l εi,t√
N T

∣∣∣+ ‖ρ2‖∞|εi,t |√
T

∥∥∥
ψ1

≤
√

h1Ḡλ−ϑ
node

N T

∥∥∥ max
1≤l≤p

zi,t,l εi,t

∥∥∥
ψ1

+ ‖ρ2‖∞√
T

∥∥εi,t
∥∥
ψ1

�

√
h1Ḡλ−ϑ

node

N T
log(1+ p) max

1≤l≤p

∥∥zi,t,l εi,t
∥∥
ψ1

+ ‖ρ2‖∞√
T

∥∥εi,t
∥∥
ψ1

�

√
h1Ḡλ−ϑ

node

N T
log(1+ p)+ ‖ρ2‖∞√

T
,

for all i and T , where the first rate inequality is due to Lemma 2.2.2 in van der Vaart and
Wellner (1996). Using Lemma 2.2.2 in van der Vaart and Wellner (1996) one more time,

∥∥∥ max
1≤i≤N

max
1≤t≤T

∣∣∣ρ′�S−1
( zi,t εi,t

di,tεi,t

)∣∣∣∥∥∥
ψ1

� log(1+ N T )

[√
h1Ḡλ−ϑ

node

N T
log(1+ p)+ ‖ρ2‖∞√

T

]
= o(1),

where the last equality is due to Assumption 6(a)(iv)–(v). Since ‖U‖Lr ≤ r !‖U‖ψ1 for any
random variable U (van der Vaart and Wellner, 1996, p95), we conclude that (i) and (ii) of
Theorem F.2 are satisfied.

We now verify (iii) of Theorem F.2. That is,

∑kN
j=1

[
ρ′�S−1

( zj εj
dj εj

)]2

ρ′���ε�′ρ =
ρ′�

(�̃1,N �̃2,N
�̃′

2,N �̃3,N

)
�′ρ

ρ′���ε�′ρ
p−→ 1.

Since we have already shown in (D.1) that the denominator of t ′1 is uniformly bounded
away from zero, it suffices to show∣∣∣ρ′�

(�̃1,N �̃2,N
�̃′

2,N �̃3,N

)
�′ρ−ρ′���ε�′ρ

∣∣∣ = op(1). (D.33)

The left-hand side of (D.33) can be bounded by∣∣∣ρ′�
(�̃1,N �̃2,N
�̃′

2,N �̃3,N

)
�′ρ−ρ′���ε�′ρ

∣∣∣
≤ |ρ′

1�Z �̃1,N�
′
Zρ1 −ρ′

1�Z�1,N�
′
Zρ1| (D.34)

+2|ρ′
1�Z �̃2,Nρ2 −ρ′

1�Z�2,Nρ2| (D.35)

+|ρ′
2�̃3,Nρ2 −ρ′

2�3,Nρ2|. (D.36)

Thus, we establish that (D.34), (D.35), and (D.36) are op(1). Consider (D.34) first.

|ρ′
1�Z �̃1,N�

′
Zρ1 −ρ′

1�Z�1,N�
′
Zρ1| ≤ ‖�̃1,N −�1,N ‖∞ ‖�′

Zρ1‖2
1

= Op

(√
(log(p2T ))5

N

)
O(h1Ḡλ−ϑ

node)= op(1),
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where the first equality is due to (D.32) and (D.15), and the last equality is due to Assump-
tion 6(a)(i). Now consider (D.35).

|ρ′
1�Z �̃2,Nρ2 −ρ′

1�Z�2,Nρ2| ≤ ‖�̃2,N −�2,N ‖∞ ‖�′
Zρ1‖1 ‖ρ2‖1

= Op

(√
(log(pNT ))3h1h2Ḡλ−ϑ

node
N

)
= op(1),

where the first equality is due to (D.23), and the last equality is due to Assumption 6(a)(ii).
Finally, consider (D.36).

|ρ′
2�̃3,Nρ2 −ρ′

2�3,Nρ2| ≤ ‖�̃3,N −�3,N ‖∞ ‖ρ2‖2
1 = Op

(√ (log N)3

T

)
O(h2)= op(1),

where the first equality is due to (D.30), and the last equality is due to Assumption 6(b)(v).
Therefore, we have established (D.33) and t ′1 is asymptotically standard gaussian.

D.1.4. t2 = op(1). Last, we prove that t2 = op(1). Since the denominator of t2 is
bounded away from zero by a positive constant with probability approaching one by (D.1)
and (D.2), it suffices to show ρ′�= op(1).

|ρ′�| =
∣∣∣∑

j∈H

ρj�j

∣∣∣ ≤ √
h max

j∈H
|�j | ≤ √

h‖S(γ̂ −γ )‖1 max
j∈H

∥∥�̂′
j�N − I′p+N, j

∥∥
∞

= √
h‖S

(
γ̂ −γ )‖1

(
max
j∈H1

∥∥∥∥
( 1

N T Z ′ Z�̂Z, j − ej
1

T
√

N
D′ Z�̂Z, j

)∥∥∥∥
∞

∨max
i∈H2

∥∥∥∥
( 1

T
√

N
Z ′ Dei

0

)∥∥∥∥
∞

)

= √
h‖S(γ̂ −γ )‖1

(
max
j∈H1

(∥∥∥ 1

NT
Z ′ Z�̂Z, j − ej

∥∥∥
∞

∨
∥∥∥ 1

T
√

N
D′ Z�̂Z, j

∥∥∥
∞

)
∨max

i∈H2

∥∥∥∥ 1

T
√

N
Z ′ D

∥∥∥∥∞

)

≤ √
h‖S(γ̂ −γ )‖1

(
max
j∈H1

(∥∥∥ 1

NT
Z ′ Z�̂Z, j − ej

∥∥∥
∞

∨∥∥�̂Z, j
∥∥

1

∥∥∥ 1

T
√

N
D′ Z

∥∥∥
∞

)
∨max

i∈H2

∥∥∥∥ 1

T
√

N
Z ′ D

∥∥∥∥∞

)
,

where �̂j is the j th row of �̂ but written as a (p + N)× 1 vector, and Ip+N, j is the j th
row of Ip+N but written as a (p + N)×1 vector. Note that

max
j∈H1

∥∥∥ 1

NT
Z ′ Z�̂Z , j −ej

∥∥∥∞ ≤ max
j∈H1

λnode

τ̂2
j

= Op(λnode),

where the inequality is due to the extended KKT conditions (G.6), and the equality is due
to (C.10). Recall that by (B.15) we have that for every ε > 0

P

(
max

1≤i≤N
max

1≤l≤p

∣∣∣ 1√
N T

T∑
t=1

zi,t,l

∣∣∣≥ ε
)

≤
N∑

i=1

p∑
l=1

P

(∣∣∣ 1√
N T

T∑
t=1

zi,t,l

∣∣∣≥ ε
)

≤ ApNe−Bε2 N ,

for positive constants A, B. Setting ε =
√

M log(pN)
N (M > 0) makes the upper bound of

the preceding inequality arbitrarily small for sufficiently large N and M , such that

∥∥�̂Z , j
∥∥

1

∥∥∥ 1

T
√

N
D′ Z

∥∥∥
∞

= Op

(√
Ḡλ−ϑ

node log(pN)

N

)
.
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Thus, |ρ′�| = op(1) by Assumption 6(c). For later reference,

sup
γ∈F(ν,E)

|ρ′�| = op(1) (D.37)

by the same reasoning leading to the uniform validity of (3.8). �

APPENDIX E

E.1. Proof of Theorem 3

Proof of Theorem 3. For every ε > 0, define

A1,N :=
{

sup
γ∈F(ν,E)

|ρ′�|< ε
}

A2,N :=
{

sup
γ∈F(ν,E)

∣∣∣∣
√
ρ′�̂�̂�ε�̂′ρ√
ρ′���ε�′ρ

−1

∣∣∣∣< ε
}

A3,N := {|ρ′�̂S−1�′ε−ρ′�S−1�′ε|< ε} .
By (D.37), (3.8), (D.1), and (D.31), the probabilities of the preceding three events all tend
to one. Thus, for every t ∈ R,

∣∣∣∣P
(

ρ′S (γ̃ −γ )√
ρ′�̂�̂�ε�̂′ρ

≤ t

)
−�(t)

∣∣∣∣
≤
∣∣∣∣P
(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)
−�(t)

∣∣∣∣+P

(
∪3

i=1 Ac
i,N

)
.

We consider P
(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)
first.

P

(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≤ P

(
ρ′�S−1�′ε√
ρ′���ε�′ρ

≤ t (1+ ε)+ ε+ ε√
ρ′���ε�′ρ

)
≤ P

(
ρ′�S−1�′ε√
ρ′���ε�′ρ

≤ t (1+ ε)+2Dε

)

for some positive constant D, where the first and second inequalities are due to the fact that
ρ′���ε�′ρ is uniformly bounded away from zero, see (D.1). Since the last inequality in
the above does not depend on γ ,

sup
γ∈F(ν,E)

P

(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≤ P

(
ρ′�S−1�′ε√
ρ′���ε�′ρ

≤ t (1+ε)+2Dε

)
.
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By the asymptotic normality of t ′1, for N sufficiently large,

sup
γ∈F(ν,E)

P

(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≤�(t (1+ε)+2Dε)+ε.

As the above arguments are valid for every ε > 0, we can use the continuity of q �→ �(q)
to conclude that for every δ > 0, one can choose ε sufficiently small such that

sup
γ∈F(ν,E)

P

(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≤�(t)+ δ+ε.

(E.1)

We next find a lower bound for P
(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)
.

P

(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≥ P

(
ρ′�S−1�′ε√
ρ′���ε�′ρ

≤ t (1−ε)− ε+ε√
ρ′���ε�′ρ

, A1,N , A2,N , A3,N

)

≥ P

(
ρ′�S−1�′ε√
ρ′���ε�′ρ

≤ t (1−ε)−2Dε, A1,N , A2,N , A3,N

)

≥ P

(
ρ′�S−1�′ε√
ρ′���ε�′ρ

≤ t (1−ε)−2Dε

)
+P(∩3

i=1 Ai,N )−1

for some positive constant D, where the first and second inequalities are due to the fact that
ρ′���ε�′ρ is uniformly bounded away from zero, see (D.1). Since the last inequality in
the above display does not depend on γ , and P(∩3

i=1 Ai,N ) can be made arbitrarily close
to one for sufficiently large N ,

inf
γ∈F(ν,E)

P

(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≥ P

(
ρ′�S−1�′ε√
ρ′���ε�′ρ

≤ t (1−ε)−2Dε

)
−ε.

By the asymptotic normality of t ′1, for N sufficiently large,

inf
γ∈F(ν,E)P

(
ρ ′�̂S−1�′ε√
ρ ′�̂�̂�ε�̂′ρ

− ρ ′�√
ρ ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≥�(t (1−ε)−2Dε)−2ε.

As the above arguments are valid for every ε > 0, we can use the continuity of q �→ �(q)
to conclude that for every δ > 0, one can choose ε sufficiently small such that

inf
γ∈F(ν,E)P

(
ρ′�̂S−1�′ε√
ρ′�̂�̂�ε�̂′ρ

− ρ′�√
ρ′�̂�̂�ε�̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≥�(t)− δ−2ε. (E.2)
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Thus, by (E.1), (E.2) and the fact that supγ∈F(ν,E)P(∪3
i=1 Ac

i,N )= P(∪3
i=1 Ac

i,N )= o(1),
we have proved (4.1) (the uniformity over t ∈ R follows from the fact that �(t) is contin-
uous). To see (4.2), note that

P

(
αj /∈

[
α̃j − z1−δ/2

σ̃α, j√
NT

, α̃j + z1−δ/2
σ̃α, j√

NT

])
= P

(∣∣∣∣
√

NT (α̃j −αj )

σ̃z, j

∣∣∣∣> z1−δ/2
)

≤ 1−P

(√
NT (α̃j −αj )

σ̃z, j
≤ z1−δ/2

)
+P

(√
NT (α̃j −αj )

σ̃z, j
≤ −z1−δ/2

)
.

Thus, taking the supremum over γ ∈ F(ν,E) and letting N tend to infinity yields (4.2) via
(4.1). The proof is the same for (4.3). Next, we turn to (4.4).

√
N T sup

γ∈F (ν,E)
diam

([
α̃j − z1−δ/2

σ̃α, j√
N T

, α̃j + z1−δ/2
σ̃α, j√

N T

])

= 2z1−δ/2
(√

[�Z�1,N�Z ]j j +op(1)
)

≤ 2z1−δ/2
(√

maxeval(�1,N )

mineval(�Z )
+op(1)

)
= Op(1),

where the first equality is due to (3.8), and the last equality is due to Assumptions 4(a) and
6(d). Similarly, we can prove (4.5):

√
T sup
γ∈F (ν,E)

diam
([
η̃i − z1−δ/2

σ̃η,i√
T
, η̃i + z1−δ/2

σ̃η,i√
T

])
= 2z1−δ/2

(√
[�3,N ]ii +op(1)

)

= 2z1−δ/2
([

1

T

T∑
t=1

E[ε2
i,t ]

]1/2

+op(1)

)
= Op(1),

where the third equality follows from the arguments above (D.26). �

APPENDIX F

In this appendix we prove some auxiliary results used throughout the previous appen-
dices.

PROPOSITION F.1. Let A and B be two positive semidefinite (p −1)× (p −1) ma-
trices and δ := max1≤l,k≤p−1 |Alk − Blk |. For any integer r ∈ {1, . . . , p −1}, one has

κ2(B,r)≥ κ2(A,r)− δ16r.

Proof. The proof is exactly the same as that of Lemma B.6. �

THEOREM F.1 (Fan, Grama, and Liu, 2012). Let α ∈ (0,1). Assume that (Xi ,Fi )
n
i=1

is a sequence of supermartingale differences satisfying supi E[e|Xi |
2α

1−α ] ≤ C1 for some
constant C1 ∈ (0,∞). Define Sk :=∑k

i=1 Xi . Then, for all ε > 0,

P

(
max

1≤k≤n
Sk ≥ nε

)
≤ C(α,n,ε)e−(ε/4)2αnα ,
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where

C(α,n,ε) := 2+35C1

[
1

161−α(nε2)α
+ 1

nε2

(
3(1−α)

2α

) 1−α
α
]
.

The preceding theorem is not exactly the same as Theorem 2.1 in Fan et al. (2012),
but taken from the proof of Theorem 2.1 in Fan et al. (2012). This theorem generalises
Theorem 3.2 in Lesigne and Volny (2001).

PROPOSITION F.2. Let α ∈ (0,1). Assume that (Xi ,Fi )
n
i=1 is a sequence of mar-

tingale differences satisfying supi E[eD|Xi |
2α

1−α ] ≤ C1 for some positive constant D. (C1
could change with the sample size n.) Then, for all ε � 1√

n
,

P

(∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ nε

)
≤ AC1e−K (ε2n)α ,

for positive constants A and K .

Proof. This proposition is a simple adaptation of the preceding theorem. Note that for
some positive constant D,

P

( n∑
i=1

Xi ≥ nε
)

= P

( n∑
i=1

D
1−α
2α Xi ≥ n D

1−α
2α ε

)
= P

( n∑
i=1

Yi ≥ nδ
)
,

where Yi := D
1−α
2α Xi and δ := D

1−α
2α ε. Now (Yi )

n
i=1 is a sequence of martingale differ-

ences satisfying supi E[e|Yi |
2α

1−α ] ≤ C1. Invoking the preceding theorem, we have

P

( n∑
i=1

Yi ≥ nδ
)

≤ C(α,n,δ)e−(δ/4)2αnα .

(−Yi )
n
i=1 is also a sequence of martingale differences satisfying the same exponential

moment condition. Thus,

P

(∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ nε
)

= P

(∣∣∣ n∑
i=1

Yi

∣∣∣ ≥ nδ
)

≤ 2C(α,n,δ)e−(δ/4)2αnα

= 2C(α,n,D
1−α
2α ε)e−(D 1−α

2α ε/4)2αnα ≤ AC1e−K ε2αnα ,

for positive constants A,K , where the last inequality used that if ε � 1√
n

then

2C(α,n,D
1−α
2α ε)≤ AC1 for some positive constant A. �

PROPOSITION F.3. Suppose we have random variables Zl,i,t, j uniformly subgaus-
sian for l = 1, . . . ,L (L ≥ 2 fixed), i = 1, . . . ,N, t = 1, . . . ,T and j = 1, . . . , p. Zl1,i1,t1, j1
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and Zl2,i2,t2, j2 are independent as long as i1 �= i2 regardless of the values of other sub-
scripts. Then,

max
1≤ j≤p

max
1≤t≤T

max
1≤i≤N

E

∣∣∣∣
L∏

l=1

Zl,i,t, j

∣∣∣∣ ≤ A = O(1), (F.1)

for some positive constant A and

max
1≤ j≤p

∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

( L∏
l=1

Zl,i,t, j −E

[ L∏
l=1

Zl,i,t, j

])∣∣∣∣ = Op

(√ (log(pT ))L+1

N

)
. (F.2)

Proof. For every ε ≥ 0, P
(|∏L

l=1 Zl,i,t, j | ≥ ε
) ≤ ∑L

l=1 P
(|Zl,i,t, j | ≥ ε1/L) ≤

L K
2 e−Cε2/L

for positive constants K ,C . Next, using Hölder’s inequaliy, we have

max
1≤ j≤p

max
1≤t≤T

max
1≤i≤N

E

∣∣∣∣
L∏

l=1

Zl,i,t, j

∣∣∣∣ ≤ max
1≤ j≤p

max
1≤t≤T

max
1≤i≤N

L∏
l=1

(
E|Zl,i,t, j |L

) 1
L
.

Uniform subgaussianity implies that
(
E|Zl,i,t, j |L

) 1
L is uniformly bounded.

That is,
(
E|Zl,i,t, j |L

) 1
L ≤ L!‖Zl,i,t, j ‖ψ1 ≤ L!(log2)−1/2‖Zl,i,t, j ‖ψ2 ≤

L!(log2)−1/2 ( 1+K/2
C

)1/2
, where the first two inequalities are taken from p95 of

van der Vaart and Wellner (1996), and the third inequality is due to Lemma 2.2.1 in
van der Vaart and Wellner (1996). (F.1) then follows.

For every ε ≥ 0,

P

(∣∣∣ 1

T

T∑
t=1

( L∏
l=1

Zl,i,t, j −E

[ L∏
l=1

Zl,i,t, j

])∣∣∣≥ ε
)

≤ P

(
max

1≤t≤T

∣∣∣ L∏
l=1

Zl,i,t, j

∣∣∣ ≥ ε− A
)

≤
T∑

t=1

P

(∣∣∣ L∏
l=1

Zl,i,t, j

∣∣∣≥ ε− A∧ ε
)

≤ L

2
T K e−C(ε−A∧ε)2/L ≤ L

2
T K e−C[ε2/L −(A∧ε)2/L ] ≤ T K ′e−Cε2/L

,

for K ′ = L
2 K eC A2/L

and where the second last inequality is due to subadditiv-

ity of the concave function: (x + y)2/L ≤ x2/L + y2/L for x, y ≥ 0, L ≥ 3.
(The inequality (x + y)2/L ≤ x2/L + y2/L for L = 2 is trivial.) Let Xi, j denote
1
T
∑T

t=1
(∏L

l=1 Zl,i,t, j −E[
∏L

l=1 Zl,i,t, j ]
)
. Consider some positive constant D < C .

E

[
eD|Xi, j |2/L

]
=
∫

x∈R

∫ |x |2/L

0
DeDsds P(dx)+1 =

∫ ∞
0

DeDs
P(|Xi, j |> sL/2)ds +1

≤
∫ ∞

0
T K ′ De(D−C)sds +1 = T K ′ D

C − D
+1 ≤ BT, (F.3)

for some positive constant B, where the second equality is by Fubini’s theorem. Then we
can use independence across i to invoke Proposition F.2 in Appendix F with α = 1

L+1 and
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C1 = BT , for ε � 1√
N

,

P

(∣∣∣ N∑
i=1

1

T

T∑
t=1

( L∏
l=1

Zl,i,t, j −E

[ L∏
l=1

Zl,i,t, j

])∣∣∣ ≥ Nε
)

≤ A′T e−K
(
ε2 N

) 1
L+1

for positive constants A′ and K . Setting ε =
√

M(log(pT ))L+1

N

(
� 1√

N

)
for some M > 0,

we have

P

(
max

1≤ j≤p

∣∣∣ N∑
i=1

1

T

T∑
t=1

( L∏
l=1

Zl,i,t, j −E

[ L∏
l=1

Zl,i,t, j

])∣∣∣ ≥ Nε
)

≤ pA′T e−K
(
ε2 N

) 1
L+1 = A′(pT )1−K M

1
L+1

.

The upper bound of the preceding probability becomes arbitrarily small for T and M suf-
ficiently large. Hence (F.2) follows. �

LEMMA F.10. Let A be a symmetric p × p matrix, and v̂ and v ∈ R
p. Then

|v̂ ′ Av̂−v ′ Av| ≤ ‖A‖∞‖v̂−v‖2
1 +2‖Av‖‖v̂ −v‖.

Proof. See Lemma 6.1 in the working-paper version of van de Geer et al. (2014). �

THEOREM F.2 (McLeish, 1974). Let {Xn,i , i = 1, . . . ,kn} be a martingale difference
array with respect to the triangular array of σ -algebras {Fn,i , i = 0, . . . ,kn} (i.e., Xn,i
is Fn,i -measurable and E[Xn,i |Fn,i−1] = 0 almost surely for all n and i) satisfying
Fn,i−1 ⊆ Fn,i for all n ≥ 1. Assume,

(i) maxi≤kn |Xn,i | is uniformly bounded in L2 norm,

(ii) maxi≤kn |Xn,i | p−→ 0, and

(iii)
∑kn

i=1 X2
n,i

p−→ 1.

Then, Sn = ∑kn
i=1 Xn,i

d−→ N(0,1) as n → ∞.

APPENDIX G

G.1. Construction of �̂

In this subsection we show how �̂Z is constructed by nodewise regressions. First, define

φ̂j = argmin
δ∈Rp−1

{
1

NT
‖zj − Z− j δ‖2 +2λnode‖δ‖1

}
, j = 1, . . . , p, (G.1)

where zj is the j th column of Z , Z− j is the NT × (p − 1) submatrix of Z with Z’s j th

column removed, and the (p − 1)× 1 vector φ̂j = {φ̂j,l : l = 1, . . . , p, l �= j}. Thus, φ̂j is
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the Lasso estimator resulting from regressing zj on Z− j . Next, define

Ĉ =

⎛
⎜⎜⎜⎜⎝

1 −φ̂1,2 · · · −φ̂1,p
−φ̂2,1 1 · · · −φ̂2,p
...

...
. . .

...

−φ̂p,1 −φ̂p,2 · · · 1

⎞
⎟⎟⎟⎟⎠

and τ̂2
j = 1

NT ‖zj − Z− j φ̂j ‖2 +λnode‖φ̂j ‖1 as well as T̂ 2 = diag(τ̂2
1 , . . . , τ̂

2
p ). Finally, we

set �̂Z = T̂ −2Ĉ . Let Ĉj denote the j th row of Ĉ and let �̂Z , j denote the j th row of �̂Z

but both written as a p × 1 vectors. Then, �̂Z , j = Ĉj/τ̂
2
j . For any j = 1, . . . , p, the KKT

condition for a minimum in (G.1) are

− 1

NT
Z ′− j (zj − Z− j φ̂j )+λnodewj = 0, (G.2)

where wj is the subdifferential of ‖x‖1 evaluated at φ̂j . Using this, the definition of τ̂j , and

φ̂′
jwj = ‖φ̂j ‖1 yields

τ̂2
j = 1

NT
(zj − Z− j φ̂j )

′(zj − Z− j φ̂j )+λnode ‖φ̂j ‖1 = 1

NT
(zj − Z− j φ̂j )

′zj . (G.3)

Thus, by the definition of �̂Z , j , and as τ̂2
j is bounded away from zero (we shall later argue

rigorously for this)

1

NT
z′

j Z�̂Z , j = 1. (G.4)

Furthermore, the KKT conditions (G.2) can also be written as

1

NT
Z ′− j (zj − Z− j φ̂j )= λnodewj , (G.5)

which implies 1
NT Z ′− j Z�̂Z , j = λnodewj/τ̂

2
j . Combining with (G.4) yields

∥∥∥∥ 1

NT
Z ′ Z�̂Z , j −ej

∥∥∥∥∞
≤ λnode

τ̂2
j

, (G.6)

where ej is the j th basis vector of Rp . Together with an oracle inequality for ‖γ̂ −γ ‖1,
(G.6) provides an upper bound on the j th entry of � in (3.2).

https://doi.org/10.1017/S0266466618000087 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466618000087

