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Abstract

As the southernmost part of the central segment of the Central Asian Orogenic Belt, the
northern Alxa area is characterized by abundant Permian magmatism and records key
information on the geological evolution of the Palaeo-Asian Ocean. This study reports new
zircon U–Pb and Lu–Hf isotopic and whole-rock geochemical data of the early Permian
(285–286Ma) Huisentala gabbro and Huodonghaer diorites from the Zhusileng–Hangwula
Belt in the northern Alxa area. The gabbro is characterized by high Al, Ca, Mg# and light
rare-earth elements, and low K, P and high field strength elements (e.g., Ti, Nb and Ta).
Furthermore, the gabbro shows heterogeneous zircon ϵHf(t) value (−2.5 to þ2.6). The
Huodonghaer diorites show high MgO (3.46–6.32 wt%), Mg# (49–58), Sr (408–617 ppm)
and Ba (223–419 ppm), and low FeOT/MgO (1.27–1.83) and TiO2 (0.48–0.90 wt%), with
geochemical features similar to the high-Mg andesite/diorite. They show radiogenic zircon
ϵHf(t) values of þ1.2 to þ4.9 and high Th/Nb ratios. These features suggest that the
Huisentala gabbro and the Huodonghaer diorites were derived from the partial melting of
mantle peridotite that was metasomatized by subduction-related fluids and by subducted
sediment-derived melts, respectively.

1. Introduction

The Central Asian Orogenic Belt (CAOB), one of the largest accretionary orogens in the
world, is bounded by the Eastern European Craton to the east, the Tarim Craton and North
China Craton to the south and the Siberia Craton to the north (Fig. 1a, Şengör et al. 1993;
Windley et al. 2007; Wilhem et al. 2012; Xiao et al. 2013). The complicated accretionary
processes and considerable continental crustal growth of the CAOB from ca. 1000 to 250 Ma
were associated with the consumption of the Palaeo-Asian Ocean (PAO) (Hong et al. 2004;
Jahn et al. 2004; Xu et al. 2013; Eizenhöfer et al. 2014; Xiao et al. 2018). The northern Alxa
area plays a significant role to constrain the tectonic and crustal evolution of the southern
CAOB (Fig. 1a). The northern Alxa area is characterized by the widespread development of
late Palaeozoic plutons (Zhang et al. 2016, 2017; Liu et al. 2018a, b; Fei et al. 2019; Li et al.
2020; Shi et al. 2020; Song et al. 2020; Zhao et al. 2020). However, its tectonic setting during
the late Palaeozoic is still debated. Previous researchers argued that the central PAO closed
before the early Permian (Fei et al. 2019; Li et al. 2020), and the northern Alxa area
underwent post-collisional extension during the late Palaeozoic, while other scholars
suggested that ocean subduction was still active during the late Palaeozoic, and the central
PAO closed in the early Triassic (Song et al. 2020; Xie et al. 2021).

The northern Alxa area, as the southernmost part of the central segment of the CAOB, is
located at a crucial junction between the Solonker Suture and the Central Tianshan Arc and the
Beishan Orogenic Belt (Fig. 1b). In this study, we present new geochronological, geochemical
and zircon Hf isotopic data for the early Permian gabbro and diorites from the Zhusileng–
Hangwula Belt in the northern Alxa area. These results, combined with published data, are used
to discuss the petrogenesis of the igneous rocks and tectonic setting and to reconstruct the
geological evolutionary history of the central part of the southern CAOB during the late
Palaeozoic.
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2. Geological setting and samples

The northern Alxa area, the southernmost segment of the CAOB,
is divided into two parts by the Yagan fault: from north to south,
the Yagan Belt and the Zhusileng–Hangwula Belt (Fig. 1a). Two
important faults, the Enger Us fault and the Quagan Qulu fault, are
characterized by ophiolitic mélanges (Fig. 1b; BGMRIM, 1991;Wu
& He, 1993; Wu et al. 1998).

The Quagan Qulu fault separates the Zongnaishan–Shalazhashan
Belt and the Nuoergong–Langshan Belt (Fig. 1b). The Nuoergong–
Langshan Belt is mainly composed of Precambrian basement rocks

and late Palaeozoic magmatic rocks (321–265 Ma). As shown in
recent studies (Geng & Zhou, 2012; Wang et al. 2016, 2021; Zheng
et al. 2018; Zheng et al. 2019), the Precambrian rocks comprise
Palaeoproterozoic gneisses and amphibolites, with small amounts of
Neoproterozoic granites (970–880 Ma), and the Phanerozoic rocks
are mainly composed of granites, diorites and minor gabbro
(321–265 Ma). By comparison, 301–247 Ma magmatic rocks and
late Palaeozoic sediments, with some Mesozoic granites, dominate in
the Zongnaishan–ShalazhashanBelt (Shi et al. 2014; Zheng et al. 2014;
Song et al. 2017). A few Precambrianmetamorphic rocks with ages of

Figure 1. (Colour online) (a) The Location of the northern Alxa area in the simplified tectonic sketchmap of the Central Asian Orogenic Belt (CAOB) (Modified after Eizenhöfer et al.
2014). (b) Tectonic outline of the southern CAOB in north China (after Chen et al. 2019). (c) Geological map of the northern Alxa area and adjacent tectonic units (modified after Liu
et al. 2018a).
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1.5–1.4 Ga have also been reported (Qing, 2010; Song, 2014; Shi et al.
2016; Wang et al. 2019), indicating that the tectonic affinity of the
Zongnaishan–Shalazhashan Belt, which was treated as a part of the
Alxa Block, was uncertain given the occurrence of Mesoproterozoic
rocks in the Zongnaishan area.

The Yagan Belt mainly contains Palaeozoic volcano-sedimen-
tary strata (Wu&He, 1993) and plutons (397–220Ma; Zheng et al.
2013; Liu et al. 2018a), with some Neoproterozoic granite (Zhang
et al. 2016). Based on litho-tectonic comparisons, the Yagan and
Zhusileng–Hangwula Belts have been generally considered the
eastern extension of the Beishan Orogenic Belt (Wu et al. 1998).

The Zhusileng–Hangwula Belt is characterized by widespread
Palaeozoic to Mesozoic volcano-sedimentary formations and
magmatic rocks as well as minor Precambrian rocks (BGMRIR,
1991; Wu & He, 1993; Yin et al. 2015). The Mesoproterozoic–early
Neoproterozoic rocks (1400–916 Ma) are sporadically exposed in the
region (Wang et al. 2002; Zhou et al. 2013; Deng et al. 2022a; Yu et al.
2022). The early Palaeozoic strata only include Cambrian limestone,
late Ordovician limestone and early Silurian siliceous rocks. Late
Palaeozoic strata are composed of clastic rocks, limestone and minor
volcanic rocks, which are unconformably overlain by late Triassic and
Cretaceous continental clastic sediments (Chen et al. 2019). The
Phanerozoic intrusions in the Zhusileng–Hangwula Belt were
generated during the middle–late Devonian (399–373 Ma), late
Carboniferous–middle Permian (325–263 Ma) and middle–late
Triassic (250–216 Ma), including gabbro, diorite, granodiorite,
granite and monzogranite (Fig. 1c; Wang et al. 2002; Li, 2006; Han
et al. 2010; Dang et al. 2011; Chen, 2015; Zhang et al. 2017; Liu et al.
2018a; Shi et al. 2018; Chen et al. 2019; Li et al. 2020; Song et al. 2020;
Deng et al. 2022b, 2023, b; Fei et al. 2019; Zhao et al. 2020).

For this study, samples of gabbro and diorites were examined,
and sample locations can be found in Fig. 2. The Huisentala gabbro
(19DZH-17-2) is black and grey-coloured, moderate- to coarse-
grained and is mainly composed of plagioclase (~60%), horn-
blende (~20%), biotite (~15%) and minor quartz (~5%) (Fig. 3a).
The Huodonghaer diorites, intruded by granodiorite, show dark
green colour and moderate to coarse-grained texture (Fig. 3b).
They are strongly weathered and mainly consist of plagioclase

(~75%), hornblende (~10%), biotite (~10%) and minor quartz
(~5%) (Fig. 3c).

3. Analytical methods

3.a. Zircon U–Pb dating

After crushing, zircon crystals were extracted using heavy liquid
and magnetic techniques. Zircons were hand-picked and mounted
in epoxy resin and polished to about half of their size to expose the
core of the grain. The detailed procedure can be found in Song et al.
(2002). The cathodoluminescence (CL) images of zircon were
obtained using a scanning electron microscope (IT-500, Japan) at
Beijing Geoanalysis Co., Ltd (Beijing, China). Analytical spots for
U–Pb dating were chosen after combined studies of transmitted
and reflected light microscope and CL images. Laser ablation
inductively coupled plasma-mass spectrometry (LA-ICP-MS)
zircon U–Pb analyses were carried out using an Agilent 7900
ICP-MS equipped with a 193-nm laser ablation system at the
Institute of Geology, Chinese Academy of Geological Sciences in
Beijing, China. The detailed procedure is the same as described by
Hou et al. (2007). Zircon 91500 and GJ-1 were used as primary and
secondary standards for U-Pb dating, respectively (Jackson et al.
2004). ISOPLOT 3.0 was used to plot the concordia diagrams and
perform the weighted mean calculations (Ludwig, 2003).
Uncertainties are quoted at 2σ level for individual analysis, and
the weighted mean ages are given at the 95% confidence level.

3.b. Zircon Lu–Hf isotopic analyses

Zircon Hf isotope analyses were conducted using a multiple collector
inductively coupled plasma-mass spectrometer (MC-ICP-MS,
Neptune Plus, Thermo Fisher Scientific, Germany) equipped with
a femtosecond (λ= 343 nM) laser-ablation system (J-200, Applied
Spectra, USA) at the National Research Center for Geoanalysis in
Beijing. To evaluate the quality of the data, Temora and Plesovice
zircon were used as the standards and exhibited 176Hf/177Hf ratios of
0.282692 ± 0.000018 (2σ, n= 15) and 0.282480 ± 0.000021 (2σ,
n= 49), respectively. The analytical details and interference correction

Figure 2. (Colour online) Geological maps showing sampling locations and ages. (a) Huisentala area (modified after the 1: 200,000 geological maps from BGMRIM, 1991). (b)
Huodonghaer area (after the 1: 200,000 geological maps from BGMRIM, 1991).
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method of 176Yb on 176Hf can be found in Zhou et al. (2018) andWu
et al. (2006), respectively. The 176Lu decay constant of 1.865 × 10−11

yr−1 (Scherer et al. 2007) was used to calculate the initial 176Hf/177Hf
ratios. The chondritic values of 0.0336 and 0.282785 for 176Lu/177Hf
and 176Hf/177Hf, respectively, reported by Bouvier et al. (2008), were
used for the calculation of the ϵHf values. The depleted mantle Hf
model ages (TDM) were calculated using the measured 176Lu/177Hf
ratios based on the assumption that the depleted mantle reservoir has
a linear isotopic growth from 176Hf/177Hf= 0.279718 at 4.55 Ga to
176Hf/177Hf= 0.283250 at present, with 176Lu/177Hf ratio of 0.0384
(Griffin et al. 2000). Two-stage model ages (TDM2) were also
calculated, assuming that the parental magma was produced from an
average continental crust (176Lu/177Hf= 0.015; Griffin et al. 2002).

3.c. Major and trace element analyses

The samples were crushed and ground to 200 mesh. Whole-rock
major and trace element analyses were obtained at ALS Chemex
Co., Ltd (Guangzhou, China) using X-ray fluorescence spectrom-
eter (XRF), ICP-MS and inductively coupled plasma-atomic
emission spectrometry (ICP-AES). Details of the analytical
procedure can be found in Zhou et al. (2002) and Liu et al.
(2008). One pulp sample was fused with lithium metaborate-
lithium tetraborate flux, including an oxidizing agent (lithium
nitrate), and then poured into a platinum mold. The resultant disc
was then analysed by XRF spectrometry. The XRF analysis was
determined in conjunction with a loss-on-ignition at 1000 °C. The
resulting data from both analyses were combined to produce a
‘total’. One prepared sample was added to lithium metaborate/
lithium tetraborate flux, mixed well and fused in a furnace at 1025 °
C. The resulting melt was then dissolved and cooled in an acid

mixture containing nitric, hydrochloric and hydrofluoric acids.
This solution was then analysed by ICP-MS. Another prepared
sample was digested with perchloric, nitric and hydrofluoric acids.
The residue was leached with dilute hydrochloric acid and diluted
to volume. The solution was then analysed using ICP-MS for
ultratrace level elements. The same solution was also analysed
using ICP-AES for trace level elements. Results were corrected for
spectral inter-element interferences. The analytical accuracy and
precision for the trace elements and major elements were found to
be better than 5% and 10%, respectively.

4. Results

The U–Pb zircon isotopic data are listed in Supplementary Table 1,
the Lu–Hf isotopic analyses in Supplementary Table 2 and major
and trace element data are presented in Supplementary Table 3.

4.a. Zircon U–Pb ages

4.a.1. Gabbro
Zircon grains are euhedral and stubby, 50–100 × 100–200 μm in
size and exhibit concentric oscillatory zoning (Fig. 4). Except for
the older spot 9, 22 concordant spots for sample 19DZH-17-2 yield
a weighted mean 206Pb/238U age of 286.2 ± 0.96 Ma (MSWD=
0.62, Th/U= 0.52–1.07; Fig. 5a).

4.a.2. Diorite
Zircon from the investigated diorite is all euhedral, prismatic and
stubby. They have well-preserved oscillatory zoning and 30–
80 × 60–180 μm in size (Fig. 4). Twenty-three spots were analysed
for sample HBH2019-131-1, except for 6 older and younger spots,

Figure 3. (Colour online) Representative outcrops and microphotographs of investigated gabbro and diorites from the Zhusileng–Hangwula Belt. (a) and (b) Gabbro (sample
19DZH-017-2). (c) and (d) Diorite (sample HBH2019-131-1). Amp, Amphibole; Bt, Biotite; Pl, Plagioclase; Qtz, quartz.
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17 concordant spots yield a weighted mean 206Pb/238U age of
285.2 ± 1.0 Ma (MSWD = 0.75; Fig. 5b), with Th/U ratios of
0.52–1.55.

4.b. Zircon Hf isotopic compositions

Twenty zircon grains from sample 19DZH-17-2 have variable
ϵHf(t) values between −2.5 andþ2.6 (Fig. 6), two-stage model ages
(TDM2) of 1.96–1.49 Ma and initial 176Hf/177Hf ratios of 0.282908–
0.282971. Seventeen zircons from sample HBH2019-131-1 yield
positive ϵHf(t) values between þ1.2 and þ4.9 (Fig. 6), two-stage
model ages (TDM2) of 1.62–1.29 Ga and initial 176Hf/177Hf ratios of
0.282627–0.282733.

4.c. Whole-rock major and trace elements

The gabbro sample exhibits low contents of SiO2 (49.36 wt%)
and K2O (0.52 wt%), and high contents of Fe2O3

T (7.98 wt%),

CaO (12.45 wt%) and Mg# [67.49, Mg# = Mg/(Mg þ Fe2þ)],
which place the gabbro in the metaluminous field in the A/CNK
[(molecular ratio of Al2O3/(CaOþNa2O þ K2O)] versus A/NK
[(molecular ratio of Al2O3/(Na2O þ K2O)] diagram (Fig. 7b;
Frost et al. 2001). The gabbro is transitional between calc-
alkaline and tholeiitic (Fig. 7c) and exhibits total rare-earth
elements (REEs) concentrations of 61.94 and slightly enriched
light rare-earth elements (LREEs) [(La/Yb)N = 1.18], with
almost no Eu anomalies [δEu = 1.05, δEu = EuN/
(EuN × GdN)1/2] (Fig. 8a). The gabbro exhibits enrichments
in Rb, U and Sr, and depletions in Nb, Ta and Zr (Fig. 8d).

The diorites have low SiO2 (51.40–56.54 wt%), high Al2O3

(15.02–18.42 wt%), MgO (3.46–6.42 wt%), Mg# (49.37–58.33)
and Fe2O3

T (7.03–10.55 wt%), as well as low K2OþNa2O (3.87–
4.33 wt%). They are metaluminous (A/CNK = 0.66–0.94;
Fig. 7b) and belong to the tholeiitic to high calc-alkaline
series (Fig. 7c). These diorites have total REE concentrations of

Figure 4. (Colour online) Cathodoluminescence (CL) images of representative zircons from studied gabbro and diorites. The blue line circle represents the spot of LA-ICP-MS
analysis for U–Pb dating. The yellow line circle represents the spot of LA-MC-ICP-MS analysis for Lu-Hf isotope compositions. Apparent ages (in blue) and ϵHf(t) values (in yellow) are
denoted.

Figure 5. (Colour online) Concordia diagrams of LA-ICP-MS zircon U–Pb data from investigated gabbro and diorites in the Zhusileng–Hangwula Belt.
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47.75–88.75 and enrichments in LREEs [(La/Yb)N = 3.44–6.37],
with almost no Eu anomalies (δEu = 0.71–1.02) (Fig. 8a).
Furthermore, they show enrichments in Rb, U, Pb and Sr, and
depletions in Nb and Ta (Fig. 8b).

5. Discussion

The weighted mean 206Pb/238U ages of 286.2 ± 0.96 Ma and
285.2 ± 1.0 Ma are interpreted as crystallization ages of gabbro and
diorite, respectively.

5.a. Petrogenesis

5.a.1. Gabbro
The early Permian gabbro in the Zhusileng–Hangwula Belt
yielded variable zircon ϵHf(t) values (−2.5 toþ2.6) and old TDM2

ages (1.96–1.49 Ga, average 1.68 Ga). The heterogeneous zircon
ϵHf(t) values can be attributed either to melts derived from an
asthenospheric mantle with crustal contamination or to those
from an enriched lithospheric mantle (Wu et al. 2007). The
gabbro sample exhibits high Al, Ca and Fe, and low Si, K and P,
indicating a parental mantle source instead of crustal materials
(e.g., Rundick & Gao, 2003). Furthermore, the content of Mg#

(67.49) of this gabbro is close to the primary mantle-derived
magma (Mg# = 68–73, Hess & Wiebe, 1989), ruling out crustal
assimilation by primary mantle-derived magma. Therefore, we
suggest that the Huisentala gabbro was likely derived from an
enriched lithospheric mantle.

On the chondrite-normalized REE diagram (Fig. 8a), the
gabbros are characterized by enrichments in LREEs. As shown
in the primitive mantle-normalized trace-element spider
diagram (Fig. 8b), the gabbro is characterized by relative
enrichment in large ion lithophile elements (LILEs) and U, and
depletion in high field strength elements (HFSEs) (e.g., Ti, Nb
and Ta), indicative of arc geochemical affinities. Crustal
contamination or magma source metasomatization by sub-
duction-related materials may result in the negative Nb–Ta–Ti
anomalies (Sun & McDonough, 1989; Chen et al. 2011; Tang
et al. 2014; Xia, 2014). However, crustal contamination can be

ruled out in the generations of the Huisentala gabbro due to its
high content of Mg#. Moreover, the gabbro displays high Ba/Th
ratio (43.73) and relatively low Hf/Sm ratio (0.73), indicating
the contribution of subduction-related fluids in its generations
(La Flèche Camire & Genner, 1998; Pearce & Stern, 2006). Xia
et al. (2007) suggested that magmatic rocks influenced by
subduction fluids/melts usually present low Zr contents
(<130 ppm) and Zr/Y ratios (<4). The Huisentala gabbro has
low content of Zr (64 ppm) and Zr/Y ratio (3.66). Therefore, we
proposed that the Huisentala gabbro was derived from an
enriched lithospheric mantle metasomatized by subduction-
related fluids.

5.a.2. Diorite
The Huodonghaer diorites have high MgO (3.46–6.32 wt%), Cr
(average 73.33 ppm) and Ni (average 23.10 ppm), as well as low
FeOT/MgO (1.27–1.83) ratios, TiO2 (0.48–0.90 wt%) and (La/Yb)N
(3.44–6.37) ratios, indicating high-Mg andesite compositions
(Kelemen et al. 2003; Tatsumi, 2006; Zhao et al. 2009). The
Huodonghaer diorites have a higher Mg# range (49.37–58.33) than
pure crustal melts (Patiño Douce & Beard, 1995; Rundick & Gao,
2003), so they most likely formed from mantle melts that were
influenced by crustal materials rather than from a crustal source
(Jiang et al. 2009; Dong et al. 2012).

Partial melting of mantle peridotite that is metasomatized by
the slab melts or subducted sediment-related melts has been
regarded as the most likely petrogenetic model for high-Mg
diorite (Martin et al. 2005; Moyen, 2009; Dong et al. 2012).
High-Mg diorite derived from the reaction between mantle
peridotite and slab melts usually exhibits adakite-like geo-
chemical characteristics, such as high ϵNd(t) values, high Sr
contents, low Y and Yb contents, high Sr/Y and (La/Yb)N ratios
(Yin et al. 2015). However, the Huodonghaer diorites display
positive zircon ϵHf(t) values (þ1.2 to þ4.9), high Y (13.20–
19.30) and Yb (1.41–2.07), and low Sr/Y (21.14–45.61) and (La/
Yb)N ratios (3.44–6.37). In addition, they have consistently low
U/Th (0.12–0.33) and high Th/Nb (0.37–0.77) ratios, similar to
the marine sediments (Fig. 9a). Furthermore, the Huodonghaer
diorites have high and variable Th/Yb ratios, inconsistent with
Ba/La ratios, which also support the involvement of a sediment-
derived melts rather than of slab-derived fluids (Tatsumi, 2006;
Fig. 9b). Because Ba is more soluble in aqueous fluids than La
(Hanyu et al. 2006), the Ba/Th ratios should be markedly
increased if oceanic crust-derived melts are involved in the
production of magmas. Therefore, we suggest that the
Huodonghaer diorites were derived from the partial melting
of mantle peridotite that was metasomatized by the subducted
sediment-derived melts.

5.b. Tectonic implications

The Zhusileng–Hangwula Belt, located in the southernmost
segment of the CAOB, is a pivotal region for determining the
tectonic evolutionary history of the PAO. The Zhusileng–
Hangwula Belt experienced multiple magmatic activities from
the end of the early Palaeozoic to the late Palaeozoic, including four
stages of ca. 399–373, 325–310, 296–263 and 250–216 Ma (Dang
et al. 2011; Liu et al. 2018a, b; Shi et al. 2018; Chen et al. 2019; Fei
et al. 2019; Li, 2020; Song et al. 2020; Zhao et al. 2020). However, as
we mentioned in the introduction, the tectonic setting of the
northern Alxa Block during the late Carboniferous–Permian is still
ambiguous.

Figure 6. (Colour online) Zircon Hf isotopic compositions of the early Permian
gabbro and diorites from the Zhusileng–Hangwula Belt. The ϵHf(t) values of the early
Permian granitoids are from Liu et al. (2018a).
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Figure 7. (Colour online) Diagrams showing major element features of the studied gabbro and diorites.

Figure 8. (Colour online) (a) Chondrite-normalized rare earth element patterns and (b) primitive mantle-normalized trace element spider diagrams for the investigated gabbro
and diorites from the Zhusileng–Hangwula Belt. Compositions of chondrite and primitive mantle refer to Sun and McDonough (1989).

Figure 9. (Colour online) (a) Th/Nb versus U/Th and (b) Th/Yb versus Ba/La discrimination diagrams (modified after Tatsumi, 2006 and Hanyu et al. 2006).
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Fei et al. (2019) proposed that the late Carboniferous to early
Permian intrusions in the Zhusileng–Hangwula Belt formed in a
post-collision setting, which indicates that the PAO had closed
before the early Permian (Li et al. 2020), and then evolved into an
extensional setting to form a rift along the north Alxa Block.
However, the Palaeozoic strata in the Zhusileng area formed an
NW-SE-trending anticline, which was intruded by late Palaeozoic
granite (Zhang et al. 2022). The youngest strata involved in this
fold are early Permian, and they are unconformably covered by late
Permian strata (Liu et al. 2019). The formation of this anticline
reflected horizontal compression that occurred during the early to
late Permian, probably as a result from the closure of the PAO. The
report of radiolarians fossil (Xie et al. 2014) and late Carboniferous
normal mid-ocean ridge basalts exposed in the Enger Us ophiolite
(~302 Ma, Zheng et al. 2014) imply that the PAO still existed
during the late Carboniferous–early Permian. Liu et al. (2017)
suggested that a switch of the tectonic settings, which was
attributed to the final closure of the PAO, occurred at 280–265Ma,
according to the marked shift of zircon ϵHf(t) values and whole-
rock ϵNd(t) values of the granitoids from the northern Alxa Block.
Therefore, a post-collisional setting is not consistent with the
derivation of the early Permian intrusions from the Zhusileng–
Hangwula Belt.

The gabbro exhibits enrichment in LREE and U, and depletion
in HFSE (e.g., Ti, Nb and Ta), indicative of arc-like geochemical
affinities (Fig. 8), and we suggest that the gabbro was derived from
an enriched lithospheric mantle metasomatized by subduction-
related fluids. Furthermore, we identified that almost coeval high-
Mg diorites occur in the Zhusileng–Hangwula Belt. High-Mg
diorites are generally related to the subduction of a young and/or
hot oceanic slab (e.g., ridge subduction) (Rogers & Saunders, 1989;
Furukawa & Tatsumi, 1999). Sedimentological and palaeocurrents
analyses on early Permian strata in the Zhusileng area also
supported a subduction setting (Chen et al. 2011; Jiang et al. 2012;
Shi et al. 2013; Zhang et al. 2022). Moreover, Li (2020) proposed
that the gabbros in the Yagan metamorphic core complex have
been strongly deformed and formed dykes, most of which are cut
by normal faults resulting from the extensional deformation of the
crust in this region. That implies that the formation of the gabbro
was prior to the extensional event occurring after the closure of the
PAO. Furthermore, coeval granitoid displaying volcanic arc
affinities have also been verified in the Zhusileng–Hangwula
Belt (Li et al. 2020; Song et al. 2020; Zhao et al. 2020; Deng et al.
2022b). For instance, the 298–290Ma granitoids in the Zhusileng–
Hangwula Belt were generated by magma mixing and formed in a
subduction setting (Liu et al. 2018a). Therefore, we propose that
the early Permian gabbro and coeval high-Mg diorites in the
Zhusileng–Hangwula Belt are formed in an ocean slab subduction
environment (Fig. 10).

We believe that the PAO in the middle part of the southern
CAOB closed during the middle-late Permian for the following
reasons: (1) middle–late Permian A-type and bimodal volcanic
rocks found in this unit (Song et al. 2018, 2019, 2020; Li, 2019)
indicate a post-collisional tectonic setting in the Zhusileng–
Hangwula Belt after the early Permian; (2) late Permian sandstones
(256–254 Ma) are interpreted to have formed in a post-collision
setting, as suggested by geochemical characteristics (Liu et al. 2019;
Shi et al. 2020) and (3) heavymineral features of the Permian strata
in Zhusileng and adjacent areas reveal that the detritus was sourced
from both the northern and southern Alxa Block, which support
that the PAO closed between the early and late Permian (Chen
et al. 2019; Zhang et al. 2022). Thus, the Zhusileng–Hangwula Belt

was an ocean subduction setting during the early Permian, then
transitioned from subduction to collision and then to post-
collision in the middle–late Permian probably due to the closure of
the PAO along the Enger Us suture.

6. Conclusions

Based on the geochronological, geochemical and zircon Hf isotopic
data for the gabbro and diorites in the Zhusileng–Hangwula Belt
and previous studies, the following conclusions can be drawn:

(1) Zircon LA-ICP MS U-Pb age data show that the
monzogranites, Huisentala gabbro and Huodonghaer
diorites from the Zhusileng–Hangwula Bel were formed
during the early Permian (291–285 Ma).

(2) The Huisentala gabbro yielded variable zircon ϵHf(t) values
(−2.5 to þ2.6) and old TDM2 ages (1.96–1.49 Ga, average
1.68 Ga). The gabbro sample exhibits high Al, Ca, Fe, Mg#

and LREE, and low Si, K, P and HFSE, with slightly negative
Eu anomalies, and was likely derived from an enriched
lithospheric mantle metasomatized by subduction-related
fluids. The Huodonghaer diorites exhibit high-Mg diorite-
like geochemical compositions, such as highMgO, Sr and Cr
contents, and low FeO/MgO ratios. They show moderate
zircon ϵHf(t) values (þ1.2 to þ4.9) and Mesoproterozoic
two-stage model ages (1.62–1.29 Ga), indicating that the
diorites are derived from partial melting ofmantle peridotite
that was metasomatized the subducted sediment-derived
melts.

(3) Combined with other geological evidence, we propose that
the early Permian gabbro and coeval high-Mg diorites from
the Zhusileng–Hangwula Belt formed in an ocean sub-
duction setting and probably are associated with the tectonic
evolution of the PAO along the Enger Us suture.
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