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A Note on Finite Dehn Fillings
S. Boyer and X. Zhang

Abstract. Let M be a compact, connected, orientable 3-manifold whose boundary is a torus and whose interior
admits a complete hyperbolic metric of finite volume. In this paper we show that if the minimal Culler-Shalen
norm of a non-zero class in H1(∂M) is larger than 8, then the finite surgery conjecture holds for M. This
means that there are at most 5 Dehn fillings of M which can yield manifolds having cyclic or finite fundamental
groups and the distance between any slopes yielding such manifolds is at most 3.

1 Introduction

Throughout this note M will denote a compact, connected, orientable 3-manifold whose
boundary is a torus and whose interior admits a complete hyperbolic metric of finite vol-
ume.

Let r be a slope on ∂M, i.e., the isotopy class of an unoriented, essential, simple closed
curve on ∂M, and denote by M(r) the manifold obtained by Dehn filling M with a solid
torus so that a meridian of the solid torus has slope r. Recall that the distance∆(r1, r2) be-
tween two slopes r1, r2 on ∂M is defined to be their minimal geometric intersection number
(on ∂M). The following conjecture was first raised in [G].

Finite Surgery Conjecture

There are at most 5 Dehn fillings of M which can yield manifolds having cyclic or finite fun-
damental groups and the distance between any slopes yielding such manifolds is at most 3.

The distance 3 and number 5 in the conjecture are the best possible bounds that one
can expect in that both of them are realized by slopes on the boundary of the figure 8 sister
manifold, as was discovered by Jeff Weeks [W] (see [BZ1, Example 10.5]).

Though the conjecture still remains open, much progress has been made toward its so-
lution ([BH], [BZ1]). Indeed in [BZ1] it is shown that there are at most six Dehn fillings
of M which can yield manifolds having cyclic or finite fundamental groups and the dis-
tance between any slopes yielding such manifolds is at most 5. These bounds are obtained
through the use of the Culler-Shalen norm

‖ · ‖ : H1(∂M; R)→ [0,∞)

which was introduced in [CGLS] and defined through the use of the canonical algebraic
curve, in the SL2(C)-character variety of M, which arises from the hyperbolic structure on
int(M).
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Denote by V the 2-dimensional vector space H1(∂M; R) and by L the lattice H1(∂M; Z)
in V . It turns out that the values of ‖ · ‖ on L lie in Z 1. Set

s(M) = min{‖α‖ | α ∈ L \ {0}} ∈ Z.

The purpose of this note is to prove that the finite surgery conjecture holds for manifolds
M with a relatively large s(M).

Theorem 1 If the minimal Culler-Shalen norm s(M) is larger than 8, then the finite surgery
conjecture holds for M.

It is well-known that the hyperbolic structure on int(M) is determined up to isometry
by its fundamental group, and since s(M) is a measure of the number of homomorphisms
of π1(M) to SL2(C), it is in this sense a measure of the complexity of the hyperbolic struc-
ture on int(M). Seen in this light the theorem tells us that hyperbolic manifolds which
are sufficiently complex satisfy the conjecture. An example of this behaviour is provided
in [BMZ], where it is calculated that for the exteriors Mn of those twist knots Kn ⊂ S3 which
are hyperbolic (i.e., n 6= 0, 1), s(Mn) = 2|n| for n ≤ −1 and s(Mn) = 2n− 1 for n ≥ 2. So
in particular s(Mn) > 8 for all n with |n| > 5. It is an interesting problem to understand
the topology of the manifolds M with s(M) ≤ 8. We suspect that such manifolds are less
complex topologically; for instance their unknotting tunnel numbers might be bounded
above by a small positive integer.

Proof of Theorem 1 First of all we shall fix our notation and describe some concepts.
Set B = {v ∈ V | ‖v‖ ≤ s(M)}, the ‖ · ‖-disc of radius s(M) in V . Note then that by

the definition of s(M), L ∩ int(B) = {0} while L ∩ B 6= {0}. For each k ∈ (0,∞), kB will
denote the disc in V of radius ks(M). Fix a homology class θ ∈ L (necessarily primitive)
such that θ ∈ ∂B. Now fix any τ ∈ L such that θ and τ form a basis of L.

We identify the pair (V, L) with (R2,Z2) by setting θ ≡ (1, 0) and τ ≡ (0, 1). Any class
in L of the form (m, 1) is called an integral class. A pair of elements in V is a ± couple
{(a, b), (−a,−b)}. In the usual way a slope on ∂M determines and is determined by a pair
of primitive elements of L. If r1 and r2 correspond to (p1, q1), (p2, q2) ∈ Z2, then

∆(r1, r2) = |p1q2 − p2q1|.

When α ∈ L is one of the primitive classes corresponding to a slope r, we shall use M(α)
to denote M(r).

A slope r on ∂M is called a boundary slope if there exists an incom-
pressible, ∂-incompressible, properly embedded surface F in M whose boundary is non-
empty and consists of curves of slope r. It is called a strict boundary slope if such a surface
can be found which is not a fibre in a fibration of M over S1. A (strict) boundary class is a
primitive element of L whose corresponding slope is a (strict) boundary slope.

We shall call a primitive element α ∈ L a finite (respectively cyclic) filling class if M(α)
has a finite (respectively cyclic) fundamental group. The finite groups which can arise as

1In [CGLS] and [BZ1] the SL2(C) version of the norm was used. Though equivalent to the PSL2(C) version
we shall use here (see [BZ2]), a few of its basic properties have a slightly different form. For instance the values of
the restriction of the SL2(C) norm to L lie in 2Z.
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the fundamental groups of closed, orientable 3-manifolds lie in six families [Mi] which are
referred to in [BZ1] as C-type, T-type, O-type, I-type, D-type, and Q-type groups. Ifα ∈ L
is a primitive class such that the fundamental group of M(α) is of one of the types listed
above, then we shall say that α is a class of that type.

The proof of Theorem 1 depends on the basic properties of the norm given in the fol-
lowing lemma.

Lemma 2

(i) [CGLS, Proposition 1.1.2] The disc B is a finite-sided, convex polygon whose vertices
are rational multiples of strict boundary classes in L. Furthermore B is balanced, i.e.,
−B = B.

(ii) [BZ1, Lemma 6.4] If (a, b) ∈ B then |b| ≤ 2. If there is some (a, b) ∈ B with b = 2,
then (a, b) ∈ L and B is a parallelogram with vertices±(1, 0) and±(a, b).

(iii) [CGLS, Corollary 1.1.4] If α = (m, n) ∈ L is a cyclic filling class but is not a strict
boundary class, then ‖(m, n)‖ = s(M). Hence α ∈ ∂B but is not a vertex of B.

(iv) [BZ2, Theorem 6.2] If α = (m, n) ∈ L is a D-type or Q-type class but is not a strict
boundary class, then ‖α‖ ≤ 2s(M) and further ‖(m, n)‖ ≤ ‖(m + 2k, n + 2 j)‖ for any
element (k, j) ∈ L.

(v) [BZ2, Theorem 6.2] If α = (m, n) ∈ L is a C,T,O, or I-type filling class which is not a
strict boundary class, then ‖α‖ ≤ s(M) + 4.

We begin by using Lemma 2 to prove a lemma concerning the τ coordinate of a finite or
cyclic filling class.

Lemma 3 Suppose that s(M) > 8.

(i) If α = ( j, k), k ≥ 0, is a finite or cyclic filling class which is not a strict boundary class,
then k ≤ 2.

(ii) If α = ( j, 2) is a finite or cyclic filling class which is not a strict boundary class, then α is
neither a D-type nor a Q-type class.

(iii) There is at most one α ∈ L having τ coordinate equal to 2 which is a finite or cyclic filling
class but which is not a strict boundary class.

Proof (i) As a first case assume that α is neither a D-type nor a Q-type filling class. Ac-
cording to part (v) of Lemma 2, the inequality s(M) > 8 implies that ‖α‖ < 3

2 s(M). Then
α lies in the interior of 3

2 B and so by Lemma 2(ii) we have k < 3.
Now suppose that α is either a D-type or Q-type filling class. From Lemma 2(iv) we

have α ∈ 2B and thus part (ii) of this Lemma gives k ≤ 3 and if k = 3, then B must contain
points whose τ coordinates are greater than 1. Hence assuming that α = ( j, 3), then from
the definition of B we can find integral classes (m, 1) and (m + 1, 1) of L which are not
contained in int(B) but for which there are points (a, 1) ∈ B with m < a < m + 1. By
parts (ii) and (iv) of Lemma 2, we see that

3

2
s(M) < ‖( j, 3)‖ ≤ max{‖(m, 1)‖, ‖(m + 1, 1)‖}.

But if one of ‖(m, 1)‖ and ‖(m + 1, 1)‖ is at least 3
2 s(M), then the highest τ coordinate of a

point in B is at most 4
3 . To see this suppose, for concreteness, that ‖(m, 1)‖ ≥ 3

2 s(M). Then
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there is a λ ∈ (0, 2
3 ] such that λ‖(m, 1)‖ = s(M). Let A denote the band in V bounded by

the lines γ0 = {t(m, 1) | t ∈ R} and γ1 = {t(m, 1) + (1, 0) | t ∈ R}. Since−θ and λ(m, 1)
lie on ∂B, the convexity of B implies that B ∩ A is bounded above by the line through −θ
and 2

3 (m, 1). Therefore by our choice of m, the largest τ coordinates of points in 2B is at
most 8

3 < 3. But this contradicts our assumption that α = ( j, 3) ∈ 2B. Thus part (i) of the
lemma holds.

(ii) There is an integer m such that α = (2m + 1, 2) and hence as θ is congruent to
(2m + 1, 2) modulo 2, part (iv) of Lemma 2 implies that ‖(2m + 1, 2)‖ = s(M), i.e., (2m +
1, 2) ∈ ∂B. But then part (ii) of this lemma implies that (2m + 1, 2) is a strict boundary
slope, contrary to our assumptions.

(iii) If we suppose that both (2m + 1, 2) and (2n + 1, 2) are either finite or cyclic fill-
ing classes, then the inequality s(M) > 8 combines with part (v) of Lemma 2 to give
‖(2m + 1, 2)‖, ‖(2n + 1, 2)‖ < 3

2 s(M). Hence the convexity of B shows that the cone on
the horizontal line segment from 2

3 (2m + 1, 2) to 2
3 (2n + 1, 2) is contained in the interior of

B. But this is impossible as it implies that int(B) contains an integral class. Thus there is at
most one finite or cyclic filling class with τ coordinate equal to 2.

Lemma 4 Suppose that s(M) > 8. Then there are at most 5 primitive classes in L (up to the
sign) which are either finite or cyclic filling classes but not strict boundary classes. Furthermore
there is an integer m such that the collection of such classes having non-negative τ coordinate
consists of a subset of either

(i) (1, 0), (m, 1), (m + 1, 1), (2m + 1, 2) and one of (m− 1, 1), (m + 2, 1); or
(ii) (1, 0), (m− 1, 1), (m, 1), (m + 1, 1), and (m + 2, 1).

Thus the maximal mutual distance between two classes of the set is at most 3.

Proof Let F denote the set of all finite or cyclic filling classes which are not strict boundary
classes and which have non-negative τ coordinate. Recall from Lemma 3 that no finite or
cyclic filling class has a τ coordinate larger than 2.

If there exists a class α ∈ F of the form (2m + 1, 2), then Lemma 3 and Lemma 2(v)
imply that (2m+1, 2) is contained in the interior of 3

2 B. Thus the convexity of B implies that
the interior of the triangle with vertices− 3

2θ = (− 3
2 , 0), 3

2θ = ( 3
2 , 0), and (2m + 1, 2) lies in

the interior of 3
2 B and so (m, 1), (m + 1, 1) ∈ int( 3

2 B). If there is a D-type or Q-type filling
class in F, then Lemma 2(iv) implies that its norm is bounded above by ‖(1, 0)‖ = s(M),
‖(m, 1)‖, or ‖(m + 1, 1)‖, and hence strictly bounded above by 3

2 s(M). Thus F is a subset
of int( 3

2 B).
Next observe that by our choice of θ, Lemma 2(i) implies that any horizontal line (i.e.,

τ = constant) in V intersects B in a segment of length no more than 2 with respect to the
Euclidean metric on V ≡ R2, and thus 3

2 B ∩ {y = 1} has length at most 3. Hence besides
(m, 1) and (m + 1, 1), 3

2 B ∩ {τ = 1} can contain only one of the classes (m − 1, 1) and
(m + 2, 1) in its interior. Since no finite or cyclic filling class has a τ coordinate larger than
2, it is easy to see that possibility (i) of the lemma holds.

Assume then that there is no element of F has a τ coordinate larger than 1. If F ⊂
int( 3

2 B) then the argument from the previous paragraph shows that there is an integer m
such that F ⊆ {θ, (m − 1, 1), (m, 1), (m + 1, 1)} and we are done. Hence we shall assume
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otherwise. According to Lemma 2(iv) and (v) we may then choose a D or Q-type class
α1 ∈ F whose norm satisfies

3

2
s(M) ≤ ‖α1‖ = max{‖α‖ | α ∈ F} ≤ 2s(M).(1)

As a first case suppose that there is an integral class α0 such that ‖α0‖ < ‖α1‖. Choose
ε ∈ {±1} such that α0 + εθ lies on the segment [α0, α1]. From Lemma 2(iv) we see that the
inequality ‖α0‖ < ‖α1‖ implies α1 6≡ α0 (mod 2L). The same result now shows us that

‖α0‖ < ‖α1‖ ≤ ‖α0 + εθ‖.(2)

But then from our choice of ε and the properties of a norm, the function t 7→ ‖α0 + tεθ‖
is strictly increasing for t ≥ 1. This implies that α1 = α0 + εθ (see Inequality (2)) and
α0 + kεθ /∈ F when k ≥ 2 (see Equation (1)). Another application of Lemma 2(iv) gives
‖α0− εθ‖ ≥ ‖α1‖ > ‖α0‖ and a similar argument shows that α0 + kεθ /∈ F when k ≤ −2.
Thus possibility (i) of the lemma holds.

As a final case assume that ‖α1‖ = min{‖α‖ | α is integral} and choose integral classes
β1, β1 + kθ ∈ F, k ≥ 0, such that F∩{τ = 1} ⊆ {β1, β1 + θ, . . . , β1 + kθ}. Our hypotheses
on α1 imply that

‖α1‖ = ‖β1‖ = ‖β1 + θ‖ = · · · = ‖β1 + kθ‖ ≤ 2s(M)(3)

Thus F ⊆
(‖α1‖

s(M)

)
B ⊆ 2B.

Now any horizontal line intersects
(‖α1‖

s(M)

)
B in a segment of length less than or equal to

2
(‖α1‖

s(M)

)
≤ 4. If this length, for the line τ = 1, is less than 4, then there is an integer m

such that F ∩ {τ = 1} ⊆ {(m − 1, 1), (m, 1), (m + 1, 1), (m + 2, 1)} and possibility (ii)
of the lemma arises. On the other hand if the length is 4 then ‖α1‖ = 2s(M) and either
possibility (ii) holds or k = 4 and F∩{τ = 1} = {β1, β1 +θ, β1 +2θ, β1 +3θ, β2 = β1 +4θ}.
Assume that the latter case arises and observe that Relation (3) implies ∂B ∩ {τ = 1

2}
contains the line segment [β1/2, β1/2 + 2θ]. Since this segment has length 2 and −θ, θ ∈
∂B, the convexity and balanced nature of B (Lemma 2(i)) implies that B is a parallelogram
with vertices±β1/2,±(β1/2 + 2θ). In particular the class β1 ∈ F is a strict boundary slope
(Lemma 2(i)), contrary to the definition of F. Thus this last case does not arise and so the
lemma is proved.

Lemma 5 ([BZ1, Lemma 6.7]) If α ∈ L is a strict boundary class which is also either a finite
or cyclic filling class, then∆(α, β) ≤ 1 for any finite or cyclic filling class β.

Lemma 6 Suppose that there is only one slope on ∂M which is at the same time a strict
boundary slope and finite or cyclic filling slope. Also suppose that s(M) > 8. Then there are at
most five finite or cyclic filling slopes on ∂M and their mutual distance is at most 3.

Proof It follows from Lemmas 4 and 5 that under the conditions of the lemma, the distance
between any two finite or cyclic filling slopes is bounded above by 3. Thus we need only
verify that there are no more than five such slopes.
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Suppose that α = ( j, k), k ≥ 0, is the unique class (up to sign) which is a finite or cyclic
filling class and is also a strict boundary class. According to Lemma 4 there is an integer m
such that the rest of the finite or cyclic filling classes are contained amongst a collection of
elements of L of the form

(a) (1, 0), (m, 1), (m + 1, 1), (2m + 1, 2) and one of (m− 1, 1), (m + 2, 1); or
(b) (1, 0), (m− 1, 1), (m, 1), (m + 1, 1), and (m + 2, 1).

We may certainly assume that α is not one of these classes. Considering the cases k = 1, k =
2, k ≥ 3 it is now a simple matter to verify that there are no more than 4 elements amongst
those listed in (a) and (b) above that are of distance 1 from α = ( j, k). Hence appealing to
Lemma 5 we see that the lemma has been proved.

Lemma 7 ([BZ1, Lemma 7.1]) Suppose that there are at least two slopes on ∂M which are at
the same time strict boundary slopes and finite or cyclic filling slopes. Then there are no more
than four slopes on ∂M which are finite or cyclic filling slopes, and the distance between any
two such slopes is at most 2.

The proof of Theorem 1 now follows from Lemmas 4, 6 and 7.
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