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Algebraic Homology For Real Hyperelliptic
and Real Projective Ruled Surfaces
Miguel A. Abánades

Abstract. Let X be a reduced nonsingular quasiprojective scheme over R such that the set of real ra-
tional points X(R) is dense in X and compact. Then X(R) is a real algebraic variety. Denote by

Halg
k (X(R), Z/2) the group of homology classes represented by Zariski closed k-dimensional subvari-

eties of X(R). In this note we show that Halg
1 (X(R), Z/2) is a proper subgroup of H1(X(R), Z/2) for

a nonorientable hyperelliptic surface X. We also determine all possible groups Halg
1 (X(R), Z/2) for a

real ruled surface X in connection with the previously known description of all possible topological
configurations of X.

1 Introduction

Let V be a compact quasiprojective real algebraic variety. Denote by Halg
k (V,Z/2) the

subgroup of Hk(V,Z/2) generated by the homology classes represented by Zariski
closed k-dimensional subvarieties of V . If V is nonsingular and d = dim(V ),
let Hd−k

alg (V,Z/2) be the subgroup of Hd−k(V,Z/2) consisting of all the cohom-

ology classes that are sent via the Poincaré duality isomorphism Hd−k(V,Z/2) →

Hk(V,Z/2) into Halg
k (V,Z/2). For definitions and results of real algebraic geometry

the reader is referred to [1]. The important role played by the groups Halg
k and Hk

alg
in real algebraic geometry is extensively described in the recent survey [2].

We can also adopt a scheme theoretic point of view. Given a reduced quasipro-
jective scheme X over R, we let X(R) (resp. X(C)) denote its set of R-rational (resp.
C-rational) points. If X(R) is dense in X, then

(
X(R),OX | X(R)

)
, where OX is the

structure sheaf of X, is a real algebraic variety (note that every real algebraic variety
is biregularly isomorphic to X(R) for some X as above). Assume now that X is also
nonsingular and n-dimensional and X(R) is nonempty and compact. Given a non-
negative integer k, we let Zk(X) denote the group of algebraic (n − k)-cycles on X
and CHk(X) the Chow group in codimension k of X. There exists a unique group
homomorphism,

clR : CHk(X)→ Hk
(

X(R),Z/2
)

such that for every closed (n − k)-dimensional subvariety V of X, the cohomology
class clR([V ]) is Poincaré dual to the homology class in Hn−k

(
X(R),Z/2

)
deter-

mined by V (R) (cf. [3]). In particular we have clR

(
CHk(X)

)
= Hk

alg

(
X(R),Z/2

)
.

In this paper we are interested in the group Halg
1

(
X(R),Z/2

)
when X is a non-

singular algebraic surface over R. We say that a surface X over R is a real Enriques
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surface, a real ruled surface, etc., if its complexification, XC = X ×R C, is a complex
Enriques surface, resp. a complex ruled surface, etc.

This question has been considered before for real rational, real abelian, real K3
and real Enriques surfaces by several authors (see [9], [5], [7], [8]).

In Section 2 we show that Halg
1

(
X(R),Z/2

)
is a proper subgroup of

H1

(
X(R),Z/2

)
for a nonorientable hyperelliptic surface X. In Section 3 we study

real ruled surfaces. We use the affine description of some real relatively minimal
ruled surfaces as given in [10, V]. There, all possible topological configurations for

real ruled surfaces are described. We determine the possible groups Halg
1

(
X(R),Z/2

)
in connection with those configurations.

Notation We will denote by ∼= a biregular isomorphism between two algebraic va-
rieties and by∼ a homeomorphism between topological spaces.

2 Real Hyperelliptic Surfaces

A complex algebraic surface S is a hyperelliptic surface if S ∼= (E × F)/G, where E
and F are elliptic curves and G is a finite group of translations of E acting on F such
that F/G ∼= P1

C. Let KY ∈ Pic(Y ) denote the canonical class of the algebraic variety
Y . The hyperelliptic surfaces are those elliptic surfaces (families of elliptic curves) for
which 12K = 0.

Topologically, the real hyperelliptic surfaces are well understood. If X is a real
hyperelliptic surface, then X(R) has at most 4 connected components, each of them
homeomorphic to a torus or a Klein bottle (cf. [10]). In particular X(R) is compact.

We are going to consider the image, by the real class map clR, of the classes in
CH1(X) given by algebraic cycles in Z1(X) numerically equivalent to zero. Let us
recall the definition of numerical equivalence. For simplicity we only consider non-
singular varieties.

Definition 2.1 Let Y be a nonsingular complete n-dimensional variety over a field.
A k-cycle α on Y is numerically equivalent to zero if deg(α·β) = 0 for all (n−k)-cycles
β on Y . (Where α · β denotes the intersection product on Y .)

We denote by Numk(Y ) the group of k-cycles numerically equivalent to zero. We
also use codimensional notation when convenient.

The following lemma shows how the cohomology classes determined by cycles
numerically equivalent to zero are perpendicular to the algebraic cohomology with
respect to 〈 , 〉, the Kronecker index (pairing) of cohomology and homology classes.
We denote by [X(R)] the fundamental class of X(R).

Lemma 2.2 Let X be a nonsingular, n-dimensional, projective variety over R with
X(R) nonempty and compact. Let clR : CH∗(X) → H∗

(
X(R),Z/2

)
be the real class

map. Then for all cohomology classes u in clR

(
Numk(X)

)
and v in Hn−k

alg

(
X(R),Z/2

)
one has

〈u ∪ v, [X(R)]〉 = 0.
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In particular, if dimZ/2

(
clR

(
Numk(X)

))
≥ d then

dimZ/2

(
Hn−k

(
X(R),Z/2

)
/Hn−k

alg

(
X(R),Z/2

))
≥ d.

Proof For each element γ in CHn(X) it follows, from the definitions, that

〈clR(γ), [X(R)]〉 = deg(γ) (mod 2).

Let α ∈ CHk(X) be numerically equivalent to zero and such that clR(α) = u, and
β ∈ CHn−k(X) such that clR(β) = v. We have

〈u ∪ v, [X(R)]〉 = 〈clR(α) ∪ clR(β), [X(R)]〉 = 〈clR(α · β), [X(R)]〉

= deg(α · β) (mod 2),

which vanishes by definition of numerical equivalence.
The second part of the lemma follows from the first part by considering the dual

pairing Hk
(

X(R),Z/2
)
×Hn−k

(
X(R
)
,Z/2)→ Z/2, (u, v) �→ 〈u ∪ v, [X(R)]〉.

The same result for algebraic equivalence of cycles had previously been obtained
by Kucharz in [6].

We consider now a real hyperelliptic surface X. By definition, we have that XC =
X ×R C is a complex hyperelliptic surface, and hence 12KXC = 0. If we write KXC for
a divisor representing the canonical class KXC we have, in particular, that a multiple
of KXC is algebraically equivalent to zero. By [4, 19.3] this is equivalent to the fact
that KXC is numerically equivalent to zero. We know that the group G = Gal(C/R)
acts on Pic(XC) and we can identify Pic(X) with the group Pic(XC)G of divisor classes
invariant under G (cf. [10, I]). Using this identification it is easy to see that KX is then
numerically equivalent to zero in X.

Theorem 2.3 Let X be a real hyperelliptic surface. If X(R) is nonorientable then

{0} �= Halg
1

(
X(R),Z/2

)
�= H1

(
X(R),Z/2

)
.

Proof The nonorientability of X(R) implies that w1

(
X(R)

)
�= 0, where w1

(
X(R)

)
denotes the first Stiefel-Whitney class of X(R). The fact that H∗alg

(
X(R),Z/2

)
con-

tains all the Stiefel-Whitney classes of X(R) implies the first inequality.
Consider now the real class map clR : Pic(X) → H1

(
X(R),Z/2

)
. We have that

KX is numerically equivalent to zero. Since clR(KX) = w1

(
X(R)

)
�= 0 we get, by

Lemma 2.2, that H1
(

X(R),Z/2
)
/H1

alg

(
X(R),Z/2

)
�= {0}. We get then

{0} �= H1
alg

(
X(R),Z/2

)
�= H1

(
X(R),Z/2

)
,

which is equivalent to the claim.
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3 Real Projective Ruled Surfaces

A complex surface V is ruled if there exists a nonsingular complex curve C together
with a projective morphism π : V → C such that the fiber of a generic point η is
an irreducible curve of genus 0. If a real surface X is such that XC is ruled over P1

C,

then X is rational, and by [9], Halg
1

(
X(R),Z/2

)
= H1

(
X(R),Z/2

)
. For nonrational

real ruled surfaces we have the following characterization: X is a nonrational ruled
surface over R if and only if there exists a curve B over R of genus≥ 1 and a projective
morphism p : X → B such that the fiber p−1(η) of a generic point is a smooth curve
of genus 0 (cf. [10, V]). We will assume that B(R) is irreducible.

Theorem 3.1 Let X be a real nonrational projective ruled surface over a curve B.

(i) If B(R) is connected then

Halg
1

(
X(R),Z/2

)
= H1

(
X(R),Z/2

)
.

(ii) If B(R) is nonconnected and X(R) has some connected component homeomorphic
to S1 × S1 then

Halg
1

(
X(R),Z/2

)
�= H1

(
X(R),Z/2

)
.

In the proof we use the minimal model program to give a detailed description of
all the possible topological types for real projective ruled surfaces X(R) together with

all the possible groups Halg
1

(
X(R),Z/2

)
. Moreover, due to the constructive nature

of the arguments, all cases listed occur. Theorem 3.1 is a corollary of this description.

Proof If X is a smooth, irreducible, real surface with a real ruling π : X → B over a
smooth real curve B, then X is birationally equivalent to a surface defined in some
affine open subset of A2×B by an equation of the form x2 + y2 = f , where f is a real
rational function in B, regular in B(R) (cf. [10, V]). Moreover a classical theorem by
Witt establishes the existence of such a function f for any choice of zeros and signs
in the different connected components of B(R), provided that the number of zeros

in each component is even (cf. [11]). We first study the group Halg
1

(
X(R),Z/2

)
for

a real ruled surface given by an affine equation as above, that is, X is the projective
completion of the affine surface defined in A2×B by the equation x2 + y2 = f , where
f ∈ R(B)∗ is regular on B(R). We consider two cases.

• B(R) connected: We have B(R) ∼ S1. If f has some zeros on B(R), then X(R) is
homeomorphic a union of 2-spheres and H1

(
X(R),Z/2

)
= {0}.

If f is strictly positive on B(R), then X(R) is homeomorphic to S1 × S1. Let b0 be
a fixed point in B(R), we consider

L2 = {(x, y, b0) ∈ A2(R)× B(R) | x2 + y2 = f (b0)} ⊂ X(R).

Clearly [L2] ∈ Halg
1

(
X(R),Z/2

)
, where [L2] denotes the homology class repre-

sented by L2 in X(R). That is, the fiber class is algebraic. We consider now the
section class.
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Since f is positive on the curve B(R) we have, by [1, Theorem 6.4.18], that f =
f 2
1 + f 2

2 with f1, f2 regular on B(R). We can then define a regular section s : B(R)→
X(R), b �→

(
f1(b), f2(b), b

)
, so if we set L1 = s

(
B(R)
)

we clearly have [L1] ∈

Halg
1

(
X(R),Z/2

)
so Halg

1

(
X(R),Z/2

)
= H1

(
X(R),Z/2

)
.

• B(R) not connected: We write B(R) = B1 ∪ · · · ∪ Bn, where Bi are the connected
components of B(R). Let n = z + s+ + s− so

B(R) = B1 ∪ · · · ∪ Bz︸ ︷︷ ︸
f has zeros

∪Bz+1 ∪ · · · ∪ Bz+s+︸ ︷︷ ︸
f is positive

∪Bz+s++1 ∪ · · · ∪ Bz+s++s−︸ ︷︷ ︸
f is negative

If we write z∗ for the number of zeros of f in B(R) we have that

X(R) =
( z∗/2⋃

i=1

S2
i

)
∪
( z+s+⋃

i=z+1

Ti
1

)
, S2

i ∼ S2, Ti
1 ∼ S1 × S1,

so dimZ/2H1

(
X(R),Z/2

)
= 2s+.

For i = z + 1, . . . , z + s+ we define

Li1 = {( f (g)1/2, 0, b) ∈ A2(R)× B(R) | b ∈ Bi} ⊂ Ti
1

Li2 = {(x, y, bi) ∈ A2(R)× B(R) | x2 + y2 = f (bi)} ⊂ Ti
1,

where bi is a fixed point of Bi . Clearly [Li2] ∈ Halg
1

(
X(R),Z/2

)
. Now, if we consider

the regular map p : X(R)→ B(R) induced by the projection A2(R)× B(R)→ B(R)

we have that p∗([Li1]) = [Bi] /∈ Halg
1

(
B(R),Z/2

)
, so [Li1] /∈ Halg

1

(
X(R),Z/2

)
.

If u ∈ H1

(
X(R),Z/2

)
we can write u =

∑z+s+

i=z+1 λi[Li1] + µi[Li2], λi , µi ∈
{0, 1}, so

p∗(u) =
z+s+∑

i=z+1

µi[Bi] ∈ H1

(
B(R),Z/2

)
,

where p∗ denotes the push-forward homomorphism H1(p) in homology induced by
p.

We have then

p∗(u) ∈ Halg
1

(
B(R),Z/2

)
iff z = 0, s− = 0, µi = 1, i = 1, . . . , s+,

so if z �= 0 or s− �= 0 we have Halg
1

(
X(R),Z/2

)
=
⊕z+s+

i=z+1([Li2]).
If z = s− = 0 the function f is strictly positive and, arguing as in the connected

case, we get

Halg
1

(
X(R),Z/2

)
=

n⊕
i=1

([Li2])
⊕

([L11] + · · · + [Ln1]).

Let X now be a general relatively minimal ruled surface X over the curve B. By
[10, V.3] we know that there exists a relatively minimal ruled surface X ′ over B given
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as above and a birational map ϕ : X ′C → XC that is the product of real elementary
transformations. A real elementary transformation is a blow up at a real point (or
two complex conjugate points) composed with the blow down of the fiber obtained
over that point (resp. the fibers over the complex conjugate points considered).

Given a smooth projective surface over R we understand the effect on the real part
X(R) of a blow up π : YC → XC of the kind mentioned above. If π : YC → XC is the
blow up at a pair of complex conjugate points then Y (R) ∼= X(R). If π has as center a
real point x ∈ X(R) then X(R) and Y (R) have the same number of connected com-
ponents and the blow up only changes the connected component of X(R) containing
the center x. More precisely, if we write Tg for the g-holed torus (T0 = S2) and Uh for
the compact connected nonorientable surface of Euler characteristic 1−h (in particu-
lar U0 = P2(R)), we can describe the blow up at a real point x ∈ X(R) as follows: Let
{Xi}i∈I be the set of connected components of X(R), then {Yi = π

−1(Xi)∩Y (R)}i∈I

is the set of connected components of Y (R) and Yi ∼ Xi if x /∈ Xi . For x ∈ Xi we
have that Yi ∼ U2g if Xi ∼ Tg and Yi ∼ Uh+1 if Xi ∼ Uh. In other words, the
blow up puts an extra P1(R) over the real point x ∈ X(R). Moreover, the addition of

this exceptional divisor is the only change in the group Halg
1

(
X(R),Z/2

)
, that is, the

group Halg
1

(
Y (R),Z/2

)
is, roughly speaking, the group Halg

1

(
X(R),Z/2

)
plus the

class represented by the extra P1(R) (cf. [10, II]).

Let Y ′ and Y be two real ruled surfaces over a real curve B and elm : Y ′C → YC be
an elementary transformation. If elm starts with the blow up of two conjugate points
of Y ′C we have that Y (R) ∼= Y ′(R). Consider then that elm : Y ′C → YC starts with a
blow up at a real point y ∈ Y ′(R) and assume that Y ′(R) is connected. It is clear that
if Y ′(R) ∼ S2 then Y (R) ∼ S2, if Y ′(R) ∼ S1 × S1 then Y (R) ∼ U1 (Klein bottle)
and if Y ′(R) ∼ U1 then Y (R) ∼ U1.

Again we consider two cases.

• B(R) connected: In this case, X ′(R) is, topologically, either a union of 2-spheres
or a torus. By the considerations above X(R) is then homeomorphic to a union
of 2-spheres, to the torus S1 × S1 or to the Klein bottle. Moreover, we have that

Halg
1

(
X(R),Z/2

)
= H1

(
X(R),Z/2

)
.

• B(R) not connected: We have X ′(R) = (
⋃z∗/2

i=1 S2
i ) ∪ (

⋃z+s+

i=z+1 Ti
1).

With a real elementary transformation with a base point x in Ti
1 we get U i

1 and
since we blow down a fiber we get that the transform of the section cycle remains
nonalgebraic (same reasons as above, considering the projection onto B(R)) and the
transform of the fiber cycle remains algebraic. By convenience we keep the same
notation for a cycle and its transform under a real elementary transformation.

We have then

X(R) =
( z∗/2⋃

i=1

S2
i

)
∪
( a⋃

j=1

T j
1

)
∪
( a+b⋃

k=a+1

U k
1

)
, a + b = s+.
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If z = 0 and a + b = n (number of connected components of B(R)) then

Halg
1

(
X(R),Z/2

)
=

n⊕
i=1

([Li2])
⊕

([L11] + · · · + [Ln1]).

If a + b �= n then

Halg
1

(
X(R),Z/2

)
=

a+b⊕
i=1

([Li2]).

We consider now a general nonrational projective ruled surface X over a curve B.
We have a relatively minimal real projective ruled surface X ′ and a finite sequence
of birational maps XC → X(1)

C → X(2)
C → · · · → X ′C where X(1),X(2), . . . ,X(n) are

smooth projective surfaces over R, and such that each map is the morphism corre-
sponding to the blow up of a real point or two complex conjugate points (cf. [10,
II.6]). We can assume that each morphism is the blow up at a real point.

We consider again two cases.

• B(R) connected: We have three possibilities for X ′(R).

– If X ′(R) ∼
⋃m

i=1 S2 we have X(R) ∼ (
⋃a

j=1 S2)∪(
⋃a+b

l=a+1 U l
g(l)), a+b = m, g(l) ≥

0.

– If X ′(R) ∼ S1 × S1 then either X(R) ∼ S1 × S1 or X(R) ∼ Ug with g ≥ 2.

– If X ′(R) ∼ U1 then X(R) ∼ Ug with g ≥ 1.

In all three cases it follows, from the results above, that

Halg
1

(
X(R),Z/2

)
= H1

(
X(R),Z/2

)
.

• B(R) not connected: In this case we have X ′(R) = (
⋃z∗/2

i=1 S2
i ) ∪ (

⋃a
j=1 T j

1) ∪

(
⋃a+b

k=a+1 U k
1 ), where we follow the notations introduced above.

If a + b = n (number of connected components of B(R)) we have

X(R) =
( a ′⋃

j=1

T j
1

)
∪
( a ′+b ′⋃

k=a ′+1

U k
1

)
∪
( a ′+b ′+c ′⋃

p=a ′+b ′+1

U p
g(p)

)
, a ′ + b ′ + c ′ = n, g(p) ≥ 2,

and since

Halg
1 (X ′(R),Z/2) =

n⊕
i=1

([Li2])
⊕

([L11] + · · · + [Ln1]),
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we have

Halg
1

(
X(R),Z/2

)
=

a ′⊕
i=1

([Li2])
a ′+b ′⊕

k=a ′+1

([Lk2])
a ′+b ′+c ′⊕

p=a ′+b ′+1

{([Lp2])⊕ · · · ⊕ ([Lpg(p)])}

⊕
([L11] + · · · + [Ln1]),

where [Lp1], [Lp2], . . . , [Lpg(p)] denote the generators of H1(U p
g(p),Z/2).

If a + b �= n we have

X(R) =
( a ′ ′⋃

i=1

S2
i

)
∪
( b ′ ′⋃

j=1

T j
1

)
∪
( b ′ ′+c ′ ′⋃

k=b ′ ′+1

U k
1

)
∪
( b ′ ′+c ′ ′+d ′ ′⋃

p=b ′ ′+c ′ ′+1

U p
g(p)

)

∪
( b ′ ′+c ′ ′+d ′ ′+e ′ ′⋃

q=b ′ ′+c ′ ′+d ′ ′+1

U q
g(q)

)
,

where a ′′ + d ′ ′ = z∗/2, b ′′ + c ′ ′ + e ′ ′ = a + b, g(p) ≥ 0 and g(q) ≥ 2.

Since Halg
1

(
X ′(R),Z/2

)
=
⊕a+b

i=1([Li2]), we have

Halg
1

(
X(R),Z/2

)
=

b ′ ′⊕
j=1

([L j2])
b ′ ′+c ′ ′⊕
k=b ′ ′+1

([Lk2])
b ′ ′+c ′ ′+d ′′⊕
p=b ′ ′+c ′ ′+1

{([Lp1])⊕ · · · ⊕ ([Lpg(p)])}

b ′ ′+c ′ ′+d ′′+e ′ ′⊕
q=b ′′+c ′ ′+d ′ ′+1

{([Lq2])⊕ · · · ⊕ ([Lqg(q)])}.

That is, in this case the U ’s obtained from spheres have all 1-cycles algebraic, but the
U ’s obtained from the tori have algebraic all 1-cycles but the one obtained from the
section cycle in T j

1 .
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