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Abstract

We study the dynamics of a reaction—diffusion—advection equation u; = u,, — au, + f(u) on the right
half-line with Robin boundary condition u, = au at x = 0, where f(«) is a combustion nonlinearity. We
show that, when 0 < a < ¢ (where c is the travelling wave speed of u, = u,, + f(u)), u converges in the
L ([0, 0)) topology either to 0 or to a positive steady state; when a > ¢, a solution u starting from a small
initial datum tends to O in the L*([0, c0)) topology, but this is not true for a solution starting from a large

initial datum; when a > ¢, such a solution converges to 0 in L;? ([0, c0)) but not in L*([0, 0)) topology.
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1. Introduction

In this paper, we study the asymptotic behaviour, as t — oo, of solutions of

Uy =y —auy + f(u), x>0,1>0,
u,(t,0) = au(t,0), t>0, (1.1)
u(0, x) = up(x), x>0,

where a > 0 denotes the advection strength, f is a combustion nonlinearity satisfying
f(s)=0in[0,0], f(s)>0in(H,1), f(s)<0in(1,c0) (F)
for some 6 € (0, 1) and ug is taken from the set
X :={p| ¢ € C([0,00)),¢ >0,¢ % 0 and the support of ¢, spt(¢), is compact}.

There have been many studies of reaction—diffusion equations with a nonlinearity
f as in (F), where 6 represents the ignition point in a combustion process, and so f is
called a combustion nonlinearity. For example, Zlato§ [13], Du and Matano [7] and
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Du and Lou [5] gave a rather complete analysis of the dynamics of bounded solutions.
More precisely, for the Cauchy problem and the free boundary problem of the equation
u; = Uy, + f(u) (with f satisfying (F)), they proved trichotomy results: any bounded
solution u(z, x) converges as t — oo in the L} (R) topology to 0, 1 or 6, respectively,
representing vanishing, spreading or transition of the solution. In this paper we
consider the problem in an advective environment, with —au, denoting the effect of
advection. Such problems arise in physics, chemistry and ecology. If the problem is
considered in the whole space (that is, the Cauchy problem), then by transferring it into
a moving frame with z = x — at, the equation is converted into one without advection.
We consider the problem (1.1) on the half-line with nonflux boundary condition,
u, = au, and study the influence of the advection and the Robin boundary condition
on the dynamics of bounded solutions of (1.1). We will see that the dynamics are
quite different according to the sign of a — c. Similarly, [3, 4, 11] considered reaction—
diffusion—advection equations in bounded domains with Robin boundary conditions;
[2, 8] considered reaction—diffusion equations with bistable nonlinearities and Robin
boundary conditions and [9, 10] considered reaction—diffusion—advection equations
with free boundary conditions.

It is easily seen by the maximum principle that any positive solution of (1.1) is
bounded. Following the ideas in [5, 7], we will show in Lemma 3.1 that this solution
converges as t — oo to a nonnegative steady state, that is, to a solution of

Vi—av' + f(v) =0, v(x)2=0in[0,00), V(0)=av(0), veL”(0,)). (1.2)

We will see that the structure of the set of such solutions depends sensitively on the
sign of a — ¢, where ¢ > 0 is the travelling wave speed of the equation u; = u,, + f(u).
More precisely, using the phase plane analysis, one can show that the solutions of (1.2)
are classified as follows (see details in Section 2).

(1) Ifa=0,thenv=gel0,0]orv=1.
(2) If0<a<c, thenv=0orvis an active state: v=V°(x + z) for a unique z > 0,
where V? is the unique solution of

Vi—av' + f(v) =0, V(x)>0in[0,00), v(0)=0, v(c0)=1. (1.3)

(3) Ifa=c,thenv=0orvisanactive state: v € V* := {V*(x — z) | z > 0}, where V*
is the unique solution of

Vi—av + f(0) =0, V(x)>0inR, v(-00)=0, v0)=6, v(co)=1.
(1.4)
4) Ifa>c,thenv=0.

Our first main result is the following theorem.

THEOREM 1.1. Assume (F) and ¢ € X. Let u,(t, x) be the time-global classical solution
of (1.1) with initial data uy = o¢ (o > 0).
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(i) Whena =0, there exists o™ € (0, o] such that spreading happens (that is, u, — 1
in the L}, ([0, %)) topology) when o > o*; vanishing happens (that is, u; — 0 in
the L}, ([0, 0)) topology) when o < o and transition happens (that is, uy — 6
in the L, ([0, 0)) topology) when o = 0.

(i) When 0 < a < ¢, there exist o.,0" € (0, 00] with o, < 0" such that spreading
happens (that is, uy — V°(x + 2) in the L, ([0, o)) topology) when o > o™ and
vanishing happens when o < o*. Furthermore, when o < o,, u, — 0 in the
L=([0, 00)) topology and, when o € [0, 0], uy — 0 in L}, ([0, 00)) but not in
the L*([0, o)) topology.

(iii) When a > c, vanishing always happens. Furthermore, there exists o, € (0, ]
such that u, — 0 in the L*([0, 0)) topology when o < o and u, — 0 in
L ([0, 00)) but not in the L*([0, o)) topology when o > o ..

(iv) When a = c, the solution u, converges as t — o to 0 or an active state in
V*. Furthermore, there exists o, € (0, ] such that u, — 0 in the L=([0, 00))

topology when o < o, and u, 4 0 in the L*([0, 00)) topology when o > 0.

We remark that in the critical case a = ¢, the problem (1.2) has a continuum of
active states V*(x — z) € V* and it is hard to distinguish one of these from the others.
So, in this case, we cannot yet say which active state should be the real w-limit of u.

This paper is organised as follows. In Section 2 we present some steady states of
the equation by using the phase plane method. In Section 3 we study the asymptotic
behaviour of the solutions, including some common convergence results and the
detailed long time dynamics of bounded solutions in the cases 0 <a < ¢, a > ¢ and
a=c.

2. Steady states

We use phase plane analysis to study nonnegative and bounded steady states of the
equation in (1.1), that is, nonnegative and bounded solutions of

Vi—av' + f() =0, xe€l, 2.1

where [ is some interval in R. The equation (2.1) is equivalent to the system

{V’ - (2.2)

w =aw — f(v).

A solution (v, w) of this system traces out a trajectory in the vw-phase plane. Such a

trajectory has slope
dw _ O

dv w
at any point where w # 0. It is easily seen that (g, 0) (with g € [0, 8]) and (1, 0) are
all equilibrium points of (2.2) on the phase plane. Clearly, (1, 0) is a saddle point and
the equation is reduced to dw/dv = a for v € [0, 8]. By a simple phase analysis, it is
not difficult to give all nonnegative solutions of (2.1) which correspond to trajectories.
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(a) 0<a<c (b) a=c (c) a>c

FiGure 1. Trajectories corresponding to the equation v/ — av’ + f(v) = 0.

Furthermore, the boundary condition v'(0) = av(0) in (1.2) is satisfied whenever the
corresponding trajectory intersects the line £ : w = av.

In case 0 < a < c (see Figure 1(a)), v=0 is a trivial solution of (1.2). There
is a trajectory C; connecting a point (0, w$) (for some w$ > 0) and (1,0), which
corresponds to a solution V° of (1.3). The trajectory C, contacts the line £: w = av
at a unique point P(qo, aqo) for some gg € (6, 1). Assume that x = z > 0 is the unique
point where V°(z) = go. Then v(x) := V%(x + z) is a solution of (1.2). Clearly, (1.2) has
no other solutions besides 0 and VO(x + z).

On the other hand, it is easily seen that, for each w, € (0, w}), there is a trajectory C
connecting (0, w,) and (0, w_) (for some w- < 0) through (g, 0) (for some g € (6, 1)).
This trajectory corresponds to a solution V(x;a, w,) of the equation in (1.2). With a
suitable shift of coordinates we can assume that V(0;a, w,) = V(L; a, w,) = 0 for some
L = L(a,w,) > 0. Denote the set of such solutions by

V(a) :={V(x;a,w,) | ws € (0, w})). (2.3)

In case a = ¢ (see Figure 1(b)), v = 0 is also a trivial solution of (1.2). Moreover,
there is a heteroclinic orbit C; connecting the points (0,0) and (1,0), which
corresponds to a steady-state solution V* of (1.4). The orbit C; coincides with the line
€ : w=av in the interval v € [0, ], so we can obtain a continuum of solutions of
(1.2): v(x) = V*(x — z) for any z > 0.

In case a > ¢ (see Figure 1(c)), v =0 is a trivial solution of (1.2) and there are no
other bounded, nonnegative solutions of (1.2) defined on [0, co).

3. Asymptotic behaviour of bounded solutions

In this section we consider the asymptotic behaviour of the bounded solutions of
(1.1) and prove our main theorem. The conclusions in Theorem 1.1(i) have been
proved in [7, Theorem 1.4]. We now consider the other three cases. In the first part we
give some common convergence results and in the other three parts we consider the
cases 0 <a < ¢, a > cand a = c, respectively.
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3.1. Some common convergence results. First we present a general convergence
result (in the L° ([0, o)) topology).

loc

Lemma 3.1. For any uy € X, the problem (1.1) has a time-global solution u which is
positive and bounded:
O<u(t,x) <M, x>0,t>0.

Moreover, u(t, x) converges as t — oo to a solution of (1.2) in the Clzac([O, 00)) topology.

Proor. By the comparison principle, it is easy to show that
O<u(t,x) <M :=1+|upllf», x>0,1t>0,

since 0 is a lower solution and M is an upper solution of (1.1). The global existence
then follows from the standard parabolic theory.

Now we prove the convergence of u as t — oo to a steady state. For any time
sequence {t,} increasing to co, by the parabolic estimate, there are a subsequence of
{t,} (denoted again by {#,}) and a solution W(z, x) of (1.1) defined over ¢ € R such that
u(t + t,, x) > W(t, x) as n — oo in the C;(;S(R % [0, 00)) topology. We first show that
W(t, x) is actually a steady state of (1.1). If W(z;, x;) = 0 for some #; € R, x; > 0, then
W(t, x) = 0 by the maximum principle and so it is a steady state. In what follows, we

assume that W(z, x) > 0 for all # € R, x > 0. Construct a steady state v(x) as follows:

Vi—av' + f(v) =0, x>0,
{v(O) = W(0,0), V' (0) = W,(0,0).

Since W,(0,0) = aW(0,0) > 0, by the phase plane analysis in Section 2, we see that
there are two possible cases: in the first case, v(x) > 0 in some interval [0, X] and
v(X) = 0 and so u(t, X) — v(X) > O for all r > 0; in the second case, v(x) > 0 for x > 0
and v(x) > % for large x > 0. (In fact, when the trajectory of v tends to (1, 0), we have
v(x) — 1 and, when the trajectory of v goes rightward across v = 1, we have v(x) > 1 for
large x.) So, for each t > 0, we have u(t, x) — v(x) < 0 for all large x, since u(z, x) — 0
as x — co. Now we use the zero-number argument (cf. [1, 5-7]) to study the zero-
number Z(#(z, -)) of the function 7(¢, x) := u(t, x) — v(x) on [0, X] (in the first case) or
[0, c0) (in the second case). Both u and v satisfy the Robin boundary conditions:

uy(t,0) = au(t,0), v(0)=W,(0,0)=aW(,0) = av(0).

Both 7(¢,0) # 0 and n(z, 0) = 0 are possible. When 7(¢,0) # 0, we can use the zero-
number results in [1] directly to conclude that Z(n(z, -)) is nonincreasing in ¢ and it
is strictly decreasing at the time moment s when 7(s, -) has degenerate zeros. As ¢
increases, if n(z, 0) reaches 0 at some time ¢ = s, that is, if (s, 0) = 0 for some s € R
and n(z,0) # 0 for t < s with s — ¢ small, the results in [1] cannot be used directly in the
time interval [, s]. However, by the Robin boundary condition, x = 0 is a degenerate
zero of n(s, -). So, we can use the same argument as in the proof of [6, Lemma 2.4] to
conclude that Z(n(¢, -)) is also strictly decreasing at the time moment s. In summary,
Z(n(t,-)) is nonincreasing in ¢ and is strictly decreasing at the time moment when 7(t, -)
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has degenerate zeros for both x € (0, o0) and at x = 0. Consequently, we can follow the
ideas in [7] and [5] to conclude that W(¢, x) = v(x), that is, the w-limit of u consists
only of steady states. Finally, we prove that w(u) is a singleton (this implies that u(z, -)
converges to a steady state). Assume, by contradiction, that both v (x), v,(x) € w(u)
and v;(0) < v,(0). Since w(u) is connected, there exists another steady state v3(x)
satisfying v;(0) < v3(0) < v,(0). Using an argument similar to that in [12], one can
derive a contradiction. This completes the proof of the lemma. O

Next, we present a sufficient condition which guarantees the convergence of u to 0
even in the L=([0, o)) topology.

Lemmva 3.2. Let u be the solution of (1.1). If u(ty,x) <6 for some ty >0, then
llee(, L (10.00)) = O as t — oo.

Proor. Assume that M := 1 + ||ug|| and L > 0 is a number satisfying spt(ug) C [0, L].
By the comparison principle,

O<u(t,x)<Mforx>0, t€[0,%]; O<u(t,x)<Oforx>0, > 1.
Assume further that f(u) < kyu for all u > 0 and some k; > 0. Set

kl, te [O’ lo]s '
k(t) := 4 a positive smooth function, € [ty,2f9], and K(¢):= f k(s)ds.
0, t>21 0

Then K(1) < K* := fOZIO k(s)ds. We now consider the following problem:

iy = Ty — aity, + k(Oit, x>0, t>0,

it,(t,0) = aii(t, 0), t>0, 3.1
(0, x) = up(x), x>0.
Since
Fut. ) {f /glu(t, x) =k(Hu(t,x), x>0, te]0,1],
=0 < k(Hu(t, x), x>0, t>1,

we see that u is a lower solution of (3.1) and so u(t, x) < @(t, x) for x > 0,¢ > 0.
2
Set w(t, x) := ite”(1/2axe1/Ha" =KD then w solves
Wtzwxx, x>0,t>0,
wi(t,0) = $aw(t,0), >0,
w(0, x) = up(x)e"1/29* >0, x> 0.

Furthermore, we assume that w is the solution of

W, =Wy, XER, >0,
M, |x|<L,

30, x) = w(0, x) <
(0, 2) = w(0, %) {0, x| > L.
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Then W is expressed explicitly as

! f e A ey M ("
e +e (0, y)dy < — | e M gy,
v [ [w(0,y)dy Vi Jo y

By comparison, we have w(t, x) < Ww(t, x) and so

w(t, x) =

L
u(t, x) < e(l/2)ax+K(t)—(1/4)ath(t’ X) < o1/ax+ K ~(1/4)at 34_ f o4 dy
it Jo

€ o~(/4a’t 0<x<L, t>0,
Vi

<M(t,x) :=
< M2, x) % e(1/2)ax—(1/4t)(x—L)2—(1/4)112[, x>L, t>0

for some C depending on a, M, K*, L. Since

ax (x-L)y* a*t o ax a(x—L) aL

2 4t 4 = 2 2 2’
we have, for some constant C independent of ¢ and x,

— C
u(t,x) < M(t, x) < L 50 ast—o .
Vi

This proves the lemma. o

3.2. The case 0 < a < ¢. In this case the problem (1.2) has only two solutions: 0
and VO(x + 7). So, we have a dichotomy result by Lemma 3.1: any solution converges
as t — oo to either 0 or VO(x + z). For any given ¢ € X, the set (0, c0) of the parameter
o is divided into three subsets:
Xo :={0 > 0| llue(, )llz=((0,000) = O @S 1 — 00},
., :={oc>0]us(t,-) > 0ast— ocoin Ly ([0, c0)) 32)
but not in the L*([0, o)) topology}, '

Tii={o >0 ust,) = VO(- +2)as t = oo in L2 ([0, 00))}.

loc

Claim 1: Xy is a nonempty open interval. In fact, £y consists of all small positive o,
since 0 < ¢ < 6 for any small o, and so [|u,(t, -)||L=(j0,.0)) — O by Lemma 3.2. Next,
we show that ¥ is an open set. Assume that 0| € X; then there exists a time #; such
that u,, (t;,x) < 6/2 for x > 0 (by Lemma 3.2). Since u,(#;, x) depends continuously
on o in the L™ topology, we see that

u0'|+5(t1’ x)<6, x=0,

for any € provided |e| is small. This means that o) + € € Z( and so X is an open set.
Finally, ¥ is an interval by the comparison principle.

Claim 2: 1If X is not empty, then it is an open interval. In fact, for any o, € X, since
Ug,(t,-) = VO(- + 7), there exists a time #, such that

Ugr, (2, x) > V(x — X050, wy), X € [x0,x0 + L(a, w,)],
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for some V taken from V(a) in (2.3) and any large x(. By the continuous dependence
of u,(t,, x) on o and by the comparison principle,

M(T(tZa .X') > V(X — X0, 4, U-)Jr)’ X e [X(), Xo + L(a9 (’-)Jr)]’

provided o > 0 or o < 0, with |0 — 07| small. Hence, u,(t, x) > V(x — x¢; a, w,) for
all t > t, and so o € Z; by the dichotomy result. This implies that X is an open interval
of the form (0", c0). Note that ; # 0 if ¢(x) > 0 in some interval [xy, xo + L(a, w,)],
since in this case o¢ > V(x — x¢; a; w, ) in this interval provided o is sufficiently large.

If X, = 0, then either £y = (0, o) or £y = (0, 0,) and X, = [0, o0) for some o, > 0.
In both cases, this completes the proof of Theorem 1.1(ii). If X; # @, then by Claims 1
and 2, there exist c* > o, > 0 such that Xy = (0, 0.), £1 = (0, ) and X, = [0, 0"].
Again, this completes the proof of Theorem 1.1(ii).

3.3. The case a > c. In this case, the only bounded solution of (1.2) is 0, so any
solution u of (1.1) converges to O in the L; ([0, o)) topology. Consequently, for
any given ¢ € X, the set (0, o) of the parameter o is divided into two parts: Xy and
2., defined as in (3.2). The above Claim 1 remains valid in the present case: X
is a nonempty open interval. If Xy = (0, c0), then there is nothing left to prove. If
>y = (0,0) for some o, > 0, then X, = [0, o) and the proof for Theorem 1.1(iii) is
then completed. The following claim shows that X, # @ is possible for some ¢ € X.

Claim 3: If ¢(x) > 0in [x1, x,] and if x, — x; is sufficiently large, then X, # (. If fact,
for any given s € (a — ¢, a], we have a — s € [0, ¢). By the analysis in Section 2 (for
the case 0 < a < c¢), the equation v’ — (a — $)V' + f(v) = 0 has a family of compactly
supported solutions V(x;a — s, w;) € V(a — s), with V(x;a — s, w,) defined on some
interval I := [0, L(a — s, w;)]. For any such function and any x; > 0, we see that
u(t,x) := V(x — st — xp; a — s, w,) is a lower solution of (1.1) and so

u(t,x) > u(t,x), xE€][st+ xp,st+x9+La-s,wy)], t>0,

provided this inequality holds at r = 0. Such a possibility can occur if x; < xp,
X —x1 > L(a — s; wy) and o > 0 is large. Therefore, any such o is in Z..

3.4. The case a = c. This is the critical case and the problem (1.2) has a continuum
of solutions: V*(x — z) for z > 0 as well as 0. For any given ¢ € X, we define Xy, X, %
as in (3.2), with VO(x + z) replaced by V*(x — z) for some z > 0. Then, by Lemma 3.2,
the set Xy is an open interval. As above, there is nothing left to prove if Xy = (0, co).
We now consider the case Xy = (0, o) for some o, > 0, that is, X, UX; = [0, o).
This is possible for some ¢ € X. In fact, the above Claim 3 remains valid in the current
case, so, for some ¢ € X, u, does not converge to 0 in the L™ topology (that is, o ¢ X)
when o is large. However, whether X, = 0 or not is still an open problem.
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