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Abstract

The class of almost completely decomposable groups with a critical typeset of type (2, 2) and a
homocyclic regulator quotient of exponent p3 is shown to be of bounded representation type. There
are only 16 isomorphism at p types of indecomposables, all of rank 8 or lower.

2010 Mathematics subject classification: primary 20K15; secondary 20K25, 20K35, 15A21, 16G60.

Keywords and phrases: almost completely decomposable group, indecomposable, bounded representation
type.

1. Introduction

In spite of Kaplansky’s observation that the theory of torsion-free abelian groups
seems to consist of a collection of counterexamples to anything one might think of,
there is a well-developed theory of completely decomposable and almost completely
decomposable groups, [2, 8].

A torsion-free abelian group A is an additive subgroup of a Q-vector space V
where Q is the field of rational numbers. By QA we mean the subvector space spanned
by A, and the rank rkA of A is defined by rkA = dimQA.

Completely decomposable groups are direct sums of groups of rank 1, and
almost completely decomposable groups are abelian groups that contain a finite-
rank completely decomposable subgroup of finite index. Every almost completely
decomposable group G contains a canonical completely decomposable fully invariant
subgroup R(G), the regulator of G. In this paper we deal exclusively with almost
completely decomposable groups with p-primary regulator quotient G/R(G), the
so-called p-local case. While there is ample evidence that classification of almost
completely decomposable groups up to isomorphism is hopeless, there is a weakening
of isomorphism that serves very well. Given a prime p, two almost completely
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decomposable groups G and H are isomorphic at p if there exist f : G→ H, g : H →
G, and an integer n prime to p with f g = n and g f = n. Note that for p-local almost
completely decomposable groups isomorphism at p is equivalent to near-isomorphism.

By well-known theorems of Arnold [1] and Faticoni and Schultz [7], the p-local
almost completely decomposable groups with isomorphism at p form a Remak–
Krull–Schmidt category, that is, decompositions with indecomposable summands are
unique up to isomorphism at p and two groups that are isomorphic at p have identical
decompositions up to isomorphism at p. Also a p-local group is indecomposable as
an abelian group if and only if it is indecomposable in the isomorphism at p category.
This means that p-local almost completely decomposable groups are classified up to
isomorphism at p once the indecomposable groups are determined. This is completely
analogous to the situation of finite abelian groups, but while the indecomposable finite
abelian are easily found, the same is not true for almost completely decomposable
groups. It is necessary to restrict oneself to special classes of local almost completely
decomposable groups, and then two things can happen. If the class has unbounded
representation type, that is, it contains indecomposable groups of arbitrarily large
ranks, then a survey of the indecomposable groups in the class is considered hopeless.
The other possibility, bounded representation type, is that there are up to isomorphism
at p only finitely many indecomposable groups. In this case one wishes to compile a
complete list of isomorphism at p classes of indecomposable groups and so achieve a
classification of the class up to isomorphism at p.

A type τ is p-reduced if pA , A for any group of rank 1 and of type τ. A (2, 2)-
group is an almost completely decomposable group G with regulator R = R(G) =

Rτ1 ⊕ Rτ2 ⊕ Rτ3 ⊕ Rτ4 where the τi are p-reduced types such τ1 < τ2, τ3 < τ4, τi

incomparable with τ j for i ≤ 2 < j, and Rτi is a finite direct sum of groups of rank 1
and of type τi.

A (2, 2)-group with regulator quotient of exponent pm is called (2, 2)-pm-group. A
(2, 2)-pm-group with a homocyclic regulator quotient is called a (2, 2)-pm-hc-group.

This paper is devoted to a classification of indecomposable (2, 2)-p3-hc-groups,
thereby confirming bounded representation type in this case. More precisely, we
present a complete collection of isomorphism at p types of indecomposables. They
are of rank 4, 5, 6, 8. The groups are encoded by (integral) ‘coordinate matrices’, and
the proof includes finding a normal form for coordinate matrices (see Section 3).

The (2, 2)-pm-groups for m ≤ 2 have finite representation type, and the
indecomposable groups of these classes are described in [9].

The class of (2, 2)-pm-groups for m ≥ 3 has unbounded representation type; see [3].
The class of (2, 2)-pm-hc-groups for m ≥ 5 has unbounded representation type [6].
The case of (2, 2)-p4-hc is open and is likely to be rather complicated with many
indecomposable groups. In general, if the regulator quotient is not assumed to be
homocyclic, then there will also be more indecomposable groups.
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2. Coordinate matrices

The goal of this section is to describe a p-reduced, p-local (2, 2)-group by means of
an integer matrix, the ‘coordinate matrix’. The coordinate matrix is obtained by means
of ‘bases’ of R = R(G) and G/R. We start with the general concept.

Definition 2.1. Let G be a p-reduced, p-local almost completely decomposable group
with regulator R and p-basis (x1, . . . , xm) of R. Let r = rk(G/R). A matrix δ = [δi, j] is
a coordinate matrix of G modulo R if δ is integral, there is a basis (ε1, . . . , εr) of G/R,
there are representatives gi ∈ G of εi, and there is a p-basis (x1, . . . , xm) of R such that

gi = p−ki

( m∑
j=1

δi, jx j

)
where 〈εi〉 � Zpki .

Coordinate matrices always exist and are uniquely determined by the bases (xi)
and (gi); see [4, Lemmas 6 and 7]. Two p-reduced, p-local almost completely
decomposable groups are isomorphic at p if and only if their coordinate matrices are
equivalent via an equivalence relation defined by certain row and column operations
listed below; see [4, Theorem 12].

Moreover, if the exponent of the regulator quotient of G is pk, then any entry ai j in
the coordinate matrix δ may be replaced by an integer congruent to ai j modulo pk.

Let G be a (2, 2)-group of rank m with regulator R = Rτ1 ⊕ Rτ2 ⊕ Rτ3 ⊕ Rτ4 .
We indicate a purification by the subscript ‘∗’. Then the ordered set
(x1,1, . . . , x1,r1 , x2,1, . . . , x2,r2 , x3,1, . . . , x3,r3 , x4,1, . . . , x4,r4 ) = (x1, . . . , xm), where xi < pR,
is called a p-basis of R if R =

⊕
i, j〈xi, j〉∗, where Rτi =

⊕ri

j=1〈xi, j〉∗. The choice of the
p-basis divides the coordinate matrix in four blocks α1, α2, β1, β2 of sizes r × ri,
i = 1, 2, 3, 4. We write δ = [α1 | α2 ‖ β1 | β2] and α = [α1 | α2] and β = [ β1 | β2].

Remark 2.2. We call transformations of rows and of columns of a coordinate matrix
of a homocyclic (2, 2)-group G allowed if the transformed coordinate matrix is the
coordinate matrix of a group H where G and H are isomorphic at p. Then the following
row and column operations on the coordinate matrix of a homocyclic (2, 2)-group are
allowed.

(1) Any multiple of a row may be added to any row below or above it.
(2) Any row or column may be multiplied by an integer relatively prime to p.
(3) Any multiple of a column of α1 may be added to another column of [α1 ‖ α2]

and any multiple of a column of α2 may be added to another column of α2.
(4) Any multiple of a column of β1 may be added to another column of [ β1 ‖ β2] and

any multiple of a column of β2 may be added to another column of β2.

We now state the regulator criterion in [4, Lemma 13], in the special case of (2, 2)-
groups.
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Lemma 2.3. Let G be a (2, 2)-group. Then G has a regulating regulator. Let r =

rank(G/R). The completely decomposable subgroup R = Rτ1 ⊕ Rτ2 ⊕ Rτ3 ⊕ Rτ4 of finite
index in G is the regulator of G if and only if Rτ1 ⊕ Rτ2 and Rτ3 ⊕ Rτ4 are pure in G, and
this holds if and only if α and β of a coordinate matrix [α ‖ β], relative to any p-basis
of R (chosen as above), both have p-rank r.

An almost completely decomposable group is called clipped if it has no summand
of rank 1. An integral matrix A = [ai, j] is called p-reduced if:

(1) there is at most one 1 in a row and column and all other entries are in pZ;
(2) if an entry 1 of A is at the position (is, js), then ais, j = 0 for all j > js and ai, js = 0

for all i < is, and ais, j, ai, js ∈ pZ for all j < js and all i > is.

Thus in a p-reduced matrix, the entries to the left of and below a 1 are in pZ. By
elementary row transformations upward and elementary column transformations to the
right A can be transformed into a p-reduced matrix; see [4, Lemma 14].

3. Standard coordinate matrices

By Arnold’s theorem two torsion-free groups of finite rank which are isomorphic
at p have (up to isomorphism at p of summands) the same decomposition; see [1,
Corollary 12.9]. Hence, given a coordinate matrix we may transform the matrix by
allowed row and column transformations listed above and arrive at a coordinate matrix
of the same group or of a group that is isomorphic at p to the original group. If
we arrive at a matrix that shows that the group to which it belongs does or does not
decompose, then the original group does or does not decompose.

For the convenience of the reader we gather together techniques, language
conventions and standard conclusions.

• The term line means a row or a column.
• A pivot denotes a nonzero entry that will be used to annihilate either in its column

or in its row.
• Block names, like pC, are placeholders only and are reused again and again with

changing values.
• By ‘pl ∈ A’ we mean an entry in the matrix A that is in plZ \ pl+1Z. Since we may

multiply a line by a unit modulo p we can ignore unit factors in our situation.
• The matrix A = [ai, j] has a cross at (i0, j0) if ai0, j0 , 0 and ai0, j = 0, ai, j0 = 0 for all

i , i0 and j , j0. The entry ai0, j0 is called cross entry.
• By ‘x ∈ A leads to a cross’ we mean that this entry x can be used as a pivot in its

row and its column to produce a cross by allowed line transformations, that is, x
is afterward the cross entry.

• We apply transformations to annihilate entries. While doing this, some other
entries that were originally zero may become nonzero; those entries are called
fill-ins. Mostly we want to change certain submatrices either to a 0-matrix or to a
matrix of the (‘normed’) form phI, h ≥ 0. The phrase ‘we can annihilate’ tacitly
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includes that the occurring fill-ins can be removed by subsequent transformations
and the previously ‘normed’ blocks are reestablished. Note that sometimes fill-ins
occur that have a prefactor p3, hence can be and are replaced by 0, because we
deal with groups with regulator quotient of exponent p3.

• The phrase ‘we form the Smith normal form of A’ means that by a sequence
of arbitrary elementary row and column transformations we obtain a diagonal
matrix with diagonal entries 0 or pl with exponents in increasing order from the
top down. It is tacitly included that all the line transformations are allowed and
that destroyed ‘normed’ blocks can be reestablished.

• If blocks split into subblocks, then if possible we keep the original name to
avoid overwhelming indexing. Forming the Smith normal form, in general, splits
blocks.

A matrix is decomposed if it is of the form
[A 0

0 B
]
. Here either one of the matrices A,B

is allowed to have no rows or no columns, that is, the decomposed matrices include
the special cases [0 B],

[0
B
]
, [A 0],

[A
0
]
. A matrix A is called decomposable if there are

row and column permutations that transform it to a decomposed form, that is, there are
permutation matrices P,Q such that PAQ is decomposed.

Lemma 3.1. A p-local, p-reduced almost completely decomposable group with an
inverted forest as critical typeset is decomposable if and only if there exists a
decomposable coordinate matrix.

Proof. If the p-local, p-reduced almost completely decomposable group G = H ⊕ L is
decomposable, then H, L may be assumed to be given by coordinate matrices δH , δL.
Since the critical typeset of G is an inverted forest, we have R(G) = R(H) ⊕ R(L);
see [5, Lemma 3.1]. Thus G has the coordinate matrix δG = δH ⊕ δL. Hence a
decomposable group G has a decomposable coordinate matrix.

Conversely, a group G with a decomposable coordinate matrix obviously is
decomposable. �

We establish kind of a standard form for coordinate matrices of (2, 2)-p3-hc-
groups without summands of rank 3 or lower. This is no restriction in the context
of decomposition, because such summands are not (2, 2)-groups.

Proposition 3.2. A (2, 2)-p3-hc-group G without summands of rank 3 or lower has a
coordinate matrix

[α1 | α2 ‖ β1 | β2] =


IA 0 0 | 0 0 0 ‖

0 pIB 0 | IB 0 0 ‖

0 0 p2IC | 0 IC 0 ‖

0 0 0 | 0 0 ID ‖

A | A′

B | B′

pC | C′

pD | D′

 (3.1)

︸               ︷︷               ︸
α1

︸              ︷︷              ︸
α2

︸︷︷︸
β1

︸︷︷︸
β2

https://doi.org/10.1017/S1446788714000652 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000652


[6] (2, 2)-groups 17

such that:

(1) the sizes of the identity matrices IA, IB, IC , ID all are isomorphism at p invariants
of G and the sum of the sizes of IA, IB, IC , ID is the rank of the regulator quotient;

(2) the submatrix [β1 | β2] is p-reduced and the submatrix of β2, obtained by omitting
the 0-rows, is the identity matrix—in particular, the blocks A′, B′,C′, D′ are
completely determined by β1;

(3) β1 has no 0-line and a cross in β1 has a cross entry , 1 in B or in C, and such a
cross displays a summand of rank 4.

Proof. As G is clipped neither α nor β can contain a 0-column. The regulator
criterion implies that neither α nor β can have a 0-row. All elementary row and
column transformations are allowed in α1, hence α1 may be assumed to be in Smith
normal form. Moreover, we may assume α to be p-reduced, hence there are 0-rows
in α2 to the right of IA. The regulator criterion requires that the submatrix of α2,
obtained by omitting its 0-rows, can be transformed to the identity matrix by column
transformations in α2, hence without changing α1. The claimed form of α is now
established.

(1) It can be shown that the sizes of the identity matrices IA, IB, IC , ID all are
isomorphism at p invariants of G.

(2) Row transformations upward in α create fill-ins in α that can be removed by
suitable allowed column transformations in α. Hence β may be transformed by row
transformations upward and the usual allowed column transformations. So we may
assume that β is in p-reduced form. Using the same arguments as for α we show that
there are zeros to the right of any 1 in β1 and the submatrix remaining after omitting
all zero rows from β2 may be changed to the identity matrix. This can be done without
changing β1 or α.

(3) Clearly, β1 has no 0-line, because there are no summands of rank 3 or lower.
It remains to show, in particular, to complete the proof of (3), that the entries of β1

in C and D all are in pZ. A 1 ∈ D leads to a cross in β. Hence the entries of D all are
in pZ. Also a 1 ∈ C leads to a cross in β1 using the fact that the entries in D are in pZ.
In both cases there are summands of rank 3 or lower. All other locations of a cross
in β1 display summands of rank 3 or lower if the cross entry is 1, and summands of
rank 4 if the cross entry is not a unit modulo p. �

Note that in order to keep the matrices from growing too large, we often use the
abbreviated ‘normal’ form of the coordinate matrix in Equation (3.1),

[α1 | α2 ‖ β1 | β2] =


IA | 0 ‖

pIB | IB ‖

p2IC | IC ‖

0 | ID ‖

A | A′

B | B′

pC | C′

pD | D′

 .
The following example illustrates the special form that is claimed to exist in

Proposition 3.2.
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Example 3.3. Let G be a (2, 2)-p3-hc-group with a coordinate matrix

[α1 | α2 ‖ β1 | β2]

=



1 0 0 0 0 | 0 0 0 0 ‖ 1 0 0 0 0 | 0 0 0 0
0 1 0 0 0 | 0 0 0 0 ‖ p2 0 0 0 p | 1 0 0 0
0 0 p 0 0 | 1 0 0 0 ‖ p2 p 0 1 0 | 0 0 0 0
0 0 0 p 0 | 0 1 0 0 ‖ 0 0 p2 0 0 | 0 1 0 0
0 0 0 0 p2 | 0 0 1 0 ‖ p2 0 0 p 0 | 0 0 1 0
0 0 0 0 0 | 0 0 0 1 ‖ 0 0 0 p p2 | 0 0 0 1



A1

A2

B1

B2

C
D︸             ︷︷             ︸

α1

︸         ︷︷         ︸
α2

︸                ︷︷                ︸
β1

︸       ︷︷       ︸
β2

Here the cross in β1 with a cross point in the B2-row leads to a direct summand of
rank 4.

A coordinate matrix of a (2, 2)-p3-hc-group as in Proposition 3.2 is called standard.
Note that in a standard coordinate matrix the form of α2, β2 is completely determined
by α1, β1, respectively.

Line transformations of β1 are called α-allowed if after executing such, α can
be returned to its previous form by column transformations of α. All column
transformations of β1 are automatically α-allowed.

The following row transformations are α-allowed.

(1) Any line may be multiplied by a unit.
(2) Any row transformation may be applied to A, B,C,D.
(3) Any multiple of a row in D may be added to any other row.
(4) Any multiple of a row in C may be added to any row in C ∪ B ∪ A.
(5) Any multiple of a row in B may be added to any row in B ∪ A.
(6) Any p-multiple of a row in A may be added to a row in B.
(7) Any p-multiple of a row in B may be added to a row in C.
(8) Any p-multiple of a row in C may be added to a row in D.
(9) Any p2-multiple of a row in A may be added to a row in C.
(10) Any p2-multiple of a row in B may be added to a row in D.

Proposition 3.4. A (2, 2)-p3-hc-group is decomposable if and only if there exists a
standard coordinate matrix [α1 | α2 ‖ β1 | β2] with decomposable β1.

Proof. We proceed as in Lemma 3.1 and specify to standard coordinate matrices.
Let G be a (2, 2)-p3-hc-group. If G = H ⊕ L, then H, L may be assumed to be given by
standard coordinate matrices [αH

1 | α
H
2 ‖ β

H
1 | β

H
2 ] and [αL

1 | α
L
2 ‖ β

L
1 | β

L
2 ], respectively.

Thus G has the coordinate matrix

[αG ‖ βG] = [αG
1 | α

G
2 ‖ β

G
1 | β

G
2 ] = [αH

1 ⊕ α
L
1 | α

H
2 ⊕ α

L
2 ‖ β

H
1 ⊕ β

L
1 | β

H
2 ⊕ β

L
2 ].
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We rearrange [αH
1 ⊕ α

L
1 | α

H
2 ⊕ α

L
2 ] by row and column permutations to obtain

αG in standard form. This permutes the rows of βG. Note that βG
2 can be

transformed into standard form without changing αG, βG
1 , respectively. Since

βG
1 = βH

1 ⊕ β
L
1 is decomposed, the resulting βG

1 in standard form is decomposable.
Thus for a decomposable group G there exists a standard coordinate matrix with
decomposable βG

1 .
Conversely, if G has a standard coordinate matrix with decomposable β1, then G

obviously is decomposable. �

Example 3.5. Let G be a (2, 2)-p3-hc-group with a coordinate matrix

[α1 | α2 ‖ β1 | β2] =

[
1 0 | 0 ‖ 1 0 | 0
0 p | 1 ‖ 0 p2 | 1

]
A
B︸︷︷︸

α1

︸︷︷︸
α2

︸  ︷︷  ︸
β1

︸︷︷︸
β2

The matrix β1 is decomposed, more precisely it has crosses, hence G is decomposable.
In fact G is the sum of groups of rank 2 and rank 4, according to the rows A and B.

4. Indecomposable (2, 2)-p3-hc-groups

Example 4.1. It is easy to list all indecomposable (2, 2)-p3-hc-groups of rank 4,
because there are only the following three possibilities for α, namely [p | 1], [p2 | 1]
and I2, the identity matrix of size 2. Moreover, β1 is a column. Hence in the first two
cases for α we obtain β1 = [p] or = [p2]. If α = I2, then β1 =

[1
p
]

or =
[ 1

p2
]
. These

six examples are pairwise not isomorphic at p and form a complete collection of
indecomposable (2, 2)-p3-hc-groups of rank 4. They are listed below, (1)–(6).

We next list the isomorphism at p classes of indecomposable (2, 2)-p3-hc-groups.
We define the type of a group G using the invariants of their standard coordinate matrix
and β1. The notation is self-explanatory. G is of type (rkG/R, rkG, X , β1), where X is

a part of
[A

B
C
D

]
indicating which block rows are present:

(1)
[
p | 1 ‖ p | 1

]
of type

(
1, 4, [B],

[
p
])

;

(2)
[
p | 1 ‖ p2 | 1

]
of type

(
1, 4, [B],

[
p2

])
;

(3)
[
p2 | 1 ‖ p | 1

]
of type

(
1, 4, [C],

[
p
])

;

(4)
[
p2 | 1 ‖ p2 | 1

]
of type

(
1, 4, [C],

[
p2

])
;

(5)
[
1 | 0 ‖ 1 | 0
0 | 1 ‖ p | 1

]
of type

(
2, 4,

[
A
D

]
,

[
1
p

])
;

(6)
[
1 | 0 ‖ 1 | 0
0 | 1 ‖ p2 | 1

]
of type

(
2, 4,

[
A
D

]
,

[
1
p2

])
;
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(7)
[
1 | 0 ‖ p | 1 0
0 | 1 ‖ p2 | 0 1

]
of type

(
2, 5,

[
A
D

]
,

[
p
p2

])
;

(8)
[
1 | 0 ‖ 1 0 | 0
0 | 1 ‖ p p2 | 1

]
of type

(
2, 5,

[
A
D

]
,

[
1 0
p p2

])
;

(9)
[
1 0 | 0 ‖ 1 | 0
0 p2 | 1 ‖ p | 1

]
of type

(
2, 5,

[
A
C

]
,

[
1
p

])
;

(10)
[
1 0 | 0 ‖ p | 1 0
0 p2 | 1 ‖ p2 | 0 1

]
of type

(
2, 6,

[
A
C

]
,

[
p
p2

])
;

(11)
[
1 0 | 0 ‖ 1 0 | 0
0 p2 | 1 ‖ p p2 | 1

]
of type

(
2, 6,

[
A
C

]
,

[
1 0
p p2

])
;

(12)
[
p | 1 0 ‖ 1 | 0
0 | 0 1 ‖ p | 1

]
of type

(
2, 5,

[
B
D

]
,

[
1
p

])
;

(13)
[
p | 1 0 ‖ p | 1 0
0 | 0 1 ‖ p2 | 0 1

]
of type

(
2, 6,

[
B
D

]
,

[
p
p2

])
;

(14)
[
p | 1 0 ‖ 1 0 | 0
0 | 0 1 ‖ p p2 | 1

]
of type

(
2, 6,

[
B
D

]
,

[
1 0
p p2

])
;

(15)

1 0 | 0 0 ‖ p 0 | 1 0
0 p | 1 0 ‖ 0 1 | 0 0
0 0 | 0 1 ‖ p2 p | 0 1

 of type

3, 8,
A
B
D

,
 p 0

0 1
p2 p


;

(16)

1 0 | 0 0 ‖ 1 0 | 0 0
0 p2 | 1 0 ‖ p 0 | 1 0
0 0 | 0 1 ‖ p p2 | 0 1

 of type

3, 8,
A
C
D

,
1 0
p 0
p p2


.

By [4, Theorem 12] two groups are isomorphic at p if and only if their coordinate
matrices can be transformed into one another by allowed transformations. If a group G
is given by a standard coordinate matrix [α1 | α2 ‖ β1 | β2], then, by Proposition 3.4, to
show the indecomposability of G we have to do the following:

(1) apply elementary row transformations to β1 such that the standard form of α can
be reestablished by allowed column transformations of α;

(2) apply elementary column transformations to β1.

If β1 never changes to a decomposable matrix, then G is indecomposable.
To decide if two groups given by β1 and β′1 are not isomorphic at p apply the

transformations (1) and (2) above, and show that β and β′ never can be transformed
into each other.

Both tasks are easily shown for the given small matrices β1 in the list.
In the next theorem we show that this list is complete.

Theorem 4.2. There are precisely the 16 isomorphism at p types in the list above of
indecomposable (2, 2)-groups with homocyclic regulator quotient of exponent p3.
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Proof. Let G be an indecomposable (2, 2)-group with homocyclic regulator quotient
of exponent p3. Then G cannot have summands of rank 3 because G would have to
be equal to such a summand but (2, 2)-groups have ranks 4 or lower. The case of
groups of rank 4 is easily disposed of (see (1)–(6) in the list; see also Example 4.1).
We therefore exclude also summands of rank 4. Then the standard coordinate matrix
[α1 | α2 ‖ β1 | β2] given in Proposition 3.2 has additional properties: first, there is never
a cross in β1; and second, at least two of the blocks A, B,C,D are present because the
presence of just one block allows the transformation of β1 to Smith normal form and
then is decomposed. Moreover, it is impossible that only one block row is present,
because this would allow transformation of β1 to Smith normal form, that is, the group
would then be decomposable.

In order to apply Proposition 3.4 to determine decompositions of G, we must
start with a coordinate matrix in standard form and must preserve the standard form
throughout. Therefore we must restrict ourselves to α-allowed line transformations
of β1.

The matrix in Equation (3.1) incorporates all possibilities where block rows as well
as block columns may be absent. We label the block rows by A through D and speak of
presence or absence of such rows. Note that the presence of A includes the presence of
the first block column because I is a square matrix. In general, block rows and block
columns that intersect in matrices I, pI, p2I always are simultaneously present or not.

Our final goal is to obtain a block matrix for β1 such that all blocks are 0 or phI,
h ≥ 0. This is done by creating more and more blocks of the form 0 or phI, h ≥ 0,
in β1. In the process the block structure of β1 gets refined caused by the splitting of
block lines when introducing the Smith normal form of other blocks.

Existing blocks phI must be preserved by later transformations, and existing
blocks 0 must be reestablished if they get changed by ‘fill-ins’.

By Proposition 3.4 it is essential to apply only those allowed row transformations
that allow the standard form of α to be reestablished by column transformations.

If it is not obvious how to clear fill-ins, we indicate how they can be turned into
0-blocks again by allowed transformations. For blocks with unspecified content we
use placeholder names and reuse the names even if the unspecified content changes.

(a) Smith Normal Forms for A, B, and consequences.
We show that

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0
IA | 0 ‖ 0 pI 0 0 0 0 0
IA | 0 ‖ 0 0 p2I 0 0 0 0
pIB | IB ‖ 0 0 0 0 I 0 0
pIB | IB ‖ 0 0 0 0 0 pI 0
pIB | IB ‖ 0 0 0 0 0 0 p2I
p2IC | IC ‖ pC1 p2C2 p2C3 p2C4 0 0 p2C7

0 | ID ‖ pD1 p2D2 p2D3 p2D4 pD5 p2D6 p2D7


. (4.1)
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Note that β is completely determined by β1 and that β2 is, up to 0-rows, the identity
matrix. Thus for decomposability questions β2 is irrelevant.

Starting with Equation (3.1), we first form the Smith normal form for B and then the
Smith normal form of the part X of A above the 0-part of B, and we get, after deleting
a 0-row and rearranging columns,

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0

IA | 0 ‖ 0 pI 0 0 0 A1 A2

IA | 0 ‖ 0 0 p2I 0 0 A3 A4

IA | 0 ‖ 0 0 0 0 0 A5 A6

pIB | IB ‖ 0 0 0 0 I 0 0

pIB | IB ‖ 0 0 0 0 0 pI 0

pIB | IB ‖ 0 0 0 0 0 0 p2I

p2IC | IC ‖ pC1 pC2 pC3 pC4 pC5 pC6 pC7

0 | ID ‖ pD1 pD2 pD3 pD4 pD5 pD6 pD7



.

Above I in B we annihilate in A, and with I in A we annihilate the row.
Next we show that the blocks A1, . . . , A6 are either not present or 0. As mentioned

before, we use only allowed row transformations with the additional property that there
are allowed column transformations that reestablish the standard form of α.

Note that due to the presence of p2I in B we may assume that the nonzero entries
of A6 are either units or are in pZ \ p2Z. If there is a unit in A6 then we obtain a cross in[A

B
]
. By rearranging rows and columns the cross may be incorporated in the existing I

in A, thereby enlarging it. Thus we may assume that all entries of A6 are in pZ.
But a p ∈ A6 allows us to annihilate in p2I below and the fill-ins below A5 can be

annihilated by the present pI just above in B. This creates a 0-row in β1. Thus A6 = 0.
All nonzero entries of A5 are units due to the presence of pI below. But a unit in A5

allows us to annihilate in pI below, and since already A6 = 0, a 0-row is created in β1.
This shows that the A5/A6-row is not present.

Note that due to the presence of pI in A all entries of A1 and A2 are units or 0, and
due to the presence of pI in B all entries of A3 are units or 0. A unit in A2 leads to a
cross in

[A
B
]
. We incorporate the crosses in the I in A, thereby enlarging it, and may

assume that A2 = 0. The same holds for A3, that is, we may assume that A3 = 0. Now
we consider A4. All nonzero entries in p2Z can be annihilated due to the presence
of p2I below. All other nonzero entries of A4 lead to a cross in

[A
B
]

with cross entry 1
or p. We incorporate the crosses with cross entry 1 in the I in A, thereby enlarging it,
and we incorporate the crosses with cross entry p in the pI in A. Thus we may assume
that A4 = 0.
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Next we show that we may assume A1 = 0. The Smith normal form of A1 is
[I 0
0 0

]
as mentioned before. We annihilate first with I in A1 downward pI in B, and then we
annihilate pI in A. There is a block −p2I filled in B below the original pI in A. This
block column has the same properties in

[A
B
]

as the block column of p2I with p2I in B.
Hence we may enlarge this block column, causing A1 = 0. Thus we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0

IA | 0 ‖ 0 pI 0 0 0 0 0

IA | 0 ‖ 0 0 p2I 0 0 0 0

pIB | IB ‖ 0 0 0 0 I 0 0

pIB | IB ‖ 0 0 0 0 0 pI 0

pIB | IB ‖ 0 0 0 0 0 0 p2I

p2IC | IC ‖ pC1 pC2 pC3 pC4 pC5 pC6 pC7

0 | ID ‖ pD1 pD2 pD3 pD4 pD5 pD6 pD7



.

The submatrix pC5 can be annihilated due to the presence of I in B above, so
pC5 = 0. A p ∈ pD4 leads to a cross. So we write p2D4. In turn we get crosses
and, as for D4, we get

p2D4, p2C4, p2D3, p2C3, p2D7, p2C7, p2D2, p2C2, p2D6, p2C6. (∗)

The arguments for the different statements in (∗) are all very similar, therefore we
prove exemplarily one of these statements, say p2C2.

We assume that we have already obtained p2D4, p2C4, p2D3, p2C3, p2D7, p2C7,
p2D2. If p ∈ pC2, then we annihilate with this p in its column and afterwards we
annihilate in its row to obtain a cross in β1 with this p as cross entry. The row
transformations to annihilate the column change α. But the fill-ins in the last row
have the prefactor p3 and can be replaced by 0, and fill-ins in the block row of A
containing pI can be cleared by allowed column transformations of α.

Given the properties denoted in (∗), we may use pI above p2C6 to get p2C6 = 0.
Thus β1 has the form as in Equation (4.1).

(b) Treatment of D.
We deal with the interference of D1 and D5. There is no p2 ∈ pD5 due to the

presence of I in B above and there is no 0-column. Now a p ∈ pD1 allows us to
annihilate in pD5 and a p ∈ pD5 allows us to annihilate p2s in pD1. Fill-ins can be
deleted by I in B and by I in A, respectively. Hence a p ∈ D1 continues to a 0-row
in pD5 and a p2 ∈ pD1 can only survive if this row continues to a 0-row in pD5. Thus
forming first the Smith normal form of pD1 and afterwards the Smith normal form of
the relevant parts of pD5, we get
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[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0 0 0
IA | 0 ‖ 0 I 0 0 0 0 0 0 0
IA | 0 ‖ 0 0 I 0 0 0 0 0 0
IA | 0 ‖ 0 0 0 pI 0 0 0 0 0
IA | 0 ‖ 0 0 0 0 p2I 0 0 0 0
pIB | IB ‖ 0 0 0 0 0 0 I 0 0
pIB | IB ‖ 0 0 0 0 0 0 0 pI 0
pIB | IB ‖ 0 0 0 0 0 0 0 0 p2I
p2IC | IC ‖ pC11 pC12 pC13 p2C2 p2C3 p2C4 0 0 p2C7

0 | ID ‖ pI 0 0 p2D21 p2D31 p2D41 0 p2D61 p2D71

0 | ID ‖ 0 p2I 0 p2D22 p2D32 p2D42 0 p2D62 p2D72

0 | ID ‖ 0 0 0 p2D23 p2D33 p2D43 0 p2D63 p2D73

0 | ID ‖ 0 0 0 p2D24 p2D34 p2D44 pI p2D64 p2D74



.

First, we annihilate with pI in D1 in its column and then in its row. Fill-ins in C can
be deleted by pI in B, and fill-ins in A can be deleted by pI in A and B, respectively.
Thus pC11 = 0, p2D21 = 0 and p2D61 = 0. Second, we annihilate with pI in pD5 the
block p2D64. Fill-ins can be deleted by pI in B.

Now we deal with D42,D43,D32,D33,D73,D72, in this sequence. A p2 ∈ p2D42 or a
p2 ∈ p2D43 leads to a cross in β1, regardless with which we start. So we may assume
that p2D42 = 0, p2D43 = 0. In turn and by the same arguments p2D32 = 0, p2D33 = 0,
and p2D72 = 0, p2D73 = 0.

Further, a p2 ∈ p2D22 or a p2 ∈ p2D23 leads to β′1 =
[ p | A

p2 | D

]
and a summand of type(

2, 5,
[A

D
]
,
[ p

p2

])
; see (7) in the list. Hence, omitting all those summands, we may assume

that p2D22 = 0 and p2D23 = 0. Thus we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0 0 0
IA | 0 ‖ 0 I 0 0 0 0 0 0 0
IA | 0 ‖ 0 0 I 0 0 0 0 0 0
IA | 0 ‖ 0 0 0 pI 0 0 0 0 0
IA | 0 ‖ 0 0 0 0 p2I 0 0 0 0
pIB | IB ‖ 0 0 0 0 0 0 I 0 0
pIB | IB ‖ 0 0 0 0 0 0 0 pI 0
pIB | IB ‖ 0 0 0 0 0 0 0 0 p2I
p2IC | IC ‖ 0 pC12 pC13 p2C2 p2C3 p2C4 0 0 p2C7

0 | ID ‖ pI 0 0 0 p2D31 p2D41 0 0 p2D71

0 | ID ‖ 0 p2I 0 0 0 0 0 p2D62 0
0 | ID ‖ 0 0 0 0 0 0 0 p2D63 0
0 | ID ‖ 0 0 0 p2D24 p2D34 p2D44 pI 0 p2D74



.
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Now we deal with the p2D62-column. A p2 ∈ p2D63 leads to β′1 =
[ p | B

p2 | D

]
and

a summand of type
(
2, 6,

[B
D
]
,
[ p

p2

])
; see (13) in the list. Hence, omitting all those

summands, we may assume that p2D63 = 0. But this displays a 0-row in D. Thus
the p2D63-row is not present. In turn p2 ∈ p2D62 leads to the same type of a summand.
Thus also the p2D62-row is not present. But then there is a cross in the D6-column. So
this column is not present and consequently the pI-row in B is not present. So we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0 0

IA | 0 ‖ 0 I 0 0 0 0 0 0

IA | 0 ‖ 0 0 I 0 0 0 0 0

IA | 0 ‖ 0 0 0 pI 0 0 0 0

IA | 0 ‖ 0 0 0 0 p2I 0 0 0

pIB | IB ‖ 0 0 0 0 0 0 I 0

pIB | IB ‖ 0 0 0 0 0 0 0 p2I

p2IC | IC ‖ 0 pC12 pC13 p2C2 p2C3 p2C4 0 p2C7

0 | ID ‖ pI 0 0 0 p2D31 p2D41 0 p2D71

0 | ID ‖ 0 p2I 0 0 0 0 0 0

0 | ID ‖ 0 0 0 p2D24 p2D34 p2D44 pI p2D74



.

By I in A above, all entries of pC12 and pC13 are in (pZ \ p2Z) ∪ {0}. Thus with a
p ∈ pC13 we annihilate in pC12. Fill-ins in A can be deleted by I in A again. Hence a
surviving p ∈ C12 allows us to annihilate in p2I below in D. All fill-ins are in p3Z and
can be replaced by 0. But this creates a 0-row in D. Consequently, pC12 = 0 and this
displays a summand with β′1 =

[ 1 | A
p2 | D

]
and a summand of type

(
2, 4,

[A
D
]
,
[ 1

p2

])
; see (6) in

the list of rank 4. Hence, omitting all those summands, the pC12-column is not present
and in turn the rows in A,D that have I, p2I in the pC12-column also are not present.
Hence we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0

IA | 0 ‖ 0 I 0 0 0 0 0

IA | 0 ‖ 0 0 pI 0 0 0 0

IA | 0 ‖ 0 0 0 p2I 0 0 0

pIB | IB ‖ 0 0 0 0 0 I 0

pIB | IB ‖ 0 0 0 0 0 0 p2I

p2IC | IC ‖ 0 pC13 p2C2 p2C3 p2C4 0 p2C7

0 | ID ‖ pI 0 0 p2D31 p2D41 0 p2D71

0 | ID ‖ 0 0 p2D24 p2D34 p2D44 pI p2D74



.
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A p2 ∈ p2D44 leads to β′1 =
[ 0 1 | B

p2 p | D

]
and a summand of type

(
2, 6,

[B
D
]
,
[1 0

p p2

])
;

see (14) in the list. Fill-ins in C and D can be deleted by I in B and by pI in D,
respectively. Hence, omitting all those summands, we may assume that p2D44 = 0.

Then a p2 ∈ p2D34 leads to β′1 =

[
p2 0 | A
0 1 | B
p2 p | D

]
and we get a 0-row in β1. Thus we may

assume that p2D34 = 0. In turn a p2 ∈ p2D74 leads to β′1 =

[1 0 | B
0 p2 | B
p p2 | D

]
and we get a

0-row in β1. Thus p2D74 = 0. Consequently, a p2 ∈ p2D24 leads to β′1 =

[ p 0 | A
0 1 | B
p2 p | D

]
, a

summand of type
(
3, 8,

[
A
B
D

]
,

[
p 0
0 1
p2 p

])
; see (15) in the list. Fill-ins in C can be deleted by

I in B. Hence, omitting all those summands, we may assume that p2D24 = 0. But this
displays β′1 =

[1 | B
p | D

]
and a summand of type

(
2, 5,

[B
D
]
,
[1

p
])

; see (12) in the list. Hence,
omitting all those summands, the last row of D and thus also the I-row in B are no
longer present. Thus we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0

IA | 0 ‖ 0 I 0 0 0 0

IA | 0 ‖ 0 0 pI 0 0 0

IA | 0 ‖ 0 0 0 p2I 0 0

pIB | IB ‖ 0 0 0 0 0 p2I

p2IC | IC ‖ 0 pC1 p2C2 p2C3 p2C4 p2C7

0 | ID ‖ pI 0 0 p2D3 p2D4 p2D7


.

Now we show that

D′ = [p2D3 | p2D4 | p2D7] = [0 | pI, 0 | 0].

A 0-row in D′ leads to β′1 =
[1 | A

p | D

]
and a summand of type

(
2, 4,

[A
D
]
,
[1

p
])

; see (5) in
the list of rank 4. Hence, omitting all those summands, there is no 0-row in D′.

Now p2 ∈ D4 allows us to annihilate in p2D3 and in p2D7, and a surviving p2 ∈ D3

allows us to annihilate in p2D7. Fill-ins in A can be deleted by p2I in B. Thus a
surviving p2 ∈ D3 or a surviving p2 ∈ D7 is the only nonzero entry in its row in D′.
So such a surviving p2 ∈ D3 or p2 ∈ D7 allows us to annihilate in p2I above in A and
in p2I above in B, respectively. Fill-ins in A and in B can be deleted by I above in A.
This creates a 0-row in A and in B, respectively, a contradiction. Hence p2D3 = 0 and
p2D7 = 0.
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Finally, the Smith normal form of p2D4 is [pI, 0], using again the fact that D′ has
no 0-row. Thus we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0 0 0

IA | 0 ‖ 0 I 0 0 0 0 0

IA | 0 ‖ 0 0 pI 0 0 0 0

IA | 0 ‖ 0 0 0 p2I 0 0 0

pIB | IB ‖ 0 0 0 0 0 0 p2I

p2IC | IC ‖ 0 pC1 p2C2 p2C3 p2C41 p2C42 p2C7

0 | ID ‖ pI 0 0 0 p2I 0 0


.

(c) Treatment of C.

Recall that all entries of pC1 are in (pZ \ p2Z) ∪ {0} and that pC1 has no 0-column.
Hence the Smith normal form of pC1 is

[pI
0

]
. Moreover, a p2 ∈ p2C42 continues to a

nonzero row in pC1 because otherwise this p2 allows us to annihilate the whole C-row
and this leads to a cross. So, since p2C42 has no 0-column, forming the Smith normal

form of the nonzero part of p2C42, we get [pC1‖p2C42] =

[
pI 0 ‖ p2I
0 pI ‖ 0
0 0 ‖ 0

]
.

Consequently a p2 ∈ p2C42 leads to β′1 =
[1 0 | A

p p2 | C

]
and a summand of type(

2, 6,
[A
C
]
,
[1 0

p p2

])
; see (11) in the list. Hence, omitting all those summands, we get

p2C42 = 0 and the p2C42-column is no longer present.
A p2 ∈ p2C3 allows us to annihilate in [p2C2, p2C4, p2C7]. Fill-ins in A can be

deleted by pI in A, by p2I in D and by p2I in B, respectively. Thus the row of this p2

continues to a nonzero row of pC1 and, finally, to a 0-row in A. Fill-ins in A can be
deleted by I in A again. Thus p2C3 = 0, causing crosses. So the p2C3-column and the
p2I-row in A are not longer present. Hence we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0 0
IA | 0 ‖ 0 I 0 0 0
IA | 0 ‖ 0 0 pI 0 0
pIB | IB ‖ 0 0 0 0 p2I
p2IC | IC ‖ 0 pC1 p2C2 p2C4 p2C7

0 | ID ‖ pI 0 0 p2I 0


.

A p2 ∈ C7 allows us to annihilate in [p2C2, p2C4] and in p2I above. Fill-ins can be
deleted by pI in A, by p2I in D and by pI in A, respectively. This creates a 0-row in B.
Thus p2C7 = 0 and this displays a cross. So the p2C7-column and in turn the p2I-row
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in B are not present. Recall that the Smith normal form of pC1 is
[pI

0

]
. So we get

[α ‖ β1] =



IA | 0 ‖ I 0 0 0
IA | 0 ‖ 0 I 0 0
IA | 0 ‖ 0 0 pI 0

p2IC | IC ‖ 0 pI p2C21 p2C41

p2IC | IC ‖ 0 0 p2C22 p2C42

0 | ID ‖ pI 0 0 p2I


.

We annihilate with pI in C the block p2C21, and we annihilate with p2I in D the
block p2C41. There is a sequence of fill-ins that can be removed by pI and by I in
A, respectively. But this leads to β′1 =

[1 | A
p | C

]
and a summand of type

(
2, 5,

[A
C
]
,
[1

p
])

;
see (9) in the list. Hence, omitting all those summands, we get that the pI-column
with pI in C is not present and in turn also the I-row in A with I above this pI is not
present and p2C41 = 0. Thus we get

[α ‖ β1] =


IA | 0 ‖ I 0 0
IA | 0 ‖ 0 pI 0

p2IC | IC ‖ 0 p2C2 p2C4

0 | ID ‖ pI 0 p2I

 .
There is no 0-row in [p2C2, p2C4]. A p2 ∈ p2C4 allows us to annihilate in p2C2. Fill-

ins in D can be deleted by pI to the left in D and fill-ins in A can be deleted by pI in A.
A 0-column of p2C4 leads to β′1 =

[1 0 | A
p p2 | D

]
and a summand of type

(
2, 5,

[A
D
]
,
[1 0

p p2

])
;

see (8) in the list. Hence, omitting all those summands, we get that p2C4 has no 0-
column. Clearly, there is no 0-column in [p2C2, p2C4] to avoid a cross. So forming
the Smith normal form of p2C4, deleting in p2C2 and then forming the Smith normal
form of the nonzero rest of p2C2, we get

[α ‖ β1] =



IA | 0 ‖ I 0 0
IA | 0 ‖ 0 pI 0

p2IC | IC ‖ 0 0 p2I
p2IC | IC ‖ 0 p2I 0

0 | ID ‖ pI 0 p2I


.

Now taking the first column of β1 we read off β′1 =

[1 0 | A
0 p2 | C
p p2 | D

]
and a summand of type(

3, 8,
[

A
C
D

]
,

[
1 0
0 p2

p p2

])
; see (16) in the list (after obvious changes). Then we take the second

column and read off β′1 =
[ p | A

p2 | C

]
and a summand of type

(
2, 6,

[A
C
]
,
[ p

p2

])
; see (10) in

the list. This ends the proof. �
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