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COMPLEX VECTOR BUNDLES ON REAL
ALGEBRAIC VARIETIES OF SMALL DIMENSION

WoiICIECH KUCHARZ

Let X be an affine real algebraic variety. In this paper, assuming that dim X < 7 and
that X satisfies some other reasonable conditions, we give a characterisation of those
continuous complex vector bundles on X which are topologically isomorphic to algebraic
complex vector bundles on X .

1. INTRODUCTION

Let F denote one of the fields R, C or H (the reals, complexes or quaternions).
Let X be an affine real algebraic variety (that is, X is biregularly isomorphic to an
algebraic subset of R™ for some n; for definitions and notions of real algebraic geometry
we refer to the book [2]). Denote by A the ring of R-valued regular functions on X
and set A(F) = A ®r F'. We shall consider A(F) as a subring of the ring B(F) of
continuous F-valued functions on X . A continuous F-vector bundle { on X is said
to admit an algebraic structure if there exists a finitely generated projective A(F)-
module P such that the F-vector bundle on X associated, in the usual way (see [17]),
with P ® 4(r) B(F) is topologically isomorphic to { (an equivalent, more geometric,
definition is given in [2] and [1]).

The following problem has attracted the attention of several mathematicians.

Problem. Characterise continuous F-vector bundles on X admitting an algebraic
structure.

Until very recently, despite considerable effort, the situation was well understood,
only in a few special cases (see [8, 10, 11] and [18] for a short survey). For dim X < 3
and F = R a very satisfactory solution is given in [4] (see also [3, 12, 13] for earlier
results). In [1] (see also [7]) most results are first obtained for C-vector bundles and
then many of them are extended on to F-vector bundles, F = R or H, by using the
realification and quaternionification. The main tool of [1], which will also be used
here, is the functor H g‘f:llg(" Z) from affine real algebraic varieties to graded rings (we

recall the definition of H g‘:(:llg(" Z) in the next section). If X is an affine real algebraic

Received 5 January 1988
Research supported by NSF Grant DMS-8602672.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 $A2.00+0.00.

345

https://doi.org/10.1017/50004972700027696 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700027696

346 W. Kucharz [2]

variety, then HZVS (X Z) is a subring of the cohomology ring H®Ve™(X, 7). It is

known that the tota.l Chern class ¢({) of a given continuous C-vector bundle ¢ on X
belongs to Hg‘i‘;rl‘g(X, Z) if ¢ admits an algebraic structure [1] (see also [7]). In this
paper we show that if ¢(£) is in H(e:vj:llg(X, Z), dimX < 7 and X satisfies some
reasonable extra conditions, then ¢ admits an algebraic structure. This result has been

announced in [7], for dim X < 5, but no proof is given in the detailed version [1] of [7].
It should be mentiioned that the ring H evzri (X, Z) is computed in [1] (see also [7]) for

a large class of varieties X . It turns out tha.t in many cases, HZ'%] (X Z) is small as

compared with HEV6T( X 7). This imposes strong restrictions on contmuous C-vector
bundles on X admitting an algebraic structure (see also [5] for other applications of

HEYR (X, 7)).

2. THE RESULT
For simplicity we shall recall the definition of H gi?llg(X , Z) only for nonsingular
affine real algebraic varieties X (see [1] for the general case), which will be sufficient
for our purposes.
Let V be a quasi-projective nonsingular n-dimensional complex algebraic variety.
One defines the natural homomorphism

c: AN(V)— H*(V, Z),

where A*(V) is the Chow ring of V and H*(V, Z) is the Cech cohomology of V, as
follows. Let Y C V be a closed irreducible subvariety of dimension k. Let {Y'} be the
element of A"~*(V) represented by Y and let [Y] be the fundamental class of Y in the
Borel-Moore homology group HEM(Y, Z) (see [8] or (9, Chapter 19]). Then cl({Y})
is the element of H?"~2¥(V, Z) which corresponds, via Poincaré duality, to the image
of (Y] in HEM(V, Z) under the homomorphism HEM(Y, Z) — HEM(V, Z) induced
by the mclusmn Y C V. Extending by linearity, cl deﬁnes a natural homomorphism
cl: A*(V) — H*(V, Z). Clearly, the image of cl is contained in H®V®(V, Z). We set

HEAV, 7) = el(A"(V)).

Now let X be an affine real algebraic variety (any such variety can be embedded
as a locally closed algebraic subvariety in some real projective space RP™). Consider
RP™ as a subset of the complex projective space CP™ and suppose for a moment that
X is embedded in RP"™ as a locally closed subvariety. Moreover, assume that X is
nonsingular. Let U be a Zariski neighbourhood of X in the set of nonsingular points
of the Zariski (complex) closure of X in CP". We define Hg‘f:llg(X, Z) by

gvezllg(x Z)—H‘(tu)( even(U Z))

https://doi.org/10.1017/50004972700027696 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700027696

(3] Vector bundles on algebraic varieties 347

where iyy: X — U is the inclusion mapping. One easily sees that H g‘iearjg(X , Z) does
not depend on the choice of the embedding of X in RP™ and the choice of U (see [1,
Section 3}).

THEOREM. Let X be an afline nonsingular real algebraic variety and let £ be
a continuous C-vector bundle of constant rank on X. Assume that X is compact,
dim X < 7, and the groups H%(X,Z) and H%(X, Z)/Hf:_alg(X, Z) have no 2-torsion.
Then the following conditions are equivalent:

(a) £ admits an algebraic structure;
(b) the total Chern class c(€) of ¢ belongs to Hg‘:eﬁg()(, 7).

PRrOOF: The implication (a) = (b) is proved in [1] (see also [7]) for all affine
real algebraic varieties X without any additional restrictions. |
Before beginning the proof of (b) = (a), it will be convenient to collect a few

facts.

LEMMA. Let X be a locally closed real algebraic subvariety of RP™ and let V be
a Zariski neighbourhood of X in the Zariski (complex) closure of X in CP™. Let ¢
be an algebraic vector bundle on V. Then:
(i) there exists an affine open complex subvariety U of V containing X ;
(ii) the restriction n | X of n to X, considered as a continuous C-vector
bundle on X , admits an algebraic structure;
(iii) if V is nonsingular, then cl(C(n)) = c(n), where C(n) and c(n) are
the total Chern classes of n with values in A*(V) and H€V*™(V, 1),
respectively.

PROOF: (i) and (ii) are completely elementary (see for example 1, Proposition

5.1]), while (iii) is proved in [6]. ]

Now we can return to the proof of (b) = (a). We may assume that X is a locally

closed subvariety of RP™. Let U be an affine Zariski neighbourhood of X in the set of

nonsingular points of the Zariski closure of X in CP"™ (see (i) of the Lemma) and let
r: H*(U, 1) - H*(X, Z)

be the homomorphism induced by the inclusion X C U. We may assume that for each
i=1, 2,3, there exists an element a; in A*(U) such that

(1) r(cl(a:)) = ci(£)-

Let n; and 7; be algebraic vector bundles on U satisfying rank n, =1, Cy(m) = a1,
Ci1(m2) = 0 and C3(m2) = a2 (the existence of 71 is obvious, while the existence of 7
follows at once from the Grothendieck formula [9, Example 15.3.6}).
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Let
o+ HY(X, 1) - H*(X, 2/2)

be the reduction (modulo 2} homomorphism. It follows from the Wu formula {14, p.
94], applied to ¢ and n; | X, that

Sq*(p(e2(€))) = per(€)ea(€) — es(£))
5¢*(p(e2(ma | X)) = ples(nz | X)),
where S¢* : HY(X, Z/2) — H®(X, Z/2) is the Steenrod square (to obtain the second
equality, one uses C1(nz2) = 0 and condition (iii) of the Lemma, which guarantees that

c1(nz) = 0 and hence ¢,(n, | X) =0).
Let a = aja; — a3 + C3(n2). Then, by (1), (2) and condition (iii} of the Lemma,

p(r(cl(a))) = p(r(cl(araz ~ as))) + p(r(cl(C3(n2))))
= pler(€)e2(€) — es(€)) + pes(nz | X))
= 5q*(p(c2(£))) + Sa*(p(ca(ma | X))
= 5¢%(p(c2(€))) + Sa*(p(c2(€)))
= 0.

(2)

Hence r(cl(a)) = —2v for some v in H®(X, Z). Since 2v isin Hé—a.lg(X’ Z) and the
group HS(X, Z)/Hf:_alg(X, Z) has no 2-torsion, it follows that v isin H::—alg(X’ 7).
Shrinking U, if necessary, we may assume that v = r(cl(b)) for some b in A*(U). By
the Grothendieck formula [9, Example 15.3.6], there exists a vector bundle 73 on U
such that C;(n;) =0 for ¢ =1, 2 and C3(n;) =2b. Let n =7, ® 72 ® n3. Then
Cin)=aifori=1,2
C3(n) = a1a; + Cs(n2) + 2b.

Hence, using (1), we obtain

ci(n| X) =r(cl(a;))=Ci(€) fori=1,2
c3(n ] X) =r(cl(araz + Cs(n2) + 2b))
= r(cl(azas + Cs(m2)) + 2r(cl(b)))
= r(cl(a + a3)) — r(cl(a))
= r(cl(as))
= c3(£).

Thus ¢(€) = ¢(5| X) and, by Peterson’s theorem (15], £ and 7 | X are stably equiv-
alent (here we use the assumptions that ¢ is of constant rank and H®(X, Z) has no
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2-torsion). Moreover, by condition (ii) of the Lemma, 5 | X admits an algebraic struc-
ture. It is well-known (see [18, Theorem 2.2 (a)] or [2, Chapter 12]) that a continuous
vector bundle on a compact affine real algebraic variety admits an algebraic structure if

and only if it is stably equivalent to a vector bundle admitting an algebraic structure.
Thus ¢ admits an algebraic structure.
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