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The generalized symmetric group S(n, m) consists of all
permutations of mn symbols commutative with

(11 27...m)(1222...m2) ... (lp2n. .. mpy).

Since each cycle Q; = (15 2; . . . mj) is of order m, there are
mD permutations within the n cycles, generating an invariant
subgroup § of order m™. Also, there are n! ways of permut-
ing the cycles among themselves, by transformations

W = (1112...1n)<2122...2n> (mlmz...mn>
i L. o o 14 zilziz. coe 24, mj,Mj,. . . mj /’
where 11, i2, . . . , iy are the symbols 1, 2, . . . , nin some

order [5, p. 39]. The permutations W#* form a subgroup S, *
of order n!, isomorphic to the symmetric group S,.

Clearly S(n, m) = QSy,*, and & nSp* = 1. Hence S(n, m)
is of order m"n!, and S(n, m)/Q = Sn. The elements P of S{n, m)
can be expressed in the form P = W*(QQ, where W* ¢ Sp* and

Q=07%0%...Q,% (0<ej < m-1).

For m = 1, the generalized symmetric group reduces to
the ordinary symmetric group; i.e., S{n, 1) = Sy, which is the
complete symmetry group of the regular (n-1)-dimensional
simplex ap.]1, the analogue of the tetrahedron [3, p. 133].

For m = 2, the generalized symmetric group becomes the
hyper-octahedral group S(n, 2), which is the complete symmetry
group of the n-dimensional cross polytope {,, the analogue of
the octahedron [2, p. 287; 3, p. 133] . Equivalently, S(n, 2)
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is the complete symmetry group of the n-dimensional measure
polytope 7y, the analogue of the cube, which is reciprocal to
Bn [3, p. 133] . In this paper a geometric interpretation will
likewise be given for S(n, m) whenm = 3.

Let a segment of length a be denoted by the symbol {}a.
Then the rectangular product {}a x {}bis defined to be a
rectangle of sides a and b. A regular polygon of m sides of
length a will be denoted by the symbol {m} a. The square
{4} a is the rectangular product of two equal segments {}a.
That is, {la x {}a=({} a)? = {4}a. A segment of unspecified
length will be denoted by {}, and a regular m-gon of unspecified
size, by {m} . Thus one may write {}2 = {4}, or, regarding
a segment and a square as measure polytopes, ¥1°= ¥2.

The rectangular product {}a x {m} b is defined as the
right prism of height a whose bases are regular m-gons of
side b [l, p. 351} . Its m lateral faces are, of course,
rectangles {}a x {}b. When a = b, the lateral faces are
squares, and the prism is uniform. If, further, m = 4, the
prism is a cube {4, 3}a. This symbol is to be interpreted as
representing a polyhedron with square faces, three of which
meet at each vertex, whose edges are of length a. When it is
not desired to specify the length of its edges, a cube may be
denoted simply by {4, 3} . The general regular polyhedron
bounded by {pla's, g at each vertex, has the symbol

{p, q}aor {p, q}.1)

This process may be extended indefinitely to yield
generalized prisms in higher space. Thus {}a x{p, qlb, the
rectangular product of 2 segment and a regular polyhedron, is
a four-dimensional polytope bounded by two {p, q}b’s, its
bases, and Np(p, q) lateral cells, each of which is a right
prism {}a x {p}]b, where N(p, q) is the number of faces of
a {p, q}. Such a polytope is called a right polyhedral prism.?2)
When a = b, the lateral cells are uniform prisms, and the
polyhedral prism is uniform. If in addition {p, q} is the cube

1) All of these symbols are instances or extensions of a general

symbol for regular polytopes devised by the Swiss mathematician
Ludwig Schl#fli and are accordingly known as Schl¥#fli symbols.
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{4, 3}, the polytope is a tesseract {4, 3, 3}a. This symbol
indicates a polytope with cubic cells, three of which meet at
each edge, whose edges are of length a.

It is not necessary for the bases of such a four-dimen-
sional prism to be regular. Any polyhedron will do, but if the
prism is to be uniform, the bases must be uniform polyhedra,
that is to say, polyhedra with regular faces and equivalent
vertices, and {}a must be of length equal to that of an edge of
a base [1, p. 351 (4.21)].

However, this is not the only means of obtaining a four-
dimensional prism. Another way is to form the rectangular
product of two polygons {m} a x{p}b [3, p. 124]. The result-
ing m-gonal p-gonal prism3) is bounded by p prisms {lbx{mj a
and m prisms {}a x {p} b. When a = b, both sets of prisms
are uniform, and the polytope is uniform. If, moreover, m = p,
then all the prisms are alike. A polytope of this kind will be
called a polygonal double prism. An m-gonal double prism is
denoted by ( {m} a)? or {m]} 2, Whenm = 4, this is the
tesseract. An orthogonal projection of a hexagonal double
prism is shown in fig. 1.

The general situation is as follows [1, pp. 350-353; 3,
pp. 123-124]. Let TT;, TTj, . . ., TIg be polytopes of
i, j, . . . , s dimensions. Then the rectangular product
TTiyxTjx . .. xTlgisaprismofi+ j+ ...+ s dimensions,
with constituents TT;, T_Ij, .+ .+, Mg. The order of the
factors is immaterial. Furthermore, if we denote the prism
TT; xTTj by TTj4;j and the prism TT5xTTy by nj+k' we have
T1i xTTj xTlx = TT1j4j xTTk = TT§ xTTj4k. Thus rectangular-product
multiplication is commutative and associative.

A measure polytope yp can be expressed as the rectangular

product of other measure polytopes in p{n) - 1 ways, where p(n)
is the number of partitions of n. For example,

Y5 Y1 X Y4 ¥p X ¥3 = ¥1% X ¥3= y1 x ¥2°= ¥13 x ¥, = ¥;°

3) Manning [4, p. 248]calls such a figure a right double prism,
but I prefer to give the term '"double prism' a more restricted
meaning.
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A prism whose constituents are all alike will be called a
multiple prism. A prism generated by equal polygons is a
polygonal multiple prism; one generated by equal polyhedra is
a polyhedral multiple prism; etc. A measure polytope y,is a
multiple prism in t(n) - 1 ways, where t(n) is the number of
divisors of n. For example,

Thus, Y¢ may be regarded indifferently as a cubic double
prism, a square triple prism, or a right sextuple prism.
The multiple prisms of chief importance from the standpoint
of this paper are those of the type {m} ¥, i.e., regular poly-
gonal multiple prisms. The number of dimensions of such a
multiple prism is, of course, 2n.

In four dimensions two planes may be absolutely perpendi-
cular, intersecting only in a point. Since in four dimensions
rotation takes place in a plane and about a plane, it is possible
to have a rotation simultaneously in each of two absolutely
perpendicular planes, leaving only their point of intersection
invariant. This combination of rotations through two independent
angles is called a double rotation [4, p. 145].

Likewise, in six dimensions rotation is in a plane and
about a 4-space. As three mutually perpendicular 4-spaces
intersect only in a point, a simultaneous rotation in each of
three absolutely perpendicular planes, leaving only their point
of intersection fixed, is possible. Such a combination of rota-
tions through three independent angles is called a triple rota-
tion. The general case is that in 2n dimensions one may have
a multiple rotation through n independent angles (3, P. 225] .

Consider a prism whose constituents are n regular
polygons, say

fmi} a; x {mplax x . . .x{mpl ay,

and assume for the present that no two constituents are alike.4)
The faces of this prism consist of 3n(n - I)mmy . . . mp

4) That is, for alli, j,l =i < j <n, {mj] a; and {mj} aj differ
in that either mj # rnJ or aj # aj or both.
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rectangles and mym; . . . my/m; {m;}a;’s, 1 € i< n.
The faces {m;} aj are parallel to one another in much the
same way that the m lateral edges of an ordinary prism
{ } x{m}l are parallel, and the plane of any face {mj} a; is
absolutely perpendicular to the plane of any face {mj} aj for
i # j. Thus the prism may be referred to a 2n-dimensional
system of rectangular coordinates with the origin at the centre
of the prism, so that the faces {mjl} a; are parallel to the
X2i-1%2i-plane, which we may call the "i-th plane" [cf. 2, p. 287] .

Let Q; be a rotation parallel to the i-th plane, about the
(2n - 2) - space determined by the remaining 2n - 2 coordinate
axes, through an angle of 27/mj. This is a symmetry opera-
tion of the prism, concurrently taking each vertex of every face
{mj} aj into the next one, while leaving fixed all the faces

{mjlaj, j#1i. ThenQj, Qz, . . . , Qp generate the multiple
rotation group § m,m,...m,’ the direct product of n cyclic
groups:

Cm; x Cpn, X ... XCpxy .

This group is isomorphic to the permutation group represented
by

(1y 2. .. t’nll)el(lz 22 . . . rnzz)el e v o (lnp2n . s . mpp)ee
and is of order mjm, . . . mp.

1f some, or all, of the n constituents are alike, there
will also be transformations which permute these among them-
selves. The corresponding isometry is an interchange of the
i-th and j-th planes, which is effected by a half-turn Tjj about
the (2n - 2) - space

X2i-1 % X2j-1» %X2i = X2j-

Suppose now that n} constituents are of one kind, n2 con-
stituents are of a second kind, etc., so that the prism is
denoted by

({my} ap)® < (fmplaz)Pax . . . x({myl ap)?,

where n} + np + . . . + nx = n. Inorder to distinguish the
identical constituents, let them be further indexed as
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fmpyayy, fmyzlagz, - oo, {mpydag, s

{mz1} az1, {mzzlazz, . . ., {man,iazy,;

{mypitaxy, Imgotakz, -+« 5 {mkn, 2Kn, -

Similarly re-index the cocrdinate axes as
X11s X125 X135 X145 » « + 5 X](2n, -1), X1(2n, )5

Xp1s X225 X235 X245 + + - 5 X2(2n, -1), ¥2(2n,)

Xkls Xk25 Xk3» Xk4} + + » 3 Xk(2n, - 1), xk(znk);
so that the faces {mh_b} ah, are parallel to the Xh,, , Xh,; -plane.

For 1 ¢i«jg¢nh(l €h <k), the half-turn Ty,. inter-
L {
changes the set of faces {mp; } ap; with the set of faces
{mh_;} ap; . The totality of half-turns Ty ;. Tz « « «» Tky
generates a group S§ n,...%k of order njinpl . . . ngl, the
direct product of k symmetric groups:

Sn xSnzx. -« xSp.

1

. 3 =
.It.ls apparent that Qmi mz. ..y D Sn, Nz ... D& 1.'
Combining these two groups, we obtain the augmented multiple

rotation group

S(ni, n2, . . ., nk; mj, mp, . .., mMk).

Its order is m;™m,B2 . . . mpPxn;iny!l L. L ool .

Now suppose that all n constituents are alike. This is
the case of the multiple prism {m}®., Since k=1, we now
write m for my, n for n, x for xi, and T for Tx. The multiple
rotation group &) mqym,. . .My, becomes the group {) mentioned
at the beginning of the paper. The group Sp* is isomorphic to
the group previously defined by the permutations W#*, Hence
the generalized symmetric group S(n, m) = Q Sy* can be
interpreted, for m » 3, as the augmented multiple rotation
group of the polygonal multiple prism {m} 2.
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Osima [5, p. 41] defines an element Q=0Q;%t Q,%2,,. Q"
of @ (0 <ej «m - 1) as being of type (ng, ny, « . . , n 1)
if the number of ej for which e; = k is ni. Interms of our
model, a multiple
rotation Q is of
type (ng, ny,...,0p 1)
if for ny distinct values
of i the sets of faces
{m] parallel to the
i-th plane are each
rotated through an —
angle of 2k ﬁ/grn, the 2kT [m
rotation being in each o
case from the posi-
tive half of the x3;_1-
axis towards.the posi-
tive half of the x2ji-
axis (see fig. 2).

*2i

X2i-1

fig. 2

As previously indicated, the multiple rotation group of
{m} ™ can be generated by n rotations Q; of type
(n-1, 1, 0, . . ., 0), each of which rotates the faces parallel
to the i-th plane through an angle of 2w/ m while leaving fixed
the faces parallel to the remaining n-1 planes. The augmented
multiple rotation group is then obtained by combining the
multiple rotations with permutations of the n planes of rota-
tion. Thus the representation of S(n, m) as the augmented
multiple rotation group of {m} ™ is of degree n.

Osima obtains the following formula [5, p. 44 (2.11)]
for the degree f, * of an irreducible representation of S(n, m)

corresponding to the star diagram [«] [, ¥ = [ag] - [®]].c... [*m-1]>
where [aj] is anirreducible representation of Sp; with degree
fo,:
n!

fd* = no‘.nl‘. .. nm_llo fc(ofd.! « e . fdﬂm-l .
In this case, ng=n-1,n;=1,n2=...=np,.1=0,
fql=1(Osism- 1), so that

. n!
fo® = oy T

in agreement with the above.
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A qualification must be added to the foregoing remarks in
the event m = 4. The multiple prism {4} 12 is identical with the
measure polytope ppp. But yz, can be regarded as a square
multiple prism in as many ways as its 2n constituents y; can be
partitioned into n sets of two, namely (2n - 1){(2n - 3) . . . l.
Thus for n > 2 the order of the augmented multiple rotation
group of {4}™is not 4%n! but (2n - 1)(2n - 3) . . . 40%nl. A
tesseract, for instance, can be taken as a square double prism
in three ways, and its augmented double rotation group is of
order 3.42.2! = 96.

To prove that two elements Q and Q' of § are conjugate
in S(n, m) if and only if they are of the same type, Osima uses
the representation of Qj as the cyclic group generated by a
primitive m-th root of unity. This representation of Qj is
obviously isomorphic to its representation as one component
of a multiple rotation [cf. also 2, p. 287].

This suggests the possibility of regarding the xp;_j-axis
and the xp;-axis (1 < i < n) as the respective real and imaginary
axes of an Argand plane. That is, the real 2n-space of our model
can be replaced by unitary n-space. The m?® vertices of the
multiple prism {m} ™ may then be taken as the vertices of a
regular complex polytope analogous to the measure polytope y,.
This generalized measure polytope is denoted by yMp(m >1, n >1).
The polytope y “pin this notation®is the same as the ordinary
(real) measure polytope y, [6, p. 96; 7, p. 374].

The complete symmetry group of 3™y, called G(m, 1, n)
by Shephard and Todd [8, pp. 276-277] , is readily seen to be
isomorphic to S(n, m). The rotations Q; of {m} ™ correspond
to unitary reflections (of period m) of y My, and the half-turns
Tjj of {m} ™ correspond to 2-fold reflections of y ™n. Thus
the generalized measure polytope provides an alternative model
for the generalized symmetric group.

5) The m in the symbol y mn is a superscript, not an exponent.
The form y™,, rather than y ™, has been used in order to
avoid confusion with the symbol for the rectangular product of

m equal yp's.
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