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1. Introduction. One of the striking results of the work done by Murray 
and von Neumann (9) in the analysis of rings of operators1 on a Hilbert space 
is the reduction of the unitary equivalence problem for certain types of 
factors2 to the problem of algebraic equivalence. Roughly speaking, they 
associate with each concrete representation of a factor a number (which 
measures the relative size of the factor and its commutant)—the so-called 
"coupling constant." Two factors are unitarily equivalent if and only if they 
are algebraically isomorphic and have the same coupling constant. Somewhat 
more precisely, Murray and von Neumann show that the given algebraic iso­
morphism can be implemented by a unitary transformation. Their results do 
not apply to factors of type III nor does the result concerning the possibility 
of implementation of an isomorphism by a unitary transformation apply to 
the case of IIœ factors with IIi commutants. Recently3 Griffin (4; 7) pointed 
out the surprising fact that (at least in the case of a separable Hilbert space) 
every isomorphism between factors of type III can be implemented by a uni­
tary transformation. By combining the techniques of Nakano (10) and Segal 
(11) in their multiplicity theory of abelian rings of operators with the global 
ring techniques of Dixmier (1) and Kaplansky (6), and the Dye-Radon-
Nikodym Theorem (2), Griffin (5) was able to extend the concept of "coupling 
constant" from factors in the separable case to "coupling operator" for rings 
of operators on an arbitrary Hilbert space. He thereby extended the unitary 
equivalence results of Murray and von Neumann to rings of operators. How­
ever, there does not seem to be a description, in the literature, of the possible 
isomorphisms between II^'s with Hi commutants (Griffin's results are worded 
so as to exclude this case). One knows, for example, that each *-automorphism 
(adjoint-preserving automorphism) of a factor is implemented by a unitary 
transformation of the underlying Hilbert space provided the factor is not of 
type I la, with a II i commutant. What the situation is, in this last case, seems 
to be unknown. This note supplies the missing information concerning iso­
morphisms between rings of type IIœ with IIi commutants. In particular, we 
show that the group of unitarily induced automorphisms of a factor of type IIœ 

with a Hi commutant is a normal subgroup of the group of *-automorphisms 

Received September 27, 1954. This research was carried out during the tenure of a Fulbright 
Grant. 

*A ring of operators is a weakly closed, self-adjoint algebra of operators on a Hilbert space. 
2A factor is a ring of operators whose center consists of scalar multiples of its unit element. 
3The author is indebted to E. L. Griffin for having had this result and proof made available 

to him in 1952. 
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and that the quotient group is (canonically) isomorphic to the fundamental 
group4 of the Hi commutant. 

The results of the present note will be employed in a forthcoming account 
of the unitary invariants of representations of arbitrary C*-algebras. 

2. The automorphism group. The first question with which we shall deal— 
the nature of the *-automorphisms of a factor of type 11^ with a IIi commu­
tant on a separable Hilbert space—is the simplest one, from a technical view­
point, but, nevertheless, contains all the essential features of the more general 
investigation of the next section. 

THEOREM 1. If 9ft is a factor of type IIœ with dimension function D and com­
mutant 9ft' of type Hi, then the mapping which takes each ^-automorphism <j> of 
9ft into D[4>(E)]/D(E), with E some fixed, finite, non-zero projection in 9ft is a 
group homomorphism of the group, ©, of ^-automorphisms of 9ft onto the funda­
mental group of 9ft with kernel, U, consisting of those ^-automorphisms of 9ft 
which are implemented by unitary transformations of the underlying Hilbert 
space, § . 

Proof. Since D-<j> serves as a dimension function on 9ft (for each •-auto­
morphism, <j>, of 9ft), D-cj) is a constant multiple, say a{<j>), of D. If E is chosen 
to be a projection in 9ft with D(E) = 1, then clearly, a(<f>) = D[<t>(E)]. Thus, 
if 7} is another *-automorphism of 9ft, then 

a(rj.<t>) = £>[*«(£)] = « ( * ) £ [ * ( £ ) ] = a f o ) - a ( 0 ) ; 

so that a is a group homomorphism of @ into the group of positive reals. We 
examine the kernel of a. Suppose then that a(4>) = 1. Since 9ft' is of type 
Hi and 9ft of type IIœ, it is possible (8, pp. 178-180) to choose a unit vector x 
in § so that5 [9ftx] = § . Let F be the orthogonal projection on the space 
[Wx]. Then F lies in 9ft and is finite. Moreover FWF and WF restricted to the 
space [9ft'#] are factors of type Hi, one the commutant of the other, with 
coupling constant 1, since x serves as a cyclic vector for both FWF and 9ft'F 
(recall that the total space under consideration, at the moment, is [9ft/x]). By 
assumption on <j>, however, D(F) = D[<t>(F)], and, since F is finite, one can 
find a unitary operator, U, in 9ft such that UFU~l = <j>{F). Now [9ftUx] 
contains [9ftU~lUx] = [9ftx] = £ , and 

[WUx] = [UWx] = U[Wx] = U(F($)) = 0(/O(£) . 

Thus Ux plays the same role with respect to <t>(F) as x did with respect to F. 
It follows that </>(F)9ft<?!>(̂ ) and 9ft'0(F) are factors of type Hi, each the 

4For the definition of fundamental group of a factor see (9). It should be noted that a factor 
of type II can be viewed as an infinite matrix ring over various factors of type Hi all belonging 
to the genus of the I loo and, so, all having the same fundamental group which we may call the 
fundamental group of the given I I œ . This group is also the fundamental group of the corn-
mutant. 

6 We denote by [9ftx] the closed subspace spanned by vectors of the form Ax, with A in 9ft. 
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commutant of the other, with coupling constant 1. Moreover, 0 restricted to 
FffîF maps this ring isomorphically upon 0(F)9J?0(F). Since FtyllF as repre­
sented upon F(&) and 0(F)9Ji0(/r) as represented upon 4>(F) (§) have coupling 
constant 1, the known theory (9) tells us that there is a unitary transformation, 
Uu of F(&) upon <t>(F)(&) which implements the restricted 0. Now choose 
orthogonal, equivalent projections Fu F2 . . . in 9J? with sum I and with 
F = Fi. Let Vf be a partial isometry in 5DÎ with initial space Fi(&) and final 
space Fi(lQ). (Take Vi = i^i.) The map Uu discussed above, transforms 
Fi(&) onto <t>(Fi)(fQi) and implements 0 restricted to FiSRFu Define Un to be 
<t>{Vn)U\Vn*. Clearly, Un is a unitary transformation of Fn($£>) onto 0(F r a)(§). 
We assert that Un implements the isomorphism 0 restricted to FnWFn. In fact, 

UnFnAFnUn-
1 = HVJUiiVSFnAFnVJUrWn)* 

= 0(7n)^1(F17n*F l l i4F J I7wF1)C/r^(7n*) 
= 0 ( 7 ^ 0 ( ^ 7 / ^ / ^ 7 ^ ) 0 ( 7 / ) 
= 0 ( 7 ^ 7 / ^ , 4 ^ 7 ^ 7 / ) = *(F^4Fn). 

The transformation [/defined to be f/w on each of the spaces Fn(JQ) is a unitary 
transformation of § onto § and certainly implements 0 on each of the rings 
FnWflFn. Moreover, 

UVnU~l = UVnÇ£k Uh~
l) = tfV»^-1 = (E* «70 V n ^ r 1 = t/nVnC/r1 

= {<S>{Vn)U1Vn^)VnUl-' = 0(7W)[/1F1[/1-1 = *(7„)«(Fi) 
= 0 ( 7 ^ ) = 0 ( 7 J . 

Thus 

C/^f/-1 = U{Y,nFn)A(Y,mFm)U-' = U(Zn,mFnAFm)U-1 

= E».m £^V4 Fw£/-i 
= E».m^7n7n*24 7wKm*£/-1 

= £».» ( f / 7 n [ / - 1 ) ( ^ i 7 / 4 7 m F 1 ^- 1 ) (^7 w *[ / - 1 ) 
= E. ,™0(F„)0(7/ ,4 7 j 0 ( 7 m * ) = E » * ( ^ » ) * ( ^ ) * ( ^ ) 

since each *-automorphismis countably additive We have established that 
each automorphism, 0, in the kernel of a is induced by a unitary trans­
formation of § . Suppose, on the other hand, that 0 is an automorphism of Wl 
induced by the unitary transformation U of § . Once again, choosing x a unit 
vector in § such that [3Jtx] = § and defining F to be the orthogonal projec­
tion with range [9J?'x], we have that F lies in 2JÎ and is finite. In addition, 

WlUx] = [UU~imUx] = tf[2Kx] = U(§) = § , 
and 

[2tt' Ux] = ^ [ t / - 1 Smr J7x] = tf[2K'x] = t /F t / - 1 tf($) = 0 (F) (§ ) . 

Now it follows (8, pp. 178-180) that [Wx] is equivalent to [W Ux] modulo 5DÎ, 
i.e.,£>(F) = Z) [0(7^)], since [2»x] = § is equivalent to [2K Kr] = § modulo 9K', 
so that a(0) = 1; and 0 lies in the kernel of a. Thus we have identified the 
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kernel of a with the group U of unitarily induced automorphisms of ffll. Finally 
we show that the image of a is precisely the fundamental group of 9W. In fact, 
with F a projection of relative dimension 1 in 2)?, F3JIF is a factor of type Hi, 
and <t>(F)yjl<l>(F) is its D[<I>(F)] = a(0)th power4 (for, if, say <*(</>) < 1, then 
<f>(F)(3Jl<t>(F) is unitarily equivalent to the restriction of FffllF to any projection 
in F3JI of relative dimension a(</>)). However, <f> induces an isomorphism of 
FWflF upon 0(F)2Jty(F), so that «(</>) lies in the fundamental group of FWIF 
(which is the fundamental group of 3W). Suppose that a is in the fundamental 
group of $Jl. Choose (9) two (infinite, sets of matrix units [Eij]i>j=i>2,... and 
[Ffjjij^x^,... in 2ft, with Enn, Fnn projections of relative dimensions 1 and a, 
respectively, for each n. If we denote by 9?i and 2h the sets of elements in 2)? 
which commute with [E^] and [F^], respectively, then 9îi and 9?2 are sub-
factors of 9W of type IIi, and are isomorphic to EnWflEn and FixSJlFu, respec­
tively. Thus 5Î2 is the ath power of 9ti, and, since a lies in the fundamental 
group of 2)? (hence, of 911), there is an isomorphism t\ of 911 onto 9î2. Now 2)? 
is isomorphic to the denumerably infinite matrix rings over 9îi and over 9Î2 

in which only those matrices occur which yield bounded operators on the 
denumerably infinite direct sum of § with itself. Let </>i, 02 be these iso­
morphisms and 9îi°, 9̂ 2° the matrix rings, respectively. If A° is a denumerably 
infinite matrix over 9îi (or 9Î2) it will act as a bounded operator if and only if 
the bounds of the operators obtained from A° by replacing the entries whose 
row or column index exceeds n by 0, forms a bounded set of numbers. Now rj 
extends, in the obvious way, to a *-isomorphism r)n of the n X n matrix ring 
over 311 onto the n X n matrix ring over 9̂ 2. Then rjn is norm preserving and it 
follows from the foregoing characterization of the operators in 5fti°, 9̂ 2° that 
770, the extension of rj to 9îi°, is a *-isomorphism of 9?i° onto 9^2°. Under </>i 
and $2, respectively, En and FU} respectively, map onto the matrices in 9îi° 
and 9^2°, respectively, whose entry in the first column and row is I and whose 
other entries are 0. Thus the *-automorphism, <f>2~lr}° <£i, of %Jl carries En 
onto Fu. It follows that a(</>2

-1 rj° <£i) = a, so that the homomorphism a maps 
onto the fundamental group of 2)?. 

COROLLARY. There exist factors of type llœ with Hi commutants which admit 
non-unitarily induced automorphisms. 

Proof. Since the fundamental group of the approximately finite IIi is the 
multiplicative group of positive reals, the automorphism group of the approxi­
mately finite IIœ (bounded, denumerably infinite matrices over the approxi­
mately finite Hi) contains distinct cosets modulo the group of unitarily 
induced automorphisms corresponding to each positive real number. The 
denumerably infinite matrix representation, acting in the usual way on the 
direct sum of Hilbert space with itself a denumerably infinite number of times 
has a Hi commutant and provides the desired example. 

It is a rather surprising observation that, in a certain sense, the more 
complicated factors of type llœ have the less complicated automorphism groups. 
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Indeed, one tends to think of a factor of type 11^ whose fundamental group 
consists of 1 alone as being quite complicated structurally (the approximately 
finite factors of type IIœ would appear to be the least complicated), while, 
in this case, all *-automorphisms are unitarily induced. On the other hand, the 
only information we have about the fundamental group of any factor is that 
the fundamental group of an approximately finite factor of type IIi is the group 
of positive reals. It may well be that this is the fundamental group of all 
factors of type Hi. It would be quite interesting to know, for example, the 
fundamental group of the factor of type II i which is the group algebra of the 
free group on two generators. 

3. The linking operator of an isomorphism. In this section, we shall deal 
with the more general situation of *-isomorphisms between rings of type 11^ 
with Hi commutants on arbitrary Hilbert spaces. 

DEFINITION. If <j> is a ^-isomorphism between two rings of operators 50îi 
and 9ft 2 of type IIœ with II i commutants acting on the Hilbert spaces § i and § 2 , 
respectively, we shall call the operator D[<j)(E)] in the center of 2ft 2, the linking 
operator for <j>, where E is the projection in 2ft i with range [9ft i'#], where x is 
a unit vector such that [9ft i x] = § i , and where D is the center-valued dimension 
function on 9ft 2 normalized so that D(F) = I. (F defined for 2ft 2 in the same way 
as E is defined for 90?i; assuming 9fti, 9ft 2 have countably decomposable centers. 

Several remarks are appropriate with regard to this definition. In the first 
place, the cyclic vector x exists since 9ft i is of type 11^ and 2ft/ is of type Hi. 
Secondly, E is finite with central carrier the identity, and any other projection 
in 9ft i arising from a cyclic vector such as x is equivalent to E. Since <£ maps 
finite projections into finite projections and equivalent projections into equi­
valent projections, D[<t>(E)] is independent of the choice of x and is a positive 
operator in the center of 9ft 2 (observe that <I>(E) is finite and has central carrier 
I). Using direct sums, we assume our rings have countably decomposable centres. 

THEOREM 2. If <j> is a ^-isomorphism of the ring of operators 9ft i of type llm 

onto the ring of operators 9ft 2 and the commutants of 9ft i and 9ft 2 are of type 111, 
then (j) is implemented by a unitary transformation of § i onto § 2 , the Hilbert 
spaces upon which 9ft i and 2JÎ2, respectively, act, if and only if the linking operator 
for (j) is the identity operator. 

Proof. Suppose first that <j> is implemented by a unitary transformation U 
of § i onto § 2 . In this case, with the notation of the above definition, 

[2R2 Ux] = U[U-im2 Ux] = U[Mix] = Z7(^0 = § 2 , 
and 

[2ft/ Ux] = UlU-1^ Ux] = U[Wti'x] = C/(£($i)) = <t>(E)(§2). 

Thus D[<j)(E)] = I, for </>(£) arises from a cyclic vector Ux, and is therefore 
equivalent to the normalizing projection F for D, in 2ft2. 
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We assume now that D[4>(E)\ = I, so that <t>(E) is equivalent to the nor­
malizing projection F for D and arises from a cyclic vector for 2W2. Thus 
</>(£) 90? 2$ (£) and 9JÎ2' 4>(E) are of type Hi with a joint cyclic vector, as are 
E 9Ki E and 2JÎ/ E. Moreover, <j> yields a *-isomorphism of EWliE onto 
0(£) $D?2 <£(£)• This last *-isomorphism is implemented (3; 5) by a unitary 
transformation Z7i of £ ( § i ) onto $(£)(§2). Again, as in Theorem 1, one can 
find a (possibly uncountable) family of projections [Ea] in 9Wi, mutually 
orthogonal and equivalent to Ey with sum I, and with E as one of the projec­
tions of the family. Let Va be a partial isometry in $Jli with initial space 
£ ( § i ) and final space Ea(&i) (let £ be the partial isometry with initial and 
final space £ ( § i ) ) . Define Ua to be <t>(Va) U\ Fa*. As in Theorem 1, the unitary 
operator U defined as Ua on E a (§ i ) , for each a, implements 0 on each of the 
rings Ea 9Wi Ea and UVa U~l = <t>(Va). Thus the isomorphisms A —> C/̂ 4 [7"""1 

and A —> 0(^4) agree on a subset of SDîi dense in the strongest topology. Since 
both mappings are strongestly continuous (3; 5), they agree on 9Jh and <t> 
is implemented by the unitary transformation U. 

It is now a simple matter to incorporate the above result into the 
statements of Griffin (3; 5) to completely answer the question of when 
•-isomorphisms between arbitrary rings of operators on arbitrary Hilbert 
spaces are induced by unitary transformations. 
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