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CONGRUENCE SUBGROUPS OF THE PICARD GROUP 

BENJAMIN FINE 

Introduction. The Picard group T = PSL2 (Z[i]) is the group of 
linear fractional transformations 

, _ az -f b 
cz + d 

with ad — be = ± 1 and a, b, c, d Gaussian integers. 
T is of interest as an abstract group and in automorphic function 

theory. In an earlier paper [1], a decomposition of T as a free product 
with amalgamated subgroup was given and this was utilized to investigate 
Fuchsian subgroups. Karrass and Solitar used a similar decomposition 
to characterize abelian and nilpotent subgroups. Maskit [6], Mennicke 
[7] and Fine [2], used T to generate faithful representations of Funda­
mental Groups of Riemann Surfaces while more recently Wielenberg 
[10] represented certain knot and link groups as subgroups of T. In this 
paper, we will examine the structure of the congruence subgroups of T. 
Our technique will be to use the decomposition cited above [1], together 
with the Karrass-Solitar subgroup structure theory for free products 
with amalgamations [3]. Finally, we give a conjecture and some results 
concerning Fuchsian subgroups which are contained in congruence 
subgroups. 

2. Congruence subgroups . If (a) is an ideal in Z[i], (necessarily 
principal), T(a) the principal congruence subgroup mod (a) consists of 
those transformations congruent to the identity transformation modulo 

(a).That is, those maps z' = ;—3 whose matrix ± 1 , ) satisfies 
v cz + d \c d) 

a = d = 1 mod (a) and b = c = 0 mod (a). 

It is well known that in the modular group M = P5 ,L2(Z) the principal 
congruence subgroups are free groups of finite rank ([4], [8]). There are 
two essentially different proofs of this, which we will briefly reiterate 
since the ideas of both will be explored relative to the Picard Group. The 
first proof is group theoretic and uses the fact that AT is a free product of 
finite groups. A principal congruence subgroup H is torsion free and 
therefore it follows from the Kurosh Theorem that H is itself free. This 
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idea will be pursued in T to give a structure theory for the Y (a). The 
second proof is function theoretic and depends on the result that a 
principal congruence subgroup H of M being of finite index in M must 
be a finitely generated Fuchsian group [4]. Since H is torsion free and 
contains parabolic elements, it must be free [8]. The ideas in the second 
proof will lead to conjecture in Section 3 relating to Fuchsian subgroups 
of T contained in congruence subgroups. 

Our main theorem is the following: 

THEOREM 1. / / (a) ^ (1 + i) or (2) then Y {a) is an HNN group with 
finitely generated free part F and base K. K is a free product with amalgama­
tions of finitely many free groups, each of finite rank. Further, both the 
amalgamated subgroups in K and the associated subgroups in Y (a) are 
conjugates of subgroups of the modular group M. 

See [3] for terminology regarding HNN groups. 
Before giving the proof, we will give some needed preliminaries. First, 

we state the decomposition of Y, which will be used throughout. 

THEOREM. [1] Y is a free product of Gi and G2 with an amalgamated 
subgroup H. G\ is the free product of Sz and AA with a 3-cycle amalgamated, 
G2 is Sz * D2 with a 2-cycle amalgamated, and H ~ PSL2(Z) = M. 

The proof of this is in [1]. It is important to note that generators can 
be found for Y so that Y has the form given in the theorem while in 
terms of these generators H is precisely the modular group, not just 
isomorphic to it. 

Second, the following lemma is necessary: 

LEMMA. For every a G Z (i), T(a) is normal and of finite index in T. If 
(a) 5** (1 + i) or (2), Y {a) is torsion free. 

Proof (of lemma). This is essentially the same as the proof in [8]. 
Since Y (a) is the kernel of the map Y —> PSL2(Z[i]/(a)) given by 

az + b a'z + bf 

cz + d cz + d' 

where a', b', c', d' are the images of a, b, c, d under the natural map 

Z[i] ->Z[i]/(a), 

it is normal. Further, since Z[i] is a Euclidean ring, Z[i]/(a) consists 
mod (a) of those Gaussian integers with norms less than the norm of a. 
Therefore, Z[i]/(a) is a finite ring and PSL2(Z[i}/{a)) is a finite group. 
Since 

\PSU(Z[i]/M\ = | r : r ( a ) | , 

Y (a) has finite index. Finally if V'.z' —> ;—- has finite order, then trace 
cz •+• a 
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V = 0 or 1, [4], while if F G Y(a), trace V = 2 mod (a). If trace F = 1 
then 1 = 2 mod (a) which is impossible for a non-unit. If trace F = 0, 
then 0 = 2 mod (a) which is possible only if a\2. Therefore, in this case 
(a) = (2) or (1 + i), and for all other a, Y (a) is torsion-free. 

Now the proof of Theorem 1 : 

Proof. Let (a) C Z[i], (a) ^ (1 + i) or (2), then from the preceding 
lemma, it follows that Y (a) is a normal torsion-free subgroup of finite 
index in T. Since Y (a) has finite index and the Picard group is finitely 
generated, Y (a) is also finitely generated. 

Since the Picard group T is a free product with amalgamated sub­
group, r = (Gi * G2\H) (Gi, G2 and H as in the theorem stated above) 
it is a consequence of the Karrass-Solitar subgroup theorem (Theorem 5 
in [3]) that Y (a) is an HNN group. Its base K is then a tree product 
whose vertices are conjugates of Gi, or G2 intersected with T(a), and 
whose amalgamated subgroups are conjugates of H, that is the modular 
group, intersected with Y (a). The associated subgroups are then also 
conjugates of H P Y (a). Since Y (a) is normal, conjugates of Gi, G2 or H 
intersected with Y (a) are simply conjugates of Y (a) P G\, Y (a) P G2, 
or Y (a) P H. Therefore, what we must show is that the vertices and 
free part have the structure and finite rank conditions as in the statement 
of the theorem. 

Since Y (a) is of finite index in V and Y (a) <Z PSL2(Z) (Y(a) always 
contains a non-real translation) it follows from Karrass-Solitar (Theorem 
10 in [3]) that Y (a) C\ H has finite index in H ^ PSL2(Z), and therefore 
T(a) C\ H is finitely generated. Note that if n is an integer T(n) C\ H is 
just the principal congruence subgroup of level n in PSL2(Z). Therefore, 
T(a) is itself finitely generated, and so from Lemma 8 in [3] it follows 
that the free part F is finitely generated and the base K is a tree product 
of finitely many of its vertices. Since conjugates of T(a) C\ H are the 
amalgamated subgroups in K, Theorem 4 in [3] allows us to conclude 
that each vertex is finitely generated. What is left to show is that the 
vertices are free groups. 

Let F be a vertex. Then F is a conjugate of T(a) C\ Giorof T(a) P\ G2. 
We show that Vi = T(a) P G\ or V\ = Y {a) P G2 must be free groups. 
Any conjugate is then free. Since Vi is contained in Y (a) it must be 
torsion-free and we prove that torsion-free subgroups of G\ or G2 are 
free groups. Suppose Vi is torsion-free, Vi Q G\. G\ is a free product 
with amalgamated subgroup, G\ = (S3 * A4; Z3) each factor being 
finite. By the Karass-Solitar subgroup theorem, V\ is an HNN group 
with free part FVl and base KVl. Each vertex of KVl is a conjugate of a 
subgroup of S3 or A4 and therefore must be finite. But KVl Q Vi and so 
is torsion-free. So each vertex is trivial, and V\ = FVl. Therefore, if 
V\ C Gi, it is either trivial or free. Since G2 is also a free product with 
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amalgamated subgroup of finite factors, an identical argument works if 
Fi Ç G2. In any case a non-trivial vertex must be a free group (and since 
finitely-generated) of finite rank. 

Now we handle the two special cases, tha t is, when a = 1 + i, and 
when a = 2. 

T H E O R E M 2. r ( l + i) has index 6 in T and is decomposable as a free 
product of two groups with amalgamated subgroup; T (1 + i) = (H\ * H2: U). 
In particular 

H1^D2*Z2[(Z2*Z2) * Z ( Z 2 * Z 2 ) ] and H2^ Z2*D2 

while U, the amalgamated subgroup, is Z * Z2 . r ( 2 ) has index 24, and is 
a subgroup of index 4 in T ( l + i). Y (2) has similar but more complicated 
generalized free product decomposition. 

Proof. In [2], the following is given as a presentation for the Picard 

group. 

r = (a, I, t, u;a2 = I2 = (al)2 = (tl)2 = (ul)2 = (at)" 

= (uaiy = [t,u] = 1) 

where a is z' = —1/z, t is z' — z + 1, u is z' = z + 1, / is z' = —z. 

Since (1 + i)\2, (2) C (1 + i), and 1 = - 1 mod (1 + i) it follows 
tha t / Ç r ( l + i). Fur ther since 1 + i = 0 mod (1 + i) then tu, which 
is z' = z + (1 + i), is also in T( l + i ) . Therefore, since r ( l + i) <\ Y, 
r ( l + i) must contain as a subgroup, N(l, tu), the normal closure in T 
of the elements / and tu. 

Now 

T/NU,tu) = {a , / ; a2 = ^2 - (a/)3 = 1} ^ 5 3 

which we found by letting / = 1 and tu = 1 in the presentation for T 
above and then simplifying. Therefore, \T:N(l, tu)\ = 6 . Further , 
Z[i]/(i+i) ~ G F (2) the Galois field with 2 elements, so 

T/rii+i)^PSL2(GF(2))^Sz. 

From this | T: T ( l + i)\ = 6 also, from which it follows tha t T ( l + i) = 
N(l, tu). Using this we get a presentation for T ( l + i). 

Choosing coset representatives 1, a, t, at, ata, atat with d = a, t = /, 
û = u, I = 1, for N(l, tu) in V, and then employing the Reidemeister-
Shreier process we get the following presentation (after simplification) 
for N(l, tu) = r ( l + i): 

r ( l + i) = (l, m, n, A,B; I2 = (An)2 = (Bm)2 = m2 

= n2(mn)2 = (Al)2 = (Bl)2 = (AB)2 = 1) 
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with 

I = /; z' = — z,n = ltu\ zf = —z — i—\,n = a(tu~H) a = a(lt~lu)a\ 

z' = -,- T : — . — ; A = u~lt\z' = z + (1 — i), B = a(tu)a; 
(1 — i)z + 1 

z> = -I 
(l+i)z-l' 

Let 

Hl = (m, n, A,B; m2 - n2 = (mn)2 = (mA)2 = (nB)2 = {AB)2 = 1) 

and let 

# 2 = </, A,B,l2 = (IA)2 = (IB)2 = (AB)2 = 1). 

Then F(l + i) is given by Hi*H2 with the identifications A = A, 
B = B. 

What we must show then is that Hu Hi have the structure given in 
the statement of the theorem and that the identifications yield iso­
morphisms of subgroups; that is that (A, B) ~ Z * Z2 in both Hi and H2. 

Applying Tietze transformations, Hi can be rewritten as 

Hi = (m, c, x, z\m2 = c2 = (nc)2 = x2 = (xz)2 = (zc)2 = 1) 

by letting c = mn, x = mA, z = mABn. 
Therefore, 

Hi = (m, c,z\m2 = c2 = (mc)2 = 1) * (x-,z,c; 

x2 = z2 = c2 = (zc)2 = 1) 

with the identification c = c. 
Calling Hn the group defined by (m, c, z, m2 = c2 = (mc)2 = 1), we 

see that Hn ~ D2, while the group Hi2, defined by (x, c,z\x2 = (xz)2 = 
c2 = (zc)2 = 1) is isomorphic to (Z2 * Z2) * z(^2 * Z2) where this means 
that Hn is the free product of two infinite dihedral groups with an 
infinite cyclic group amalgamated. The identification yields isomorphic 
subgroup (c) = Z2 in each case. Further, the subgroup generated by 
A, B is (xm, x~lnz) = Z * Z2. 

Now 

H2 = (l,A,B;l2 = (IA)2 - (IB)2 = (AB)2 = 1) 

^ (l,a,P;l2 = a2 = (32 = (a$)2 = 1) 

letting a = I A, (3 = IB. 
Thus, H2 ~ Z2 * D2 while the subgroup generated by A, B is 

(la,l0) ^ Z * Z 2 . 
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Therefore, Hi and H2 have the desired structure and the identifications 
yield isomorphisms of subgroups. 

An identical technique can be utilized to find the structure of T(2). 
Since I e r (2) and r(2) <3 I\ N(l) Q T(2) where as before N(l) is the 
normal closure in T of /. Letting / = 1 we get 

r/iva) = (aj t, u; a2 = t2 = (at)s = {au)z = u2 = [t, u] = 1) 

which has order 24 [1], so | T:N(l)\ = 24. Examining the 24 coset repre­
sentatives for N(l) in T with â = a, î=t, ù = u, 1=1 (see [9]) then 
writing them as transformations, it can be seen that none of them are 
congruent to the identity mod 2. Therefore, N(l) must be equal to r(2) 
and T(2) must have index 24. Since T(2) C T(l + i) it has index 4 in 
T(l + i). Using the same coset representatives and the Reidemeister-
Shreier process, we get a presentation for T(2) from which we can deduce 
the complicated decomposition. In particular, 

r(2) ^ {Kx * K2; V) where Kx ^ (Z2 * Z2) * Z(Z2 * Z2) 

and 

K2 = ((Z2 * Z2) * Z(Z2 * Z)] *Fl 

([(Z2 * Z2) * Z(Z2)] * (z2*z2) [(Z2 * Z2) * Z(Z2 * Z2)]) 

where Vi the amalgamated subgroup in K2 is Z2 * Z2 and V the amal­
gamated subgroup in T(2) is = Z 2 * Z2 * Z * Z. Note that our notation 
(Z2 * Z2) * z(^2 * Z2) stands for the free product of 2 infinite dihedral 
groups with an infinite cyclic subgroup amalgamated. 

We mention that an algebraic procedure for obtaining faithful non-
Fuchsian representations of Riemann surface groups in V was given in 
[2], and the images are all contained in T(2). 

3. Fuchsian subgroups. Since r is nowhere discontinuous in C [4], 
Fuchsian subgroups are of infinite index. The ideas of the function 
theoretic proof of the freeness of the principal congruence subgroups of 
the modular group cannot be carried over to T directly. However, these 
ideas can be applied to Fuchsian subgroups which are contained in con­
gruence subgroups. If (a) ^ (1 + i) or (2) and F Q T(a), F Fuchsian, 
then F is torsion-free and thus either free or a Riemann surface group [4]. 
If F has parabolic elements, it is free. Also if F is contained in the 
modular group, it is free. We then conjecture: 

Conjecture 1. A Fuchsian group entirely contained in a principal con­
gruence subgroup T(a),a 7e (1 + i) or (2), is free. Since the most visible 
examples of Fuchsian subgroups of the T(a) are the subgroups of 
T(a) Pi PSL2(Z), a stronger form of the conjecture would be 
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Conjecture Y. A Fuchsian subgroup entirely contained in T(a), (a) 9^ 
(1 + i) or (2) must be conjugate to a subgroup of the modular group. 

A partial result along these lines is: 

THEOREM 3. A finitely generated Fuchsian group F C r (a ) with 
(a) 9e (1 + i) or (2) and having either trivial or non-cyclic intersection 
with all conjugates of the modular group is free. 

Proof. If F C r ( a ) , (a) ^ (1 + i) or (2), then F must be torsion-free. 
Since F is a subgroup of I\ from Karrass-Solitar, it is an HNN group 
whose base is a tree product. Since F is torsion-free, the same argument 
as in Theorem 1 shows that each vertex is a free group. Assume that F 
intersects all conjugates of M trivially. Since M is the amalgamated 
subgroup in T, a result of Karrass-Solitar is that F must be the free 
product of the free part and its vertices. Each vertex, however, is free 
so F being a free product of free groups is free. 

Now assume that F has non-trivial, non-cyclic intersection with some 
conjugate of M. There is no loss of generality in assuming that this inter­
section is with M itself (using a conjugate of F is necessary). We can 
further assume that F contains no parabolic elements for if it did, it 
would be free. So Fis purely hyperbolic. Suppose T, U G PSL2(Z)) C\ F 
with T, U hyperbolic and (2", U) non-cyclic. Since the only abelian 
subgroups of a Fuchsian group are cyclic, it follows that T and U do not 
commute. Therefore, T, U have distinct sets of fixed points [4]. Further, 
the fix points of 7\ U are on the real axis, since T, U are real and hyper­
bolic. F, being a Fuchsian group, has a principal fixed circle C, and the 
fixed points of hyperbolic maps in F lie on C. Therefore, C has at least 
3 points (the fixed points of F, U) in common with the real axis and so 
must be the real axis. Therefore, the fixed circle of F\s the real axis and 
F^PSL2(R). But 

PSL2(R) C\ r = PSL2(Z) 

so F is entirely contained in the modular group. Since it is torsion-free, 
it must be free. 
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