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Recently, a non-local eddy diffusivity model for the turbulent scalar flux was proposed
to improve the local model and was validated using direct numerical simulation (DNS)
of homogeneous isotropic turbulence with an inhomogeneous mean scalar (Hamba, J.
Fluid Mech., vol. 950, 2022, A38). The non-local eddy diffusivity was assumed to be
proportional to the two-point velocity correlation that was expressed in terms of the
energy spectrum. Because the Fourier transform of velocity in the homogeneous directions
was used to define the energy spectrum, it is not yet understood whether the proposed
model can be applied to inhomogeneous turbulence. Thus, this study aimed to improve
the non-local model using the scale-space energy density instead of the energy spectrum.
First, the scale-space energy density based on filtered velocities was examined using the
DNS data of homogeneous isotropic turbulence to obtain its simple form corresponding to
the Kolmogorov energy spectrum. Subsequently, the two-point velocity correlation was
expressed in terms of the scale-space energy density. Using these expressions, a new
non-local eddy diffusivity model was proposed and validated using the DNS data. The
one-dimensional non-local eddy diffusivity obtained from the new model agrees with the
DNS value. The temporal behaviour of the three-dimensional non-local eddy diffusivity
was improved compared with the previous model. Because the scale-space energy density
was already examined in turbulent channel flow, it is expected that the new non-local
model can also be applied to inhomogeneous turbulence and is useful for gaining insight
into turbulent scalar transport.

Key words: isotropic turbulence, turbulence modelling, turbulence simulation

1. Introduction

The eddy diffusivity model is widely used to predict scalar transport in turbulent flow.
This model is local in space; that is, the turbulent scalar flux at a point is assumed to
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be proportional to the mean scalar gradient at the same point. The local approximation
requires the characteristic scale of the transport mechanism to be small compared
with the distance over which the mean gradient of the transported property changes
appreciably (Corrsin 1974). However, the condition for the local approximation does
not necessarily hold for actual turbulent flows. A typical example is scalar transport in
the atmospheric boundary layer. Because convective eddies driven by buoyancy are as
large as the boundary layer height, the eddy diffusivity model is not always accurate.
Several attempts have been made to develop non-local models. Stull (1984, 1993) proposed
the transilient turbulence theory that describes non-local transport using a matrix of
mixing coefficients. Ebert, Schumann & Stull (1989) used tracers in their large eddy
simulation (LES) to directly obtain the transilient matrix. Pleim & Chang (1992) used
a non-local model named the asymmetrical convective model to apply to regional
or mesoscale atmospheric chemical models. Berkowicz & Prahm (1980) proposed a
generalization of the eddy diffusivity, which is the scalar flux expressed by a spatial
integral of the scalar gradient. Romanof (1989) studied space–time non-local models
for turbulent diffusion and Romanof (2006) applied them to diffusion in atmospheric
calm.

In addition to scalar transport, non-local models have been developed for momentum
transport. Nakayama & Vengadesan (1993) proposed a non-local eddy viscosity model
for the Reynolds stress. As a generalization of Prandtl’s mixing-length theory, Egolf
(1994) developed a non-local model for the Reynolds stress called the difference-quotient
turbulence model. Recently, Mani & Park (2021) developed the macroscopic forcing
method to reveal the differential operators associated with turbulence closures.
Using this method, Shirian & Mani (2022) computed the scale-dependent eddy
diffusivity characterising scalar and momentum transport in homogeneous turbulence and
demonstrated that the eddy diffusivity behaviour is captured by a non-local operator.
Fractional derivatives have also been used to develop non-local models because they
involve both differential and integral operators and can describe non-local properties
(Uchaikin 2013). Di Leoni et al. (2021) assessed the two-point correlation between the
filtered strain rate and subfilter stress tensors in isotropic and channel flow turbulence.
They showed that the non-local eddy viscosity model based on the fractional derivatives
accounts for the long-tail profiles of the correlation and suggested the potential of
non-local modelling for LES.

The non-local expression for the scalar flux was also investigated using Green’s function
appearing in the statistical theory of turbulence. Using the direct interaction approximation
developed by Kraichnan (1959), Roberts (1961) studied turbulent diffusion to derive the
probability distributions of the positions of fluid elements corresponding to the non-local
eddy diffusivity. Kraichnan (1964) showed that the non-local eddy diffusivity can be
approximated using the averaged Green’s function and velocity correlation. Kraichnan
(1987) derived an implicit exact non-local expression for the scalar flux. Hamba (1995)
modified Green’s function to obtain an explicit, exact expression for the scalar flux.
A similar expression was also investigated by Romanof (1989) for turbulent diffusion
problems. The non-local expressions were validated, and the non-local eddy diffusivity
and viscosity were evaluated using the direct numerical simulation (DNS) data of turbulent
channel flow (Hamba 2004, 2005). However, modelling the non-local eddy diffusivity
using known statistical quantities was only discussed phenomenologically.

Recently, we examined the non-local expression for the scalar flux in detail using
the DNS of homogeneous isotropic turbulence with an inhomogeneous mean scalar
(Hamba 2022b). We proposed a systematic model expression for the non-local eddy
diffusivity being proportional to the two-point velocity correlation in a manner customary
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Non-local eddy diffusivity model based on energy density

in the statistical theory of turbulence (Kraichnan 1959; Yoshizawa 1984, 1998). The
profile of the non-local eddy diffusivity obtained from the model expression agreed
well with the DNS value, and the non-local model reproduced the scalar flux; it
substantiated the potential of the non-local eddy diffusivity model. In the model, the
non-local eddy diffusivity was proportional to the two-point velocity correlation that was
expressed in terms of the Kolmogorov energy spectrum. Because the Fourier transform
of velocity in the homogeneous directions was used to define the energy spectrum,
it is not clear whether the model can be applied straightforwardly to inhomogeneous
turbulence. Therefore, the two-point correlation must be expressed in terms of
quantities in physical space representing the scale-space energy instead of the energy
spectrum.

A candidate of the scale-space energy to express the two-point correlation is the
second-order structure function 〈δu2

i (x, r)〉 (where δui(x, r) = ui(x + r) − ui(x) and ui(x)

is the velocity fluctuation). It represents the kinetic energy of eddies with a size equal
to or less than |r|. Hill (2002) theoretically derived the exact transport equation for the
structure function in inhomogeneous turbulence. Marati, Casciola & Piva (2004) evaluated
the structure function equation using the DNS data of turbulent channel flow. Cimarelli, De
Angelis & Casciola (2013) and Cimarelli et al. (2016) examined the energy flux occurring
in the scale and physical spaces of turbulent channel flows. It was successfully used to
investigate the energy transfer in the scale space in inhomogeneous turbulence. However,
challenges include its behaviour as |r| → ∞ in turbulent flows that are inhomogeneous
in all directions. When |r| is much greater than the integral length scale, the structure
function becomes the sum of the kinetic energies at two different positions apart
from each other in the inhomogeneous direction. This behaviour is not adequate for
expressing the non-local eddy diffusivity that represents non-local properties around one
position.

Instead of the structure function, we recently proposed an expression for the scale-space
energy density using filtered velocities to obtain a better understanding of inhomogeneous
turbulence (Hamba 2022a). The homogeneous and inhomogeneous parts of the energy
density were evaluated using the DNS data of homogeneous isotropic turbulence and
turbulent channel flow. The inhomogeneous part was examined in detail in the near-wall
region of a channel flow. The integral of the energy density over all scales becomes
the kinetic energy at one position, even in inhomogeneous turbulence. Therefore, for
the non-local eddy diffusivity model, this scale-scale energy density is more appropriate
than the structure function. A similar approach based on filtered velocities was also used
to examine the role of vorticity stretching and strain amplification in the turbulence
energy cascade (Johnson 2020, 2021). In the present study, we improve the non-local
eddy diffusivity model by using the scale-space energy density developed by Hamba
(2022a). We derive an expression for the two-point correlation using the scale-space
energy density instead of the energy spectrum, and propose a new model for the non-local
eddy diffusivity.

This study is organised as follows. In § 2 we describe a non-local eddy diffusivity
model developed by Hamba (2022b). We present the profiles of the one-dimensional
non-local eddy diffusivity and the turbulent scalar flux obtained from the DNS data of
homogeneous isotropic turbulence with an inhomogeneous mean scalar. In § 3, using
the DNS data, we examine the scale-space energy density based on filtered velocities to
obtain its simple form. By expressing the two-point correlation in terms of the scale-space
energy density, we propose a new model for the non-local eddy diffusivity. We examine
the temporal behaviour of the three-dimensional non-local eddy diffusivity and compare
results between the previous and new models. Finally, § 4 provides conclusions.
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2. Non-local expression for scalar flux

In § 2 we describe a non-local expression for the turbulent scalar flux investigated in
Hamba (2022b). The velocity u∗

i and scalar θ∗ are divided into mean and fluctuating parts
as

u∗
i = Ui + ui, Ui = 〈u∗

i 〉, (2.1)

θ∗ = Θ + θ, Θ = 〈θ∗〉, (2.2)

where 〈 〉 denotes the ensemble averaging. A non-local expression for the turbulent scalar
flux 〈uiθ〉 can be written as

〈uiθ〉(x, t) = −
∫

dx′
∫ t

−∞
dt′κNLij(x, t; x′, t′)

∂

∂x′
j
Θ(x′, t′), (2.3)

where
∫

dx = ∫∞
−∞ dx

∫∞
−∞ dy

∫∞
−∞ dz and the summation convention is used for

repeated indices (Hamba 1995, 2004). Here, κNLij(x, t; x′, t′) is the non-local eddy
diffusivity, representing a non-local effect of the mean scalar gradient at (x′, t′) on the
scalar flux at (x, t). It is given by

κNLij(x, t; x′, t′) = 〈ui(x, t)gj(x, t; x′, t′)〉, (2.4)

where gj(x, t; x′, t′) is the Green’s function for the scalar fluctuation. Equation (A2)
is solved numerically with DNS velocity fields to obtain gj(x, t; x′, t′) and ensemble
averaging is taken to evaluate the non-local eddy diffusivity in (2.4) (see Appendix A
for details).

The non-local eddy diffusivity κNLij(x, t; x′, t′) has a non-zero value if the distance |x −
x′| and the time difference t − t′ are comparable to or less than the turbulence length and
time scales, respectively. If the mean scalar gradient ∂Θ/∂x′

j is nearly constant in this
region regarding scale and time, then the scalar flux can be approximated as

〈uiθ〉(x, t) ∼= −κLij(x, t)
∂Θ

∂xj
, (2.5)

where κLij(x, t) is the local eddy diffusivity defined as

κLij(x, t) =
∫

dx′
∫ t

−∞
dt′κNLij(x, t; x′, t′). (2.6)

Conversely, if the mean scalar gradient changes appreciably in the region, the local
approximation is invalid, and the non-local expression must be used to predict the scalar
flux.

We examined the DNS data of homogeneous isotropic turbulence with an
inhomogeneous mean scalar to verify the non-local expression given by (2.3)
(Hamba 2022b). We solved the Navier–Stokes equation for the velocity field using a
pseudo-spectral method. The size of the computational domain was Lx × Ly × Lz = 2π ×
2π × 2π and the number of grid points was 5123. An external force was applied around the
wavenumber k = 3.5 to maintain constant turbulent kinetic energy over time. Following
that, the physical quantities were non-dimensionalised by the turbulence intensity 〈u2

i 〉1/2

and the length scale Lx/2π. The viscosity was set to ν = 6 × 10−4 and the Taylor
micro-scale Reynolds number Rλ (= 〈u2

x〉1/2λ/ν ) was 122.
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Non-local eddy diffusivity model based on energy density

In addition to the velocity field, we solved the equation for the scalar fluctuation given
by (A1). A fixed one-dimensional profile of the mean scalar Θ(y) was used such that the
scalar fluctuation θ was inhomogeneous in the y direction and homogeneous in the x and
z directions. In § 2 we show the results of two cases in which the mean scalar gradient is
given by

∂Θ

∂y
=
{

cos y, case 1,

cos 2y + (1 + cos 4y)/4, case 2.
(2.7)

Statistical quantities such as the scalar flux were obtained by averaging over the x–z plane
and over a time period of 2.5 normalised by Lx/(2π〈u2

i 〉1/2) .
Because the velocity field is statistically steady and homogeneous in the x and z

directions, the non-local expression given by (2.3) can be rewritten as

〈uyθ〉NL(y) = −
∫ ∞

−∞
dy′κNLyy(y; y′)

∂Θ

∂y′ , (2.8)

where

κNLyy(y; y′) =
∫ ∞

−∞
dx′

∫ ∞

−∞
dz′
∫ t

−∞
dt′κNLyy(x, t; x′, t′). (2.9)

The one-dimensional non-local eddy diffusivity κNLyy(y; y′) appearing in (2.8) is a
function of y and y′ only. Note that (2.8) is valid for isotropic turbulence. For shear
turbulence, other components, such as κNLyx(y; y′) can also be non-zero and should be
included in (2.8). The local expression for the scalar flux given by (2.5) can be written as

〈uyθ〉L(y) = −κLyy(y)
∂Θ

∂y
, (2.10)

where

κLyy(y) =
∫ ∞

−∞
dy′κNLyy(y; y′). (2.11)

Because the velocity field is also homogeneous in the y direction, the non-local eddy
diffusivity κNLyy(y; y′) is only a function of the separation y − y′, and the local eddy
diffusivity κLyy(y) is constant (κLyy = 0.23).

Figure 1 shows the profiles of the scalar fluxes as functions of y for the two cases.
Here, ‘DNS’ denotes 〈uyθ〉 evaluated directly, ‘Local’ denotes 〈uyθ〉L given by (2.10) and
‘Non-local’ denotes 〈uyθ〉NL given by (2.8). The profiles of 〈uyθ〉NL plotted as blue dotted
lines agree with the DNS values for both cases. This agreement verifies the non-local
expression for the scalar flux given by (2.8). In contrast, the profiles of 〈uyθ〉L, plotted
as red lines, overpredicted the DNS values. The small value of the DNS compared
with the local model can be accounted for by the non-local effect (Hamba 2022b). The
overprediction by the local model was more significant in case 2 than in case 1 because
the length scale of the mean scalar field was small in case 2.

Figure 2 shows the profiles of the non-local eddy diffusivity κNLyy(y − y′) as functions
of (y − y′)/L. The separation y − y′ was normalised by the integral length scale L, whose
value is 0.465 in the present DNS (see also Appendix B). The non-local eddy diffusivity
κNLyy(y − y′) is of the same dimension as the velocity and is non-dimensionalised by
〈u2

i 〉1/2. The black line represents the DNS value obtained from (2.9), which was used
to evaluate 〈uyθ〉NL plotted in figure 1, whereas the other lines for models 1 and 2 are
mentioned later. As the profile is symmetric with respect to (y − y′)/L = 0, it is plotted
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Figure 1. Profiles of the scalar fluxes 〈uyθ〉, 〈uyθ〉L and 〈uyθ〉NL as functions of y for (a) case 1 and (b) case 2.
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Figure 2. Profiles of the non-local eddy diffusivity κNLyy(y − y′) as functions of (y − y′)/L for DNS and
models 1 and 2.

only in the positive region at (y − y′)/L ≥ 0. It exhibits a sharp peak at (y − y′)/L = 0
and decays quickly as (y − y′)/L increases. The profile suggests that the value of ∂Θ/∂y′
within the integral length scale at −L < y − y′ < L mainly affects the scalar flux at y in
(2.8).

We demonstrated the non-local eddy diffusivity κNLyy(y − y′) in the case of
one-dimensional profiles of the mean scalar Θ(y). However, in the case of general profiles
of the mean scalar varying in three directions, we must consider the original expression
for the three-dimensional non-local eddy diffusivity

κNLij(r, τ ) = 〈ui(x, t)gj(x, t; x′, t′)〉, (2.12)

which is a function of r(= x − x′) and τ(= t − t′) for homogeneous and steady turbulence.
Because the turbulent velocity field is isotropic and the Green’s function is determined
solely by the velocity fluctuation, the non-local eddy diffusivity can be expressed in the
isotropic form

κNLij(r, τ ) = κNL(r, τ )δij, (2.13)

where κNL(r, τ ) = κNLii(r, τ )/3 and r = |r|, and a term proportional to rirj/r2 was
neglected. Next, we investigated the three-dimensional non-local eddy diffusivity
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Non-local eddy diffusivity model based on energy density

κNL(r, τ ) and its time integral κNL(r), which is given by

κNL(r) =
∫ ∞

0
dτκNL(r, τ ). (2.14)

The one-dimensional non-local eddy diffusivity κNLyy(y − y′) can be obtained from

κNLyy(ry) =
∫ ∞

−∞
drx

∫ ∞

−∞
drzκNL(r) =

∫ ∞

ry

dr2πrκNL(r). (2.15)

In Hamba (2022b) we modelled the three-dimensional non-local eddy diffusivity
κNL(r, τ ) using the two-point velocity correlation Qii(r)(= 〈ui(x, t)ui(x′, t)〉) as

κNL(r, τ ) = G(r, τ )Q(r), (2.16)

where Q(r) = Qii(r)/3. The statistical theory of turbulence suggested that the two-time
velocity correlation Qii(r, τ )(= 〈ui(x, t)ui(x′, t′)〉) must be used instead of the one-time
correlation Qii(r) (Kraichnan 1964; Yoshizawa 1998). Nevertheless, considering its
application to inhomogeneous turbulence in the near future, we adopted the one-time
correlation Qii(r) in (2.16) because it is simple (see also Appendix C). The time-dependent
part G(r, τ ) appearing in (2.16), which corresponds to the mean Green’s function for the
scalar fluctuation, was given by

G(r, τ ) = 1
(4π)3/2(CωGu0τ)3 exp

[
− r2

4(CωGu0τ)2

]
, (2.17)

where u0 = 〈u2
i 〉1/2 = (2K)1/2, K(= 〈u2

i 〉/2) is the turbulent kinetic energy and CωG is a
model constant. The function given by (2.17) was determined by referring to the temporal
behaviour of the two-time velocity correlation Q(r, τ ) evaluated using DNS (Hamba
2022b). For the velocity correlation Q(r), we used the Fourier transform and assumed
the Kolmogorov energy spectrum in the inertial range as

Qii(r) =
∫

dkQii(k) exp (ik · r) =
∫ ∞

0
dk2E(k)

sin (kr)
kr

, (2.18)

E(k) =
{

CKε2/3k−5/3, kc ≤ k ≤ kd

0, k < kc, k > kd
, (2.19)

where k = |k|, E(k)(= 2πk2Qii(k)) is the energy spectrum, CK is a model constant
and ε[= ν〈(∂ui/∂xj)

2〉] is the energy dissipation rate. The quantity Qii(k) has a
relationship Qii(k)δ(k + k′) = 〈ũi(k)ũi(k′)〉, where ũi(k) is the Fourier transform
of the velocity fluctuation. In (2.19) two cutoff wavenumbers were introduced,
kc{= [(3CK/2)−1Kε−2/3 + k−2/3

d ]−3/2} in the energy-containing range and kd[=
(3CK/2)−3/4ν−3/4ε1/4] in the dissipation range. The cutoff at k = kc does not mean
that the energy in the energy-containing range is completely ignored but that the form
of the energy spectrum is approximated using a step function. In the statistical theory
of turbulence, Yoshizawa (1984) also used the same energy spectrum to appropriately
evaluate the eddy viscosity. To improve the model, other forms can be used such as the
von Kármán spectrum E(k) ∝ (k/kc)

4/[1 + (k/kc)
2]17/6(Hinze 1975). In Hamba (2022b),

(2.19) was adopted as the first approximation. Finally, we obtained a model expression for
κNL(r, τ ) given by (2.16) with (2.17)–(2.19).
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Model Eq. for G(r, τ ) Eqs. for Qii(r) Model constants

1 (2.17) (2.18) and (2.19) CK = 1.1, CωG = 0.57
2 (2.17) (3.25) and (3.20) Cs = 1.3, CωG = 0.46

Table 1. Equations for model expression and the values of model constants for the non-local eddy diffusivity
κNL(r, τ ) given by (2.16).

Two model constants CK and CωG were used in the above model; their values are listed
as model 1 in table 1. The value of CK = 1.1 is fairly small compared with a well-known
value of CK = 1.7 for the Kolmogorov constant (Kaneda 1986). A small value of CK
leads to a small value of kc appearing in (2.19), corresponding to a large value of the
integral length scale. As a result, the profile of Qii(r) for model 1 is wider than the DNS
value. However, such a wide profile was necessary to accurately predict the non-local eddy
diffusivity κNL(r, τ ) using (2.16) (Hamba 2022b). The profile of κNLyy(y − y′) obtained
from (2.15) and (2.16) with CK = 1.1 was plotted as a red line in figure 2. It agrees with
the DNS value plotted as a black line. Using this model, we predicted the turbulent scalar
flux that agrees with the DNS data (not shown here). In the present model, the energy
spectrum E(k) was used to express the velocity correlation appearing in (2.16). Because the
Fourier transform of velocity in the homogeneous directions was used to define the energy
spectrum, it is not clear whether the present model can be applied to inhomogeneous
turbulence.

3. Non-local eddy diffusivity based on scale-space energy density

In the non-local eddy diffusivity model described in § 2, the energy spectrum was
used to express the two-point velocity correlation in (2.16). In applying the model to
inhomogeneous turbulence, the two-point correlation must be expressed in terms of
quantities in physical space representing the scale-space energy instead of the energy
spectrum. A candidate is the scale-space energy density based on filtered velocities
(Hamba 2022a). The turbulent energy was decomposed into the scale-space energy density
even in the wall-normal direction of a channel flow. In this study we apply this formulation
to the two-point correlation required for the non-local eddy diffusivity in preparation for
developing a non-local model for inhomogeneous turbulence.

3.1. Formulation of scale-space quantities using filtered velocities
We introduce two filtered velocities using different filter functions (Hamba 2022a). The
first filtered velocity ūi(x, s) is an ordinary one with a Gaussian filter that is widely used
in LES. It is defined as

ūi(x, s) =
∫

dx′Ḡ(x − x′, s)ui(x′), (3.1)

where Ḡ(x, s) is the filter function given by

Ḡ(x, s) = 1

(2πs)3/2 exp
(

−x2

2s

)
. (3.2)

Note that instead of the filter width Δ, we adopt a quantity s with a dimension of the square
of the length in (3.1) and (3.2); hereafter, we refer s as the scale. The filtered velocity
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Non-local eddy diffusivity model based on energy density

ūi(x, s) represents the velocity with a scale equal to or greater than s. The velocity also
depends on time t, but it is omitted for simplicity in § 3.

By differentiating ūi(x, s) with respect to s, we can obtain a filtered velocity with a scale
equal to s. We define the second filtered velocity ûi(x, s) as

ûi(x, s) ≡ − ∂

∂s
ūi(x, s) =

∫
dx′Ĝ(x − x′, s)ui(x′), (3.3)

where

Ĝ(x, s) ≡ − ∂

∂s
Ḡ(x, s) = 1

(2πs)3/2

(
3
2s

− x2

2s2

)
exp

(
−x2

2s

)
. (3.4)

The original velocity ui(x) can be written in terms of ûi(x, s) as

ui(x) =
∫ ∞

0
dsûi(x, s). (3.5)

This equation indicates that the velocity ui(x) is decomposed into the modes ûi(x, s) in the
scale space.

Following that, we consider the two-point correlation of filtered velocities at the same
scale defined as

Q̄ii(x1, x2, s) = 〈ūi(x1, s)ūi(x2, s)〉. (3.6)

Another correlation can be defined as

Q̂ii(x1, x2, s) ≡ − ∂

∂s
Q̄ii(x1, x2, s) = 〈ûi(x1, s)ūi(x2, s)〉 + 〈ūi(x1, s)ûi(x2, s)〉. (3.7)

Using the second correlation Q̂ii(x1, x2, s), we can decompose the original velocity
correlation Qii(x1, x2)(= 〈ui(x1)ui(x2)〉) into modes in the scale space as follows:

Qii(x1, x2) =
∫ ∞

0
dsQ̂ii(x1, x2, s). (3.8)

In the case of homogeneous turbulence, (3.8) can be rewritten as

Qii(r) =
∫ ∞

0
dsQ̂ii(r, s), (3.9)

where r = x1 − x2. Therefore, when we know the value of the scale-space correlation
Q̂ii(r, s), we can evaluate the original correlation Qii(r) using (3.9) in place of (2.18) in
which the energy spectrum was used.

Applying the filter function to the original velocity correlation, we can express the first
and second correlations as

Q̄ii(r, s) =
∫

dr′Ḡ(r − r′, 2s)Qii(r′), (3.10)

Q̂ii(r, s) =
∫

dr′2Ĝ(r − r′, 2s)Qii(r′). (3.11)

These equations indicate that the correlation of filtered velocities can be obtained by
filtering the original velocity correlation. Equation (3.10) is similar to the relation between
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s
Figure 3. Profiles of the pre-multiplied energy density sQ̂ii(s) as functions of s for DNS and (3.20) with
Cs = 1.3 and 1.9. Symbols represent the locations of six scales at which two-point correlations are plotted in
figure 4.

the subgrid stress and the second-order structure function derived by Germano (2007).
Using the energy spectrum, the second correlation Q̂ii(r, s) is also written as

Q̂ii(r, s) =
∫

dkQii(k)k2 exp(−sk2) exp(ik · r) =
∫ ∞

0
dk2E(k)k2 exp(−sk2)

sin(kr)
kr

.

(3.12)
Comparing (3.12) with (2.18), Q̂ii(r, s) corresponds to a band-pass filtered spectrum
E(k)k2 exp(−sk2) in the wavenumber space.

3.2. Energy density in scale space

To examine the behaviour of the scale-space correlation Q̂ii(r, s) and its relation to the
two-point correlation Qii(r), we first treat the case of r = 0. The one-point velocity
correlation represents the turbulent kinetic energy, Qii(0) = 〈u2

i 〉, and (3.9) is rewritten
as

〈u2
i 〉 =

∫ ∞

0
dsQ̂ii(s), (3.13)

where Q̂ii(s)(= Q̂ii(0, s)) is the energy density in the scale space. Particularly, 〈u2
i 〉 is twice

the turbulent energy, but we call it the turbulent energy for simplicity. Equation (3.13)
indicates that the turbulent energy is decomposed into the scale-space energy density
Q̂ii(s). Figure 3 shows profiles of the pre-multiplied energy density sQ̂ii(s) as functions
of s. The black line represents the energy density obtained from the DNS of homogeneous
isotropic turbulence described in § 2.

The profile of the energy density Q̂ii(s) can be understood as follows. In the case of
r = 0, (3.12) is rewritten as

Q̂ii(s) =
∫ ∞

0
dk2E(k)k2 exp(−sk2). (3.14)
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Non-local eddy diffusivity model based on energy density

By substituting the Kolmogorov energy spectrum E(K) = CKε2/3k−5/3 into (3.14), we can
obtain the inertial-range form of Q̂ii(s) as

Q̂ii(s) =
∫ ∞

0
dk2CKε2/3k−5/3k2 exp (−sk2) = Γ

(2
3

)
CKε2/3s−2/3, (3.15)

where Γ (x) is the gamma function and Γ (2/3) = 1.354. Therefore, the energy density
Q̂ii(s) is expected to be proportional to s−2/3 in the inertial range. The pre-multiplied
energy density is then proportional to s1/3.

As the scale s decreases to zero in the dissipation range, the energy density Q̂ii(s) tends
to a constant value rather than increasing infinitely. By substituting s = 0 into (3.14), we
obtain

Q̂ii(0) =
∫ ∞

0
dk2k2E(k) = ν−1ε. (3.16)

The energy density Q̂ii(0) is closely related to the energy dissipation ε. Conversely, at the
scale s much greater than the square of the integral length scale, the energy density Q̂ii(s)
shows a different behaviour than that in the inertial range. In the case of r = 0, (3.11) is
rewritten as

Q̂ii(s) =
∫

dr2Ĝ(r, 2s)Qii(r). (3.17)

Approximately, the original velocity correlation Qii(r) has non-zero values at |r| < L and
tends to zero at |r|  L, where L is the integral length scale. If s  L2 and s  r2, the
filter function defined as (3.4) can be approximated as

Ĝ(r, s) ∼= 1

(2πs)3/2
3
2s

, (3.18)

in the region of the non-zero value of Qii(r) in (3.17). Because (3.18) does not depend on
r, we have

Q̂ii(s) = 2
1

(4πs)3/2
3
4s

∫
drQii(r) ∝ s−5/2. (3.19)

The energy density Q̂ii(s) is proportional to s−5/2 at the scale s much greater than L2.
Considering the above behaviour of Q̂ii(s), we can assume a simple form of Q̂ii(s) as

Q̂ii(s) =

⎧⎪⎪⎨
⎪⎪⎩

ν−1ε, s < sd,

Csε
2/3s−2/3, sd ≤ s ≤ sc,

Csε
2/3s11/6

c s−5/2, s > sc,

(3.20)

where Cs is a model constant and two interface scales are introduced, sd(=
Cs

3/2ν3/2ε−1/2) in the dissipation range and sc[= (6/11)3Cs
−3K3ε−2(1 + Cs

3/2ν1/2K−1

ε1/2)3] in the energy-containing range. The scale sd is obtained by connecting the forms in
the two ranges s < sd and sd ≤ s ≤ sc, whereas the scale sc is determined so that (3.13) can
be satisfied. The model constant Cs can be estimated when not only the turbulent energy
K but also the integral length scale L are known. It is given by

Cs = ( 9
10

)2/3 6
11π1/3Kε−2/3L−2/3, (3.21)

(see Appendix B for details). In the present DNS where K = 0.50, ε = 0.19 and L = 0.47,
it is estimated as Cs = 1.9. The profile of the pre-multiplied energy density sQ̂ii(s) given
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by (3.20) with Cs = 1.9 is plotted as a red line in figure 3. It reasonably agrees with the
DNS value plotted as a black line. Therefore, (3.20) can be a simple form of the scale-space
energy density corresponding to the Kolmogorov energy spectrum given by (2.19).

3.3. Two-point velocity correlation in scale space
The energy spectrum E(k) and the two-point correlation Qii(r) have equivalent
information; we can evaluate Qii(r) using (2.18) when we know the value of E(k). The
simple form of E(k) given by (2.19) constitutes a model for Qii(r). In contrast, we cannot
evaluate Qii(r) even when we know the value of the energy density Q̂ii(s). Rather than
Q̂ii(s), the scale-space correlation Q̂ii(r, s) is necessary to determine Qii(r) using (3.9). In
§ 3.3 we try to relate Q̂ii(r, s) to Q̂ii(s) to determine Qii(r) by Q̂ii(s).

We obtain the relationship between Q̂ii(r, s) and Q̂ii(s) with the help of E(k). The
scale-space correlation Q̂ii(r, s) is related to E(k) as shown in (3.12). The function
k2 exp(−sk2) appearing in (3.12) plays a role of a band-pass filter in the wavenumber
space and it shows a maximum value at k = s−1/2. Assuming the energy spectrum E(k)
changes slowly in the wavenumber region of the band-pass filter, we consider the Taylor
expansion of E(k) around k = s−1/2 as follows:

E(k) = E(s−1/2) + dE
dk

∣∣∣∣
k=s−1/2

(k − s−1/2) + 1
2

d2E
dk2

∣∣∣∣
k=s−1/2

(k − s−1/2)
2 + · · · . (3.22)

Substituting the first term in (3.22) into (3.12), we obtain

Q̂ii(r, s) =
∫ ∞

0
dk2E(s−1/2)k2 exp(−sk2)

sin(kr)
kr

= π1/2

2s3/2 E(s−1/2) exp
(

− r2

4s

)
.

(3.23)
This expression suggests that the scale-space correlation Q̂ii(r, s) is proportional to
exp(−r2/4s). The profile of Q̂ii(r, s) at scale s shows a length scale of s1/2. Considering
the condition Q̂ii(0, s) = Q̂ii(s), we then propose an approximate relationship between
Q̂ii(r, s) and Q̂ii(s) as follows:

Q̂ii(r, s) = Q̂ii(s) exp
(

− r2

4s

)
. (3.24)

Substituting (3.24) into (3.9), we obtain

Qii(r) =
∫ ∞

0
dsQ̂ii(s) exp

(
− r2

4s

)
. (3.25)

Therefore, using (3.25) we can determine Qii(r) when we know the value of Q̂ii(s),
although (3.25) is an approximate expression. Note that the value of E(k) is not necessary
once we obtain the relationship (3.25).

Figure 4(a) shows the profiles of Q̂ii(r, s) as functions of r/L at six scales varying
from s = 0.00094 to 0.96. The locations of the six scales are plotted as symbols in
figure 3. In figure 4(a) each profile shows a peak value at r/L = 0 and decays to zero
as r/L increases. As s increases, the peak value decreases and the profile becomes wider.
The proposed relationship given by (3.24) suggests that the separation r can be scaled
by s1/2. Figure 4(b) shows the profiles of Q̂ii(r, s) normalised by Q̂ii(s) as functions of
r/s1/2 at six scales. If the relationship given by (3.24) holds exactly, the profiles must be
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Figure 4. Profiles of two-point correlations at six scales in the scale space: (a) Q̂ii(r, s) as functions of r/L
and (b) Q̂ii(r, s)/Q̂jj(s) as functions of r/s1/2. The red line denotes the function exp(−r2/4s).

self-similar and agree with the function exp(−r2/4s), which is plotted as a red line in
figure 4(b). Despite the self-similarity not holding very well, the function approximately
reproduces overall profiles decaying as r/s1/2 increases. In the case of s = 0.060, the
profile of Q̂ii(r, s)/Q̂jj(s) agrees well with the function. Because the scale of s = 0.060
corresponds to the energy-containing range as shown in figure 3 and E(k) is expected
not to change very much, the first term in (3.22) can be a good approximation in the
integral in (3.12). The deviation of the other profiles from the function can be understood
by considering the effect of the second term in (3.22) on the integral in (3.12). In the
case of three scales less than s = 0.060, Q̂ii(r, s)/Q̂jj(s) shows a wide profile compared
with exp(−r2/4s). At corresponding higher wavenumbers in the inertial range, dE/dk
is negative; owing to the second term in (3.22) the lower wavenumber part of E(k)
at k < s−1/2 contributes to the integral more than the higher wavenumber part does,
which accounts for the wide profiles of Q̂ii(r, s)/Q̂jj(s). In contrast, in the case of two
scales greater than s = 0.060, Q̂ii(r, s)/Q̂jj(s) shows a narrow profile compared with
exp(−r2/4s). At corresponding very low wavenumbers, dE/dk is positive; the higher
wavenumber part of E(k) at k > s−1/2 contributes to the integral more, which accounts
for the narrow profiles of Q̂ii(r, s)/Q̂jj(s).

Figure 5 shows the profiles of the two-point velocity correlation Qii(r) as functions
of r/L. The black line represents the correlation obtained from the DNS. The profile
evaluated from (3.25) and (3.20) with Cs = 1.9 is plotted as a red line; it agrees fairly
well with the DNS value. Because the energy density Q̂ii(s) and the function exp(−r2/4s)
are both positive, the model given by (3.25) gives a positive value; it cannot reproduce
a small negative value of Qii(r) around r/L = 3. To express Qii(r) more accurately, we
must incorporate the second term in (3.22) into (3.12). However, our objective is not
very accurate modelling of Qii(r) but modelling of the non-local eddy diffusivity that
was suggested to be non-negative in our previous analysis. We then adopt an approximate
relationship given by (3.25) in the present study.

3.4. Modelling the non-local eddy diffusivity

In § 3.3 the velocity correlation Qii(r) was expressed in terms of the energy density Q̂ii(s)
in (3.25), and a simple form of Q̂ii(s) was proposed as (3.20). Therefore, we obtained
another model expression for κNL(r, τ ) given by (2.16) with (2.17), (3.20) and (3.25), for
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Figure 5. Profiles of two-point correlation Qii(r) as functions of r/L for DNS and the model given by (3.25)
and (3.20) with Cs = 1.3 and 1.9.

which the scale-space energy density was used instead of the energy spectrum. Despite
(3.20) with Cs = 1.9 giving a good profile of Qii(r) in figure 5, it leads to a narrow profile
of κNLyy(y − y′) compared with the DNS value (not shown here). This situation is similar
to the previous model with the energy spectrum; the profile of κNLyy(y − y′) obtained from
the model with CK = 1.7 is too narrow and we needed to change the value to CK = 1.1
to obtain a good profile (Hamba 2022b). Therefore, in this study, we also optimised the
model constants to ensure that the profile of κNLyy(y − y′) agrees with the DNS value. The
optimised values are Cs = 1.3 and CωG = 0.46, which are listed as model 2 in table 1. The
profiles of Q̂ii(s) and Qii(r) for Cs = 1.3 are shown as blue dotted lines in figures 3 and 5,
respectively. As Cs decreases from 1.9 to 1.3, the scale sc in the energy-containing range
appearing in (3.20), which corresponds to the peak location of sQ̂ii(s), increases as shown
in figure 3. The profile of Qii(r) then becomes wider as shown in figure 5. Therefore, the
profile of κNLyy(y − y′) obtained from model 2 plotted as a blue dotted line agrees with the
DNS value in figure 2.

The previous and new models listed in table 1 gave good profiles of the one-dimensional
non-local eddy diffusivity κNLyy(y − y′) in figure 2. Furthermore, we also examine the
three-dimensional non-local eddy diffusivity κNL(r) and κNL(r, τ ). Figure 6 shows the
profiles of r2κNL(r) as functions of r/L. As r/L increases, the profiles of models 1 and 2
decay a little slowly compared with the DNS value, and the profile of model 2 is better than
that of model 1. By substituting (2.17) into (2.16) and calculating the integral in (2.14), we
obtain

κNL(r) = 1
12π3/2CωGu0r2 Qii(r). (3.26)

Therefore, the difference in r2κNL(r) between the two models is attributed to the difference
in CωG and Qii(r); its peak value at r/L = 0 is inversely proportional to CωG and the width
of the profile depends on Qii(r).

The difference between the two models is clearly seen in the profile of κNL(r, τ ).
Figure 7 shows the profiles of κNL(r, τ ) as functions of r/L at τ = 0.2, 0.4, 0.6 and 0.8. The
four time differences are short compared with the turbulent time scale T(= K/ε) = 2.7 in
the present DNS. The black lines represent the DNS values; the profile of κNLii(ry, τ ) was
first obtained by averaging over the x–z plane and 120 samples, and the profile of κNL(r, τ )

was evaluated using the same relationship as (2.15). As the time difference τ increased, the
peak value at r/L = 0 decayed rapidly and the width increased gradually. This behaviour
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Figure 6. Profiles of r2κNL(r) as functions of r/L for DNS and models 1 and 2.
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Figure 7. Profiles of κNL(r, τ ) as functions of r/L for DNS and models 1 and 2 at (a) τ = 0.2, (b) τ = 0.4,
(c) τ = 0.6 and (d) τ = 0.8.

implies that the spatial region in which the mean scalar gradient non-locally affects
the scalar flux is highly narrow for small τ and becomes wider as τ increases (Hamba
2022b). The profiles of model 1 plotted as red lines show small values, whereas those of
model 2 plotted as blue dotted lines agree well with the DNS values. Therefore, model 2
is more appropriate than model 1 for reproducing the temporal behaviour of κNL(r, τ ).
This difference between the two models could be attributed to the difference in the basis
function in the expression for Qii(r). For model 1, the correlation Qii(r) is decomposed
into modes with sin(kr)/kr in (2.18) whereas, for model 2, it is decomposed into modes
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with exp(−r2/4s) in (3.25). The basis function exp(−r2/4s) is similar to the filter function
Ḡ(x, s) given by (3.2), which can be interpreted as a solution of the diffusion equation if
the scale s is considered as time. Because the temporal behaviour of κNL(r, τ ) is closely
related to the turbulent diffusion process, model 2 with the basis function exp(−r2/4s)
can be more appropriate for reproducing such a diffusion process (see also Appendix C).

Moreover, the new model has an advantage over the previous model in its applicability
to inhomogeneous turbulence. The Fourier transform of velocity in the homogeneous
directions was used to define the energy spectrum E(k); it is not clear whether the previous
model with the energy spectrum can be applied to inhomogeneous turbulence. In contrast,
the scale-space energy density Q̂ii(s) was already examined in a turbulent channel flow,
and the turbulent energy was adequately decomposed in the scale space even in the
inhomogeneous wall-normal direction (Hamba 2022a). This was performed by extending
the filter function Ḡ(x, s) to the solution of the diffusion equation. The filter function given
by (3.2) is the solution of the following equation in infinite domain:

∂

∂s
Ḡ(x, s) = 1

2
∂2

∂x2
i

Ḡ(x, s). (3.27)

For wall-bounded turbulence, we can redefine the filter function as the solution of the
above equation with non-slip boundary conditions. Therefore, the new model with the
scale-space energy density can also be applied to wall-bounded turbulence in future
studies.

Several difficulties must be overcome to extend the present approach to actual
wall-bounded turbulent flows. First, the anisotropy of turbulence should be taken into
account properly. The expression for the non-local eddy diffusivity κNLij(r, τ ) given by
(2.13) can be modified using the separation ri and the mean shear ∂Ui/∂xj. The profiles
of G(r, τ ) and Q(r) are anisotropic with respect to r; they are expected to be wider in
the streamwise direction than in the wall-normal direction. For example, the exponential
factor of G(r, τ ) in (2.17) can be replaced by its general form exp[−R−1

ij rirj/4(C′
ωGτ)2],

where R−1
ij is the cofactor of the Reynolds stress or of its approximation (Roberts 1961).

Second, the model expressions must be modified carefully in the near-wall region. The
form of the scale-space energy density Q̂ii(s) given by (3.20) is valid for turbulence at
high Reynolds numbers. Because the inertial range is absent near the wall, the profile of
Q̂ii(s) should be modified to incorporate the low-Reynolds-number effect. Third, the model
expressions need to be simplified for actual simulations of inhomogeneous turbulence. The
non-local model involves space and time integrals, and it must be useful as an a priori test
for speculating on the assumptions and limitations of conventional local models. However,
it may be too complex for actual simulations, and an a posteriori test is necessary. One
candidate for simplification is the Taylor expansion of the non-local expression with
respect to the mean scalar gradient. For example, expanding ∂Θ/∂y′ at y′ = y in (2.8)
and integrating each term with respect to y′, we have

〈uyθ〉NL(y) = −κ
(1)
Lyy(y)

∂Θ

∂y
+ κ

(2)
Lyy(y)

∂2Θ

∂y2 + κ
(3)
Lyy(y)

∂3Θ

∂y3 + · · · , (3.28)

where the coefficients κ
(n)
Lyy(y) are obtained from the weighted integral of the non-local

eddy diffusivity (Hamba 2004). The order of truncation depends on the importance of the
non-local effect of actual turbulent flows.

In this study we introduced the scale-space energy density to improve the non-local
diffusivity of the Reynolds-averaged model. The energy density Q̂ii(s) was treated at
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Figure 8. Contour plots of κNLyy(x − x′, y, y′, τ ) for turbulent channel flow obtained from the DNS in the x–y
plane for y′ = −0.7 at (a) τ = 0.025, (b) τ = 0.05 and (c) τ = 0.075. The contour values range from 0.2 with
an increment of 1.6.

all scales, from the dissipation range sd to the energy-containing range sc in (3.20). By
replacing sc with the scale Δ2, where Δ is the grid width, we can also try to formulate an
LES model (Yoshizawa 1984). In this case, the dissipation rate ε included in (3.20) must be
appropriately evaluated. In the region apart from the wall, the modelled subgrid dissipation
can be used because the resolved dissipation is assumed to be almost negligible. However,
in the near-wall region the resolved dissipation is as large as the modelled dissipation and
can affect the form of the energy density. Recently, using the filtered velocity, Cimarelli,
Abbà & Germano (2019) proposed a new formalism for the subgrid stress and dissipation.
Based on the relation between the subgrid stress and the second-order structure function
given by Germano (2007), they proposed a new subgrid model for the tensorial eddy
viscosity and diffusivity. It is also interesting to apply the non-local formulation to the
tensorial eddy diffusivity.

As an attempt to extend the model to inhomogeneous turbulence, we show a preliminary
result obtained from the DNS of a turbulent channel flow at Reτ = 180. The velocity
fluctuations are statistically steady, homogeneous in the streamwise (x) and spanwise
(z) directions and inhomogeneous in the wall-normal (y) direction. Figure 8 shows
two-dimensional contour plots of the non-local eddy diffusivity given by

κNLyy(x − x′, y, y′, τ ) =
∫

dz κNLyy(x − x′, y, y′, z − z′, τ ), (3.29)

directly evaluated by the DNS in the x–y plane for y′ = −0.7 (y′+ = 54) at τ = 0.025,
0.05 and 0.075. The domain in the y direction at −1 ≤ y ≤ 0 corresponds to the bottom
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half of the channel and the turbulent time scale is T(= K/ε) = 0.34 at y = −0.7. As τ

increased, the contours were shifted downstream by the mean velocity Ux and their peak
value decayed quickly. A model for the non-local eddy diffusivity can be written as

κNLyy(x − x′, y, y′, z − z′, τ ) = G(x − x′, y, y′, z − z′, τ )Qyy(x − x′, y, y′, z − z′). (3.30)

Using the Reynolds stress Rij(= 〈u′
iu

′
j〉), the two-point correlation Qyy is expressed as

Qyy(x − x′, y, y′, z − z′) = Ryy(y′)
Rii(y′)

Qjj(rx, ry, rz), (3.31)

where rx = x − x′ − Ux(y′)τ , ry = y − y′ and rz = z − z′. Here Qjj(r) is given by (3.25)
and (3.20) with K(y′) and ε(y′). The time-dependent part G is modified as

G(x − x′, y, y′, z − z′, τ ) = 1
(12πC2

ωGτ 2)3/2 det(R)1/2
exp

(
−

R−1
ij rirj

12C2
ωGτ 2

)
, (3.32)

where

det(R) = (RxxRyy − R2
xy)Rzz, (3.33)

R−1
ij rirj = 1

RxxRyy − R2
xy

(Ryyr2
x − 2Rxyrxry + Rxxr2

y ) + 1
Rzz

r2
z . (3.34)

The effects of the mean flow convection and turbulence anisotropy were incorporated
in the above model; however, the wall effect on the correlation given by (3.25) has
not yet been considered. Figure 9 shows contour plots of the non-local eddy diffusivity
given by (3.29) obtained from the model. The model constants were set to Cs = 1.3 and
CωG = 0.69. The contours were shifted downstream adequately by the mean velocity.
Because of the turbulence anisotropy, the contours were elongated in the streamwise
direction and slightly tilted towards the bottom wall at y = −1. Their overall profiles agree
with those obtained from the DNS plotted in figure 8. Further improvement of the model
by considering the wall effect will be reported in a future work.

4. Conclusions

This study proposed a new model for the non-local eddy diffusivity using the turbulent
energy density in the scale space. In the previous model the energy spectrum was used to
express the two-point velocity correlation required for non-local eddy diffusivity. However,
as the Fourier transform of velocity in the homogeneous directions was used to define the
energy spectrum, it is not clear whether this model can be applied to inhomogeneous
turbulence. Therefore, this study used the scale-space energy density to express the
two-point velocity correlation instead of the energy spectrum for developing a non-local
model for inhomogeneous turbulence.

The scale-space energy density was based on the filtered velocities; using the filter
functions, the turbulent kinetic energy and the two-point velocity correlation were
decomposed into modes in the scale space. The profile of the scale-space energy
density was examined using the DNS of homogeneous isotropic turbulence to propose
its simple form corresponding to the Kolmogorov energy spectrum. By considering
the Taylor expansion of the energy spectrum, we obtained an approximate relationship
between the scale-space velocity correlation and the scale-space energy density. We
obtained an expression for the two-point velocity correlation using the scale-space energy
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Figure 9. Contour plots of κNLyy(x − x′, y, y′, τ ) for turbulent channel flow obtained from the model in the x–y
plane for y′ = −0.7 at (a) τ = 0.025, (b) τ = 0.05 and (c) τ = 0.075. The contour values range from 0.2 with
an increment of 1.6.

density, required to improve the non-local eddy diffusivity model. The profile of the
one-dimensional non-local eddy diffusivity obtained from the new model agrees with the
DNS value. The temporal behaviour of the three-dimensional non-local eddy diffusivity
of the new model was compared with that of the previous model. The results show that the
profiles of the new model agreed well with the DNS values and are better than those of the
previous model. Therefore, the new model based on the scale-space energy density is more
appropriate than the previous model with the energy spectrum. Because the scale-space
energy density was already examined in a turbulent channel flow and the turbulent energy
was adequately decomposed in the scale space in the wall-normal direction, the new model
can also be applied to wall-bounded turbulence in future studies. It must be useful for
gaining insight into turbulent scalar transport in inhomogeneous turbulence.
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Appendix A. Green’s function for scalar fluctuation

The transport equation for the scalar fluctuation is given by

Dθ

Dt
+ ∂

∂xi
(uiθ − 〈uiθ〉) − κ

∂2θ

∂xi∂xi
= −ui

∂Θ

∂xi
, (A1)
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where D/Dt = ∂/∂t + Ui∂/∂xi and κ is the molecular diffusivity of the scalar. By
considering the right-hand side of (A1) as a source term for θ , we introduce the Green’s
function gi(x, t; x′, t′) satisfying the equation

D
Dt

gi(x, t; x′, t′) + ∂

∂xj
(uj(x, t)gi(x, t; x′, t′) − 〈ujgi〉) − κ

∂2

∂xj∂xj
gi(x, t; x′, t′)

= ui(x′, t′)δ(x − x′)δ(t − t′), (A2)

where δ(x) and δ(t) are three- and one-dimensional Dirac delta functions, respectively.
When solving (A2) using the finite difference scheme, the delta function δ(x − x′) is
expressed as δi,i′/x, where i is the grid number in the x direction and x is the grid width.
Note that the velocity fluctuation ui(x′, t′) is included on the right-hand side of (A2). The
Green’s function gi(x, t; x′, t′) represents a scalar field at (x, t) associated with a point
source at (x′, t′) whose value is proportional to ui(x′, t′). Using the Green’s function, a
formal solution of (A1) can be written as

θ(x, t) = −
∫

dx′
∫ t

−∞
dt′gj(x, t; x′, t′)

∂

∂x′
j
Θ(x′, t′). (A3)

By multiplying it by ui(x, t) and taking the ensemble averaging, we obtain the scalar flux
〈uiθ〉 given by (2.3) with (2.4).

Appendix B. Integral length scale and scale-space energy density

The integral length scale is defined as

L =
∫ ∞

0
drf (r), (B1)

where f (r) is the non-dimensional longitudinal velocity correlation (Pope 2000). The
integral of Qii(r) can be written as∫ ∞

0
drQii(r) =

∫ ∞

0
dru2

1( f (r) + 2g(r)) = 2u2
1

∫ ∞

0
drf (r) = 4

3 KL, (B2)

where u2
1(≡ Q11(0)) = 2

3 K and g(r) is the non-dimensional lateral velocity correlation.
Using the relationship given by (3.25), we can also express the integral in terms of the
scale-space energy density as

∫ ∞

0
drQii(r) =

∫ ∞

0
dr
∫ ∞

0
dsQ̂ii(s) exp

(
− r2

4s

)
= π1/2

∫ ∞

0
dss1/2Q̂ii(s)

∼= π1/2
∫ sc

0
dss1/2Csε

2/3s−2/3 + π1/2
∫ ∞

sc

dss1/2Csε
2/3s11/6

c s−5/2

= 6
5

(
6
11

)3/2

π1/2C−3/2
s K5/2ε−1, (B3)

where the form of Q̂ii(s) given by (3.20) with sd = 0 is used. By equating (B2) with (B3),
we obtain an expression for Cs given by (3.21) in § 3.2.
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Appendix C. Non-local eddy diffusivity based on two-time velocity correlation

In this study, considering its application to inhomogeneous turbulence, we adopt a model
expression for κNL(r, τ ) given by (2.16) using the one-time velocity correlation Qii(r).
The statistical theory of turbulence originally suggested the following expression using
the two-time velocity correlation Qii(r, τ )(= 〈ui(x, t)ui(x′, t′)〉):

κNL(r, τ ) = G(r, τ )Q(r, τ ). (C1)

Here Q(r, τ ) = Qii(r, τ )/3. The two-time correlation can be expressed in terms of the
one-time correlation as

Qii(r, τ ) =
∫

dr′GQ(r − r′, τ )Qii(r′), (C2)

where

GQ(r, τ ) = 1

(4π)3/2(CωQu0τ)3 exp

[
− r2

4(CωQu0τ)2

]
, (C3)

and CωQ is a model constant (Hamba 2022b). Because this formulation contains one more
spatial integral and one more model constant compared with (2.16), it is too complex as
a model applied to inhomogeneous turbulence. Nevertheless, it can be examined from a
physical point of view.

Expressions (C2) and (C3) for the two-time correlation has a similar structure to (3.10)
and (3.2) for the correlation of filtered velocities. We can formally express GQ(r, τ ) and
Qii(r, τ ) as follows:

GQ(r, τ ) = Ḡ(r, 2(CωQu0τ)2), (C4)

Qii(r, τ ) =
∫

dr′Ḡ(r − r′, 2(CωQu0τ)2)Qii(r′) = Q̄ii(r, (CωQu0τ)2). (C5)

We can also express G(r, τ ) given by (2.17) as

G(r, τ ) = Ḡ(r, 2(CωGu0τ)2). (C6)

The time-dependent parts GQ(r, τ ) and G(r, τ ) correspond to the filter function Ḡ(x, s),
whereas the two-time velocity correlation Qii(r, τ ) corresponds to the filtered velocity
correlation Q̄ii(r, s) at an appropriate scale s. Therefore, the non-local eddy diffusivity
κNL(r, τ ) given by (C1) can be written as

κNL(r, τ ) = Ḡ(r, 2(CωGu0τ)2)1
3 Q̄ii(r, (CωQu0τ)2). (C7)

The non-local eddy diffusivity κNL(r) can also be given by

κNL(r) =
∫ ∞

0
dτκNL(r, τ ) =

∫ ∞

0
dτ 1

3 Ḡ(r, 2(CωGu0τ)2)Q̄ii(r, (CωQu0τ)2)

=
∫ ∞

0
ds 1

6 u−1
0 s−1/2Ḡ(r, 2C2

ωGs)Q̄ii(r, C2
ωQs), (C8)

where (u0τ)2 is replaced by s. The non-local eddy diffusivity was expressed in terms of the
filtered velocity correlation because both quantities are closely related to some diffusion
process (Hamba 2022a,b). These results suggest that the formulation with the scale-space
energy density is adequate for modelling the non-local eddy diffusivity.
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