ON THE CLIFFORD COLLINEATION, TRANSFORM
AND SIMILARITY GROUPS (IV)

AN APPLICATION TO QUADRATIC FORMS

G. E. WALL

To RicuarD BrAUER on his 60th birthday

1. Introduction

E. S. Barnes and I recently” ‘constructed a series of positive quadratic
forms fv in N =2" variables (=1, 2, ...) with relative minima of order N %
for large N. I continue this investigation by determining the minimal vectors
of f» and showing that, for V= 8, its group of automorphs is the Clifford group?
€.71(2")(§3). This suggests a generalization. Replacing %.77(2") by
.7 (p"), where p is an odd prime, I derive a new series of positive forms in
N=(p—1)p" variables (§4). The relative minima are again of order N T (p
fixed, N— o), the “best” forms being those for p =3,5. All forms are eutactic
though only those for p =35 are extreme.

bThe methods used here raise several questions. Firstly, the forms con-
structed have fairly big relative minima while the representations of the sym-
plectic group Sp(2#n, p) associated with €.7( p") are of smallest possible degree
(CGI, theorem 10). Are these two facts directly related? Secondly, it is natural
to regard the lattice introduced in §4.2 as a commutative algebra. Is there a

simple direct relation between this algebra and the automorph group €.7(p")?

2. Preliminaries

The notation used in this paper is a compromise between that of EF and
that of CGI, CGII. See in particular §2.1-2.3 below.

2.1. Vector spaces and groups over GF(p).

Throughout this paper, p stands for a fixed prime and # for a fixed natural

Received Nov. 22, 1961.
1 Cf. [1]. This paper is referred to as EF.
2) Cf. [2], [3]. These papers are referred to as CGI, CGIL
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number. V= V,(p) denotes the vector space of all row vectors a= (ay, . ..,
an) over the Galois field GF(p). V, stands generically for an 7-dimensional
subspace of V, C, for a coset a+ V.

It is easily proved that each function f(a) defined on V and with values
in GF(p) coincides in value with a unique polynomial P(as, . . . , as) of degree
<p in each a;. Such polynomials will be called standard. The degree of f is

defined as the total degree of P.

Let p=2. Consider the 2 n-dimensional quadratic form ¢(2) = Elhbm over
GF(2), where 1 is the row vector () (i=1,..., 2n). The (2#n-rowed)

matrices® T which leave ¢(1) invariant, ie., ¢(1) = ¢(AT"), form the orthogonal
group 0:(2m, 2). Let

T—( ) (P Q R, S nXxXn matrices)
y i i
(2. 1. 1) R S

dr =rank R.

The T such that d; is even form the rotation subgroup Of (2n, 2).

Let p>2. Consider the 2 n-dimensional alternate bilinear form
fQ, w) = Ell(lmmi — ttiknsi)

over GF(p). The matrices T which leave f(1, u) invariant, ie., f(1, u)
=f(AT", uT') form the symplectic group Sp(2n, p). The notation (2.1.1) will
also be used for the elements of Sp.

2.2. Vector spaces and groups over the cyclotomic field P.

Let R, denote the rational field, P the p-th cyclotomic field: P= Ry(w),
where v =exp(2ni/p). Then E= E;» denotes a p"-dimensional vector space
over P. We choose a fixed basis of E, indexing its p” members €, with the p”
elements @ of V. We use the notations

X = (xa) = Exaea

for the elements of E.
The scalar product on E is defined by

3 The transpose of a matrix T in denoted by T".
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(xa) ¢ (yu) = E faym
Li=ie

The terms unitary (p>2), orthogonal (p =2) are interpreted accordingly.

Let p =2. The Clifford transform group ©.71(2")* is a group of orthogonal
transformations on E. There exists a homomorphism of %.77(2”) onto
Of (2 m, 2) such that each original of T Of has the form”

-§dr 18
(2.2. 1) Xea=2 2 2( —1) ey,

BeEC

where C is a coset of dimension dr, / a function of degree <2. For each
function g(a) of degree <2, non-singular #» X n matrix D over GF(2) and vector

te V, the linear transformation®
(2.2.2) Yea=(—1)5 e,pt
belongs to ¥.771.

Let p>2. The Clifford transform group CT(p") was defined in CGI §3.1.
We define .7 (p") as the cc_)mmutatbr group of CT(p") when p">3, as the
group {Y, Z}%¥ in CGI Appendix, section (4), when »"=3. %.7(»") is a
group of unitary transformations on E. There exists a homomorphism of
% .7 (p") onto Sp(2m, p) such that each original of T'€ Sp has the form”

(2.2.3) Xeam 20745 @ ey,

BEC

where C is a coset of dimension dr, f a function of degree <2 and
(2.2.4) 0= 2"

For each function g(a) of degree <2, non-singular n X # matrix D over GF(p)

and vector t € V, the linear transformation®
(2.25) Yea = wg(“)eamt
belongs to %.7.

Y Defined in CGII §3.3., for n=3 only, as the commutator group of CT(2"). A
universal definition is that ¥ 97 (2») consists of the elements in CGII (5.10) correspond-
ing to the elements T of O] (2n, 2).

5) See CGII (510) and (5.5).

) These are the elements in CGII (5.10) corresponding to dr=0.

 See CGI (3.1.1) and (4.1.6).

% These are the elements of ¥ _Z corresponding to the T with dr=0.
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2.3. Lattices. Let 2 denote the ring of all integers in P. We define an 2-

lattice as the set of all integral linear combinations
Zea Wa ((a€2)

of p” linearly independent vectors u.. In particular, I'=TIp denotes the £2-

lattice of all integral vectors
Slxcea  (%E9).

If 4y, A, are Q-lattices and 4, C 4, the grouptheoretical index |A:: 4| is
finite. In particular, if A(%0) € 2, we have

[r:arl = NP,
where N(4) is the norm of 1 in P relative to R,. For, if x, ye I then x=y
(mod AI") if, and only if, e =¥, (mod 2) for each ac V.
Let 4 be an Q-lattice such that AI'C ACT, where A(x0)= 2. We define
the dual A' of A modulo 1 as follows: A’ is the set of x & Esuch that x* -y A2

for all ye 4. Since A'C ACT, we have AI'C A'C . The argument of EF §2
shows that A' is an @-lattice, that 4 is the dual of A’ modulo 1 and that

(2.3.1) [T Al A =|T: 2" = NQ)JP".

It is a well known theorem that every finitely generated module over a
principal ideal ring has a basis. The following variant is proved in exactly the

same way.

LemMma 2.3.1.  Let A(x0) € 2 and suppose that every divisor of the principal
ideal with gemerator 1 is principal. Then every Q-module M such that A'CMCT”

is an Q-lattice.

2.4. Criteria for quadratic functions on Va(2).
In the present section, p =2 and f(a) is a function defined on V with values
in GF(2). If WCV, we write

(2.4.1) Wi =3 (=17,

aEs i

As stated in §2.1., f has a unique expression in the form

(2.4.2) fla) = Dasas (¢s€ GF(2), as= I ai),
3 €8

where summation is over the subsets (including the empty set) of 1,2, ..., n. .
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We note that, since a® = « on GF(2), the degree of f(a) is <2 if, and only if,
the function g(a) =f(a) +f(0) is a quadratic form.

LemMa 2.4.1. The degree of f(a) is <2 if, and only if, f(a) has an even
number of zeros in every V,C V.

Proof. The following conditions for a scalar-valued function h(u) on a
vector space to be a quadratic form are well known:

(i) the function k(u, v) = h(u+v) — k(u) — k(v) is bilinear, and

(i) rQAu) = 2 Rp(u).

It follows that % is a quadratic form if, and only if, its restriction to every
subspace of dimension <3 is a quadratic form. It is therefore sufficient to
prove our lemma for n<3. For n<2, the lemma is obvious from (2.4.2).
For n=3, it follows from the formula >) f(a) = au,z,3).
acsy
CoroLLARY. The degree of f(a) is <2 if, and only if,
(2.4.3) {Vs; f>=0 (mod 4) for every VaC V.

We suppose from now on that the degree of f(a) is <2. Let g(a) =f(a)
+f(0) be the corresponding quadratic form. The polar form of g is the
bilinear form

Q(a, B) =g(a+ B) + qla) +q(B).

Since @ is alternate (Q(a, a) =0) its rank is even, say 2d. We call d the

reduced rank of f.

LemMmA 2.4.2. Suppose that f(a) has degree <2, reduced rank < D. Then,
for each Vi CV (0<k<n),

(2.4.4) {Vi; £>=0 (mod 2°),
where” t= max([%(kﬁ- 1)], k—D)-

Proof. Let d be the reduced rank of /. Then g(a) = f(a) + f(0) is equiva-

lent® to one of

a
ql(a)=$mad+i, @(a) =q(a) + a1+ ada+1, @la) =qla) + azasr.

9 [r]=integral part of 7.
10) See e.g., Dieudonné [6].

https://doi.org/10.1017/5S0027763000023837 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000023837

204 G. E. WALL

The number of zeros of g(a) is accordingly
21y e2m 4l (e=1, —1 or 0)
and so <V; f>=¢2""9 Therefore
{V; £>=0 (mod 2"°%)

and, since d < % n,

V3 f>=0 (mod 270y,

Applying the last two congruences to the restriction 7 of f to Vi and noting
that the reduced rank of ¥ cannot exceed that of / we get the lemma.

Lemma 2.4.3. Suppose that f(a) has degree <2, reduced rank d. Let D

be an integer such that 0< D < %ﬂz Ir

(2 4.5) {Vapszs /> =0 (mod 2°*%) for every Vapi, CV,

then d< D.
In fact, if d were > D, the restriction of g(a) to a suitable V;p+, would be
equivalent to Dk:_%oaamm; but then <Vapizi f> = =2°%, contrary to (2.4.5).
We shall later bave to consider functions k(a) defined on a coset a+ Vi
rather than the whole of V. The degree and reduced rank of k& are deﬁned
to be those of the function I(8) = k(a + B), whose domain of definition is the

subspace Vz.

3. Lattices of dimension 2"

We suppose throughout this section that p =2. The minimal vectors of the
lattices A(4) are determined in §3.1, the automorphs of the “principal” lattices
AP, A® in §3.2.

We recall the definition of A4(1) (EF §3). (1) =4, ..., 4n) is a set of
integral indices satisfying
(3.0.1) h=0, &y =1<i-1<A for 1<7r<n,

and /(3) is the lattice formed by all integral linear combinations of the vectors

2hrCrl=2"" 3] e,

asCr

where C, runs over all cosets in V.
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If W<V and fla) is a function defined on W with values in GF(2), we
write
(3.0.2) [W; f1= 3 (-1 ¥e,.
asw

3.1. Minimal vectors of A(2). Let x be a minimal vector of 4=4(). By
theorem 3.2. of EF,

(3.1.1) x* = 2™, where m =min (n—7r+24,),

and x has the form
(3.1.2) x =2"5[W; f],
where R satisfies

(3.1.3) n—R+2ig=m, O<R<m,

and W is a subset of V with 2" F elements.

We now complete this partial characterization by giving the conditions that a
vector of the form (3.1.2) belong to A.

TueoreM 3.1. Let R be an integer satisfying (3.1.3), W a subset of V
with 2" F etements, f(a) a function defined on W with values in GF(2). Let
d be the largest integer such that

(3.1.4) tme=dat+| 5 (k4D ]| jor o0<k<2a

Then the vector 2’"LW; f1e A1) if, and only if,
(i) W is a coset Cu-p, and
“(il) f(a) has degree <2, reduced rank <d.

Proof. Lemma 3.3 of EF can be sharpened by adding the following condi-
tions for equality :

If precisely 2777 coordinates x. are 0dd, the corresponding a form a coset
Ch-s.

The proof is straightforward and is omitted. This sharper form of the lemma
shows that (i) is a necessary condition.

We may now suppose that W is a coset, or even a subspace V,-r, because
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the results for cosets can easily be deduced by translation of coordinates. Now,
each Vi C V,_g is the meet of V,-r with some Vi+rC V but not the meet of
Va-r with any Visrsu, #>0. Therefore, by theorem 3.1 of EF, the vector
x=2"°[W; fle 4 if. and only if,

(3.1.5) {Vi; > =0 (mod 2*) for every ViC Vy-g,

where ur= Ar+k —Az. We remark that, by (3.1.4),
|1
(3.1.6) m=|4k+D] for 0<k<2d,

and that, by (3.0.1) and (3.1.1),
(3.1.7) tadi2=d+2 tf 2d+2<m—R,

(3.1.8) [—;—(k+1)].<_,uksk—d for 2d<k<n-—R.

Suppose now that xe 4. By (3.1.5), (3.1.6) and (3.1.8),
{Vs; f>=0 (mod 4) for every V3C Vp-g,

so that, by the corollary to lemma 2. 4.1, the degree of f <2. Again, by (3.1.5)
and (3.1.7),
{Vadre; =0 (mod 2%*2) for every Vad+2< Va-g,

so that, by lemma 2.4.3, the reduced rank of f<d.

Conversely, suppose that f has degree <2, reduced rank <d. If k<24,
(3.1.5) holds by lemma 2.4.2 and (3.1.6). If 2>2d, (3.1.5) holds by lemma
2.4.2 and (3.1.8). Hence x= 4. This proves our theorem.

A straightforward enumeration of the quadratic functions of given reduced
rank yields the total number of minimal vectors of rank R stated in (5.10) of
EF.

3.2. Automorphs of the principal lattices. The first and second principal lattices
A, A® of dimension N=2" are the 4(1) given by

(3.2.1) Ar=[%—r] and [%(r+1)] 0<r<n)

respectively. They occupy a special position in that their (common) relative

1
minimum (—é—N} ® exceeds that of any other A(1) of dimension N.
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The fact that 4", 4'® are dual modulo 2" implies that they have the same
group of automorphs. Suppose e.g. that X is an automorph of AV. If x € A4,
y € A?, then

x* Xy=X'x+y=0 (mod 2").

Since this holds for all x € 4, Xy 4'®. Since Xy< A® whenever ye< 4%,
X is an automorph of A”. The common group of automorphs is denoted by
A.

By §3.1, the minimal vectors of A" (n odd), 4” (n even) are

(3.2.2) L7"1C,,; 1,

where C:s runs over all even-dimensional cosets in V, f over all functions of
degree <2 on C:s; and those of A'Y (n even), A® (n odd) are

L n+1)]-s
(3.2.3) 2[—2—( Y] [Czsﬂ;fl

where C:s+1 runs over all odd-dimensional cosets in V, f over all functions of
degree <2 on Cas+1.
TueoreMm 3.2. If nx3, U=%.772"). If n=3, Y=[3"*'] (in the nota-
tion of Coxeter and Moser [5]) and 6. .71(2%) is a subgroup of U of index 270.
Proof. Let M denote the set of vectors (3.2.2) of fixed dimension 2s, M
1
the union of all the Ms;. Write uo =olz "]en. We first prove that

(3.2.4) M is the set of all vectors Xus (X€€.77).

By (2.2.1), Xwne M if X€%.9{. By (2.2.2) ¥.7f permutes the vectors
in each M; transitively. It remains to prove that for each s there is an
Xe % 71 such that Xuo € M, ie., by (2.2.1), that there is a T € O} such that

dr=2s. The matrix T defined as follows satisfies the requirement :

AT! = u, where
Ai = tn+iy ti = An+i (].SngS) )
Ai= iy Anvi=ttasi (2s<i<m).
This proves (3.2.4).
Let A, be the group formed by the automorphs which leave uy fixed. By
(3.2.4),
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A= (7).
Assuming that #x3, we now prove that % = ¥.7{ by showing that
(3.2.5) W ETT.

We consider three cases.

(a) n=1 M= [+ ey =*eil so that A consists of the 8 symmetries of the
square. O is the identity group, so that .7 consists of the 8 linear trans-
formations (2.2.2). Hence A=%.77.

(b) n=2. The elements of AN F .7 are the 48 linear transformations
(2.2.2) such that t=0, g(0) =0. On the other hand, %, permutes the elements
of M orthogonal to woe, viz.,

+2es, =2ep, =2ec (a, b, ¢ the non-zero elements of V),
so that the order of %, is at most 48. Hence %= NF .7+ CE.T+.

(c) n=>4. We call C;s the carrier of the vector ‘(3.2.2). Let Ns denote
the set of vectors in M, whose carriers are subspaces, /N the union of all the
N;. If ve M, we have

0 (VEN) )
w*v= 22[%”J—s(v € Ny)

so that %, permutes the elements of each Ns.
Suppose now that

XE%IO) vale -le'=wt' (i=1’ 2’---))

and let Vi, Wi be the (2-dimensional) carriers of v, w; respectively. Since
22'2[T]v; ov;=0 or 1 (mod 2) according as Vin vix(0) or = (0),
it follows that

(3.2.6) Vin Vi =(0) if, and only if, Win W}=(0).

Now, since »>3, a 2-dimensional subspace is uniquely determined by the set
of 2-dimensional subspaces which meet it in the zero subspace (0). Therefore,
by (3.2.6),

(3.2.7) Vi = Vi if, and only if, Wi= Wi.

Thus, X maps the set of elements of N with fixed carrier V, onto the set of
elements of N with a fixed carrier W, which depends only on V.
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It now follows from case (b) that X has the form
Xea = ( - 1)g(¢)en(a)y

where 7 is a mapping of V onto itself whose restriction to each V, is a non-
degenerate linear mapping into V. It follows that = is a non-singular linear
transformation on V. Also, since [V] is a vector (3.2.2) or (3.2.3), X[V]
has the form [V; f] for some function f of degree <2. Hence g has degree
<2 and so, by (2.2.2), Xe€%.7,. This proves (3.2.5).

We mention briefly the case #=3. ) has a subgroup isomorphic to [3**"]
(Coxeter and Moser [5], §9.4). On the other hand, an argument on the lines

of (c) above shows that 9 and [3**'] have the same order. Hence A=[3+>1].

4. Lattices of dimension (p—1)p”"

We pass now to the case p>2. Given the relation of .77 to A”, and
the similarity in form between the‘ elements of ¥.7{ and %.7, it becomes
clear how to generalize A and A”. The definitions, and several alternative
characterizations, are given in §4.1. The “II-adic” characterization is of central
importance and greatly simplifies the determination of the relative minima and
minimal vectors. A real 'metric, which turns A, A% into (p — 1)p"-dimensional
real lattices in the usual sense, is introduced in §4.2. With these preparations
the main lattice properties follow fairly easily, though the anomalous cases

=35 need some further detailed consideration.
Notation. We write

Crl = 0”_r[Cr] = 011—7 2 €q,

aeCr

Cr; f1=0""ICr; f1=0"" 2 o e,

=t
u. =0"e,,
where # is the Gauss sum (2.2.4).

We write T=w—1. The principal ideal 72 is prime and If;—(p Po=62
=02, I’""'2=p2. The p elements of the residue class ring 2/IT2 are repre-
sented by the rational integers 0,1, ..., p—1.

If € P, the norm and trace of A relative to R, are denoted by N(1), tr A.

4.1, The principal lattices. We define 4® as the set of x = I'such that Xx&TI'
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for all Xe%.7"; in other words, it is the largest set of integral vectors invariant
(as a whole) under ¥.7. By (2.2.3), 6"’ A®. Therefore, by lemma 2.3.1,
A® is an Q-lattice.

We define 4 as the dual of 4® modulo §”. It is an £-lattice such that

0"rcAVcr. By the argument of §3.2, every unitary transformation which

(2) (1) (1)

leaves A4'“ invariant also leaves 4

invariant. In particular, 4’ is invariant
under ¥.7. Hence, by the definition of 4®, 4V c A%,
The following is an alternative characterization of A”. Consider the 2-

lattice, say 4, formed by the integral linear combinations of the vectors
(4.1.1) ICy; £,

where C, runs over all cosets in V, f over all functions on C, of degree <2.
The vectors (4.1.1) are, apart from sign, the vectors Xu., where a runs over
V, X over ¥.7 (see (2.2.3) and (2.2.5)). Since

(X 'wa) *x = 0"y,

where y = Xx, it follows that 4 is dual to 4® modulo §”. Therefore 4= A".
‘For the remaining characterizations of A", A'®, some preparations are
necessary. We define the product of two vectors by

(%2)(¥a) = (%a¥a).

Under this product, I" becomes a commutative algebra over the ring £, with
unit element 1 =[V]. A polynomial in the elements X, Y, ... of I means a
sum

of monomials with coefficients in 2. The subalgebra of I generated by
X, Y, ... means the smallest subalgebra of I which contains these elements;
it consists of the polynomials in X, Y, . .. with zero constant term aw . . . 1.

If « € GF(p), let «' denote that rational integer in the interval [0, p—1]
which represents a. Write

Ai= 3 alewn.,em (E=1,..., 7).
-

Then each x & I" has a unique I7-adic expansion

(4.1.2) X~ EOQ;(Al, ey AT,
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where the @; are standard'’ polynomials with coefficients in [0, p — 1. (4.1.2)
-1 .
means that x= >Q;II' (mod I7*I") for all k.
=)

To prove our assertion, we consider the congruences

=1

S guewai™ - ah™ =1, (mod IT),
Alseeesy An=0

where a runs over V. This is a system of p" linear equations for the »"
variables g,,..., in the residue class ring 2/I7¥2. Since the determinant of the
system is a power of g(aé—zx}) and so a unit of 2/I7°Q, the solution is
unique. Thus, x :—:Q(;&: ..., Ay (mod IT*I"), where @ is a standard poly-
nomial over 2, whose coefficients are unique modulo I7*. Replacing the coeffi-
cients of @ by their II-adic representations, we get the required unique re-
presentation x = %Q; ' (mod II*I)..

If x4 'is @ function of ai,,...,ai, only, each Q; is a polynomial in A, .., A, only.
This follows from the IT-adic expansion of the p’-dimensional vector Yiase.., aip)
= Xa. |

We return now to A, 4%, We first prove that A" is the subalgebra of-
I generated by the vectors

(4.1.3) _ V5 £, 1Ca-al,

where f runs over all functions of degree <2, Cu-1 over all (n —1)-dimensional
cosets.

Consider the product S=|C,; f||Cs; gl, where f, g have degree <2. If
C,NCs is empty, S=0. If not, C, N Cs = C:, where n=> dim (Cr +Cs) =7+s—1
Hence S=0""""""°|Cs; f+ gl A". This proves that 4 is a subalgebra. The
elements (4.1.3) are generators because [Cr; fl=|V; f I'I:IIIC‘,."’_II for any
(n—7) Ci’s with meet C,.

Let L' denote the set of x &I such that, in the I7-adic expansion (3.1.2),

(4.1.4) degree @;<2i (i=0,1,...).

Since (4.1.4) places no restriction on ; when ia-%—n(p—l), we have

m""Pr=¢"rcL'. Using the adic expansion

1 j.e., the degree of Q; in each variable is <p; cf §2.1,
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AP = Ai+ TP Qpei(A) + - - -

of A?, it can be verified that products and £-linear combinations of elements

of L'V are again in L'’ ; therefore L is a subalgebra of I. We prove now
that

(4.1.5) LY =4,

Notation. If S is a subset or element of I, S* denotes the corresponding
subset or element in the factor algebra I'* =I'/6"I" The elements of I'* are
regarded as vectors over the residue class ring 2% =2/6"02. #(X*, ...)
denotes the subalgebra of 7™ generated by X*,....

Proof of (4.1.5) Considering the monomials in the II-adic expansion, we
see that L'V* is generated by the #*+ n + 1 elements

(4.1.6) 1% ITA{, TTATAS.
Since every | V; f| in (4.1.3) is a polynomial in the #*+ n-+ 1 vectors
1L, ai=|V; ail =1, a;j=|V; aiaj| -1,
A"* is generated by the.corresponding elements
(4.1.7) 1% af, a}
and the vectors
(4.1.8) |Ceal™.

We prove (4.1.5) by showing that

(A) the elements (4.1.6) and (4.1.7) can be expressed in terms of one
another ;

(B) the elements (4.1.8) can be expressed in terms of the elements (4.1.6).

The proof of (A) is simplified by the following lemma, whose easy proof
is omitted.

LemMma. Let S be a subalgebra of I * and X*, ... elements of S. Then
S=.P(X* ...) tf, and only if, S/IIS= P(X*+ 1S, . . .).

Consider now the elements af. The a-th coordinate of a; is

1= (1+ D% —1= (I
=1

It follows that
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p-1 i-1
a;‘k = Zl(j.’)—lkl] (”A:k"k”)+”pbx+)
i= =0

where { )! denotes the inverse in 2* and b, is a vector in I” whose a-th
coordinate depends only on a;. From the /I-adic expansion of b;, we deduce
that T?b/ € I .#(IMA]). 1t follows that afe #(ITA}). Further, since

-1 i
a¥= STGUTTAYY  (mod ITA(IA)),
J=1

we have

p-1

A = S(=1Y7Y7 afY (mod I #(ITAF)),

j=1

whence, by the lemma, P(ITA}) = H#(a}).
By similar arguments, we get
P(TAF, TTAF?) = P(af, afi),
PUIASF, A}, TTAF?, TTA;?, TAFA]) = #(af, af, aii, af}, af),
whence (A) follows.

By (A), and because of the symmetry of the set of vectors |V; f| witi
respect to index transformations a—a D +t, it is sufficient to prove (B) when
Cp-1 is the particular coset defined by the equation «;=0. Now the /T-adic
expansion shows that [C,-1* is a polynomial of degree < p in Af¥. It follows

1 _ . - . 1 - .
that 17 2"V [Cp-iTr e P(ITAF, TTA¥?) and therefore, since IT 277" 0 = 69, that
|Cn-11* & P(ITAF, TAF). This proves (B) and (4.1.5).

There is a similar IT-adic characterization of .1*. Let L” denote the set
of x =TI such that

(4.1.9) degree @Q; <2741 (1=0,1,...);
then
(4.1.10) L® = A%,

This is proved by showing that
(C) |- LW\ r: L®|=\r: 6"1|,
(D) x+y=0 (mod 6") whenver xe LY, ye L?,

(C), (D) imply that L™, L® are dual modulo 6" and thus that L® = A®, as
required.
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It is an easy combinatorial problem to show that
IL(”Z 0”1‘] =sz’ |L(2): 0"1‘[ =pk*,
where

(411D k=4 [a(p=1D+@" = D], k= Lln(p~1 ~ (p"- 11

S mp=1p"

Since |I": 0"I'|=p and ki + k= %n(_p—-l)p", we get (C) and

(4.1.12) Ir: L =p%  (i=1, 2).
It is sufficient to prove (D) when
x=ITAP - -+ A}, y=IT"AY - - - A},
where

04 <p 0<ui<p,
<22, DwmL2p+1

We may suppose that A +u< %— n(p—1), for (D) is obvious otherwise. Let &
be the integral part of (p—1)"">](1;+ ). Since

-1 < Ui+wm)<22+2u+1<n(p-1),
we have

(4.1.13) E<m, %k(p—1)<l+u.

Let r be the number of indices ¢ such that i+ mx(p—1). Clearly
(n-7)(p—1) < (A + @), so that

(4.1.14) r=n-k.
Now x'y=TI)‘II“2a{A‘+"‘ “ .. a:‘)‘n*’l‘-n
acs)

= I_I)‘Hush"'y.x S0t Saptum
where
so=p, se=1" 42+ - -+ +(p-1F (£>0).

Since, for £>0, sk = —1 or 0 (mod p) according as (p—1)|% or not, we have
x+y =0 (mod ITMw+r#-1)
(D) now follows from (4.1.13), (4.1.14). This proves (4.1.10).

4.2. The real metric. E, as defined in §2.2, is a p"-dimensional metric space
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over P. We now describe a natural way of defining it as a (» —1) p"-dimen-
sional metric space over R,.

Consider first the degenerate case n=0, where E=Pand I'=82. P is a
(p — 1)-dimensional vector space over K,. It becomes a metric space over R

if we define the real scalar product by
(4.2.1) Axp=trip
Since the Galois group G of P over R, is abelian,

(4.2.2) Axd= 2= 27°8°

oEq@ cEG
whence A+y is positive definite.

2 becomes a (p — 1)-dimensional lattice in the usual sense. The roots of

unity o (1<i<p~1) form a lattice basis. By evaluating det (tr 0, we get
(4.2.3) D(2) =p?~2

The inequality of the arithmetic and geometric means shows that (p — 1)| N(A)}®
< A+, with equality if, and only if, all conjugates of 1 have the same modulus.

Hence the minimal vectors of 2 are the roots of unity =+ o' and
(4.2.4) M2)=p-1

In the general case, E is a vector space over R, of dimension N = (p — 1)p",

and we define the real metric x*y by

(4.2.5) (%2) * (y2) = Ezfx.*y,.:tr(x.)-(y.).
acs
I' is an N-dimensional lattice with basis w'e. (a€V,1<i<p—1). By (4.2.3),
(4.2.4),
(4.2.6) D(I) =72 M(TI") =p— 1.

Hence, by (4.1.12),
(4.2.7) D(AW) = pb-2emr2k (721 2),

where %; is given by (4.1.11).

The following results are noted for future reference. Let 1€ 2 and let &
be the rational integer in [0, » — 1] such that A=% (mod II). By (4.2.2), 1%}
is even and = —#’ (mod p). Hence
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=2p if k=0, 1%0,
AxA =p—1 if k=1 p—1

=>p+1 otherwise.

~~
N
o
(o]
-

In particular, when p=5 and k=2, 3, equality holds if, and only if, 1 is one
of the 20 numbers = (o' +o’) (0<i<j<4).

4.3. Minima, minimal vectors. We now determine the minimal vectors of
AV AP, Let x=I"ye A® (s=0), where ye 4® but I 'y & 4?*. By the
original definition of A'®, there is an X& %.7 such that z= Xy & III. Let
2~ QA . . ., AN,
and let
Qilar, .« ., an) = na’ * * - an™ (:=0,1,...)
be the unique standard polynomial over GF(p) such that
Saly o - = Qulad, . ).
If Y is the transformation (2.2.5), Yw =z and
w~3Ri(As . .., AN,

then
Ry(a) =QyaD+1t), Ria) =Q,(aD+1t) — g(a)@olaD +1).

After applying such a transformation we may therefore suppose that either
(a) @=k1 (B%0) or (b) @ =A;. Notice that z& 4™ in case (b), by (4.1.4).

Case (a). Every coordinate z, is non-zero, whence by (4.2.4),
x*x = (IT*z) * (IT*z) = (p— 1)p"

with equality if, and only if, s=0 and z. is a (2p)-th root of unity for each
a. Suppose that equality holds. After replacing z by —z if necessary, we
have k=1 and z=LV; s for some standard polynomial f(as, . . ., an). Then,

expanding z. = (14 1T y! by the binomial theorem, we get

@i(m,...,an)=<f(m" "a")) (t=1,...,p—2).

i

Therefore, since @; and f are standard, Q.(&, ..., &)= f(&, ..., &)

identically in independent variables &.  After applying a suitable transforma-
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tion (2.2.5), we may suppose that all terms in f of degree <2 are zero.
Suppose now that xe 4. Then ze 4" and so, by (4.1.4), the degree of
Q<2 " Hence f=0 and z=[V]. Suppose secondly that xe& A*, x& 4P,
Then, by (4.1.9), the degree of §;<3, so that f is a homogeneous cubic. If
=7,

QuZty ..., &) = (f(:’l, g ;,,))

since the latter is standard. This is impossible because (g) has degree 6, Q-
degree <5. Hence p=3 or 5. We need not consider the case p =3, because
case (b) shows that z*z> M =43""". Suppose then that p=5. After a

suitable transformation (2.2.5), we may suppose that
flay, o oo, an) =ai+aiqlas, . . ., an) +7(as, . . ., an),

where g, r are homogeneous of degrees 2, 3 respectively. Then, after reduction

to standard form, (g ) contains the sextic terms aiq--al7, so that g=7=0.
Thus z=[V; ai]. It is easy to see that this vector is actually in 4,
Case (b). We have z. = af (mod IT), whence, by (4.2.8),
x*x=(p-1)p"x2p=2(p—-1)p" if s>0
x*xZ(Pp=3p" I x(p+1) +2p" ' x (p—1) =(p*=5)p""  if s=0.

By case (a), x cannot be a minimal vector of A'* unless s=0 and p=3 or 5.
Notice that in these cases x & A" because s=0 and z& A4”. Let C* denote
the (n# — 1)-dimensional coset in V defined by the equation a;=4. Suppose
first that p=3 and x*x = (3°—5)3"""=43"". By (4.2.4), and since @ = A;,

z=[C'; f1-[C™"; &l
where f, g are standard polynomials in ae, ..., a,. Using the equations
lcli =2 JA~1 - A%) ]C_ll = %‘ (1&3 - l&l),

we get
Qi=ailg—f) —alg+s),

whence the degrees of g— f, g+ f are <1, 2 respectively. Then the element

1
=5 lf+artouf-g)

Yea =w €z
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of €. maps z onto
[C1—-[C']=As+3/2(A— AD.

The II-adic expansion shows that this vector is in 4.

Suppose now that p =5 and x*x = (5 - 5)5" 1= 45". By (4.2.8), and since
QO = Al:

z=[C"; f1-[C'; g1+ ([C*; hI+[C*; ) —([C™*; EI+[C7?; k)
where f, g, . . . are standard polynomials in as, ..., a» and neither hy—he
nor k;— k, assumes the value 0. Then

Qr=al(~f+g—h+k)+ai(—f—g—2h—2F)
+al(~f+g+h—E)+a(—f—g+2h+2k)

where h=hi+h:, B=k + k. Since the degree of @:<3, the coefficient of

ai=0 and those of af, ai, a; have degrees <0, 1, 2 respectively. After apply-
ing the transformation

1 1
-—2*(f+g)— 5 ay(f-g)—c(ay?-1)

Yea=w €a,

where ¢ is the constant #+2/+¢g, we have f=g=h=%, so that lu= — hs,
ki= — k.. The next term of the IT-adic expansion now gives
Q: = (ai — a)[ (K — B ay — 2(hi + ED 1.

Since the functions %; — 7. =2k, and &k — k. =2k, do not assume the value
0, it follows that A%, B are functions of degree <2 which can assume only the
values 1, — 1. It is easy to see that every function of degree 1 or 2 assumes
at least 3 values, so that %}, %’ are constants. Hence, after applying the

transformation Ye.= — e—, if necessary, z becomes one of the 4 vectors "
Vr,s= [Clj - [C_l:l + (a)r+ a)—r)[czj - (ws + a)_s)[C_z],

where (7, s)=(1, 1), (1, 2), (2, 1) or (2, 2). The IIadic expansion shows

that v,,s€ 4®. The transformation

a1 (A=p)?
Ye()\, B2yeeey Ep) — a 2 o €y, ay,..., an)
73

belongs to %7 and maps v, vy into vectors with all coordinates non-zero.
Hence the minimal vector pairs =[V; all, = ve, vy are equivalent under

%.7. It can be shown, though we omit the proof, that no two of the pairs
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+[V], £[V; ail, vy, =£vs are equivalent under 4.7.

We have proved

TueoreM 4.3.1.  The minimal vector pairs of A" are given by (4.1.1)
except when i =2 and p =3 or 5. When i=2, p =3, every minimal vector pair
is equivalent under 6.7 to + ([C']—[C™]), where C* is the (n — 1)-dimensional
coset defined by a1 =1. When i=2, p =5, every minimal vector pair is equivalent
under 6.7 to one, and only one, of the pairs [ V], =[V; ail and

£{[C]-[CTI+ (&' + 0 N[CTT-[C* D} (i=1, 2).
where C* has the same meaning as in the case p =3.
TueoreM 4.3.2. The relative minima 1, v'* of AV, 4'* are given by

1+ (=114~

1,
T‘”:(p—l)pT (1,23)
T(z: = (P — l)p;—""1+ ;—m—n—!(s—p—") (P>3)

(2) %"-'i—-%i‘"

We can compare our forms with the original ones in 2" variables by com-
. 1
puting p;($) = lim r“’/(%—N) *, We have:
p1(3)=0.9, 0(5)=0.7, ...
-5 - =
p2(3) = 437 T =101, p(5) =257 1.03, 2(7) =08, . . .
. (1 \5 .
lim (52)7 @) =1 (i=1,2).
The lowest values of (p —1) p” are 6, 18, 20 corresponding to p" =395

respectively. The forms in 6 variables are the absolutely extreme and “next

best” extreme. The relative minima of the forms in 18, 20 variables for i=2

are

4/3%8 =295, 4/5%*x3.1.
1
2

These are comparable with the value 8% =2.8 for the 16-variable form of EF.

4.4. Extreme Forms. Two points can be made at once.
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(1) .1 is invariant under the Ry-irreducible® group %.9. Therefore it
is eutactic (Coxeter [4], p. 402).

(2) Let S be the automorphism of P such that «®= o’ and let a be any
element of V. Then it is easily verified that, if >3, every vector (4.1.1)

satisfies the quadratic relation
S
%ia%-3a = Xa%sa.

Therefore, if p>3, A cannot be perfect when the vectors (4.1.1) and their
negatives are its minimal vectors; i.e., 4" cannot be perfect unless p=3 or
p=5,i=2. We shall see, however, that 4"’ is perfect in a modified sense now
to be defined.

Let A be a sublattice of the N-dimensional lattice I. Let G(x, y) stand
generically for an Ry-bilinear function defined on E and with complex values.

Then, according to the usual definition, A is perfect if the equations

(4.4.1) G(m, m) =0 for all minimal vectors m of 4,
imply that
(4.4.2) G(x, x) =0 for all xe E.

We may, without loss of generality, suppose in the definition that the values
of G(x, y) are in R,.

Let now #(%0) e GF(p) and let T be the automorphism of P such that
o'=w'. We call 4 t-perfect if the implication (4.4.1) = (4.4.2) holds for

functions of the form
(4.4.3) G(x, y) = EEEga,gxﬁye (ga,8 € P).

Clearly, if . is perfect it is #-perfect for all £. The converse is also true. In

fact, let G be as in the previous paragraph. Then

p-1 L . )
Gi(x, y) = E o " G(o'x, W' ¥)

£, =0

has the form (4.4.3), and

. p-1
PG(x, y) =tr(§Gt(x, y)).

12) ¥ is Re-irreducible because it is P-irreducible (CGI, theorem 1) and contains
the scalars ol.
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Therefore the implication (4.4.1) =>(4.4.2) is valid for G if it is valid for
each G;.
We call A4 P-perfect if it is 1-and ( — 1)-perfect, i.e. if it is perfect with

respect to symmetric P-bilinear, and Hermitian, forms. We now prove

TueoreM 4.4. A" is eutactic and P-perfect. It is perfect only for p =2,

i=12and p=5,i=2.

Proof. Let G be the function (4.4.3). We seek the conditions that

G(x, x) =0 for all vectors x=|V; ¢l, where ¢ has the form

¢(a) = 2 aij o @+ 2, a; .
=y i

The equation G(x, x) =0 gives

(444) }_;‘ gayawtm’c) +s(8) = (),
a, 8
If v(a) = Z bij i+ 2)bi .,
=y
we write

o= 2 aijhij+ 2 ab;,
=, i

g\y = zga,ﬂ;

where summation is over the a, 8 such that

(4.4.5) taiaj + 8i3; = bij, tai + B: = b; (all 7, /)

and where g, =0 when (4.4.5) has no solutions. Then (4.4.4) becomes
Eug =0 (all ¢).

The matrix (0™*") is non-singular, being a direct power of the p > p matrix
(07, and so the vector (gy) is zero. If t= —1, (1.4.5) has at most one solu-
tion @, B8 whence G(x, y) =0. If =1, it has either no solution or a unique
solution @, a or exactly two solutions a, 8 and B, a. Hence g., 8+ gs..=0 for
all @, 8 and so G(x, x)=0.

We have now proved that .I'" is #-perfect whenever the [ V'; ¢]are minimal
vectors, i.e., except when p=72, 1=2.  The conclusion is still true in this case.

In fact, let v;i=[C’"; ¢ (i=0. 1, 2) with ¢ as above and C' as in $..2

Then it is easily seen that because G(x, x) vanishes for
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Vo—w' Vi, Vi — &' Ve, Va— @' Vg (i=1, 2, 3),

it also vanishes for vo+v;+v.=[V; ¢]. The previous argument now shows
that G(x, x) =0. Hence A" is P-perfect in all cases.

When p=2, 4” is 1-and ( — 1)-perfect and so perfect. It remains to prove
only that A® is 2-and ( —2)-perfect when p=5. This is done by applying our
previous argument to [V; al+ ¢] instead of [V; ¢l It is readily seen that
the solution of (4.4.5) plus the equation fai+ Bi=56 is unique if either a, a
is a solution or there is a solution a, 8 with a.= .. Therefore g.,s =0 unless
ax =B and a*B. Since this holds for all ¥, gs,6=0 for all a, 8 and so
G(x, x) =0. This proves the theorem.
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