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Abstract

Wireless-connected wearable electronics are finding extensive usage for diagnostic and thera-
peutic purposes after the globally spread pandemic disease of COVID-19. Although they are
undoubtedly helpful for keeping physical distance, their health effects are still under investi-
gation from different aspects and are still a concern for the end-users. In this study, a custom
M-shaped wearable antenna covering the wireless body area network and wireless local area
network frequencies is designed, built, and measured. A beret cap made from a 2 mm thick
textile is used as a substrate. The specific absorption rate (SAR) in a realistic human-head
model due to electromagnetic energy produced by the antenna is evaluated using the
finite-difference time-domain method. The SAR distributions for 1-g and 10-g tissues are
calculated at 2.4 and 5.8 GHz. It is shown that the obtained maximum SAR values for 1-g
and 10-g tissues at each frequency of interest were less than the limits determined by IEEE
RF exposure guidelines and standards.

Introduction

The advancement of low-power wireless communication technology in the past couple of dec-
ades enabled its utilization in many applications as personal electronics. Personal medical
devices are one of the pioneer beneficiaries of their usage. Upon the recommendation of
ITU-R in 1999, FCC allocated 402–405MHz as the Medical Implant Communication
Service band in 2001 for the indoor wireless link of medical devices used in diagnostic and
therapeutic operations [1]. Since then, numerous implantable, in-vitro and wearable medical
devices such as cardiac pacemakers, endoscopic camera capsules, cochlear implants, and
neuro-stimulators have utilized this band for wireless communication. In addition, semicon-
ductor companies such as Microsemi (back then Zarlink) developed commercially available
CMOS-integrated transceivers for both implant modules (ZL70323MNJ) and base station
modules (ZL70123MNG7) tailored for MICS applications only. These systems use different
antennas, depending on the specific application [2]. MICS base stations generally use helical
antennas while the implants incorporate printed antennas such as a meandered planar
inverted-F antenna [3], an L-shaped T-line-fed anti-spiral resonator [4], and a commercially
available grounded-line technique-based Splatch by antenna factor [5].

Over the years, the increased application complexity, the push for smaller and faster devices,
and the addition of more wireless nodes required allocating broader frequency bandwidth and
forming a standard. In 2012, FCC allocated 40MHz of spectrum at 2360–2400MHz band to
medical wireless body area networks (WBANs) as a secondary basis user for short-range indoor
low-power wireless links. IEEE 802.15.6 communication standard is established for these body
area network devices and can operate with data rates up to 10Mbps [6].

Besides the medical purpose [7], the wearable body area network devices found applications
in many areas such as mobile communications [8] and military [9]. With the introduction of
IEEE 802.15.6 in 2012, body-worn WBAN devices such as Google Glass, GoPro cameras, and
Nike+ sensor became part of daily life for various applications ranging from remote health
monitoring to outdoor sports activity. Such devices utilize antennas strapped or placed on
the user, and having an efficient antenna is critical for system performance. Depending on
the applications, these systems may require antennas in different shapes, forms, and materials.
For example, printing the antenna on textile clothes became a preferred method for most
wearable electronics. These antennas must be flexible, low-cost, lightweight, and easy to imple-
ment on clothes.

During the fight against the globally spread pandemic COVID-19 disease in the first half of
2020, we, the engineers and medical professionals were seeking the best solution for remote
connected and disposable medical sensors. The low-cost wearable wireless medical devices
are a good fit for such purposes. Many of these devices do employ printed antennas on textiles
for wireless connection. These wearable antennas are usually placed near the human head,
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torso, or arm. The antenna’s performance is greatly affected by the
presence of lossy human tissues inside the antenna’s near-field
region. In addition to the degradation of antenna performance, the
electromagnetic (EM) radiations from the antennas may produce a
detrimental effect on the human body [10]. Because many wearable
antennas are used for therapeutic, diagnostic, or healthy lifestyle pur-
poses, they are expected not to pose any discomfort to the users.
Therefore, it is vital to keep the rate of EM energy absorbed by
human tissues belowa certain level. This rate is defined as the specific
absorption rate (SAR), whichmust be less than 1.6W/kg [11] for 1-g
of tissues and 2W/kg [12] for 10-g of tissues.

The SAR distribution in the human head due to EM energy
radiated by an adjacent cellular phone having different types of
antennas has been studied extensively using the finite-difference
time-domain (FDTD) method in [13–23]. In [24–34], the SAR
distribution on the part of human body phantom due to a wear-
able textile antenna has been studied using commercial software
tools. In this work, the SARcalculations are performed on a realistic
human-headmodel instead of a rough human bodymodel using our
in-house developed custom FDTD Matlab codes [35]. The inter-
action between a human-head model and a wearable textile antenna
has never been evaluated because the FDTDmethod requires exces-
sively long computation times and largememory requirementswhen
the FDTD cell size is in the order of 0.05 of the wavelength in the tis-
sue. This study utilizes a high-performance computing system to
investigate the interaction between a wearable textile antenna and a
realistic human-head model with a cell size of 0.5 mm.

In this paper, an M-shaped dual-resonance wearable antenna
is designed using the FDTD method and fabricated on a thick tex-
tile mat: a skin cap. The fabricated dual-band wearable antenna
operates at the WBAN band and 5.8 GHz ISM band, achieving
the bandwidth requirements of 40 and 150MHz, respectively.
The antenna performance is evaluated based on two primary per-
formance metrics: the radiation pattern and the input reflection
coefficient. These evaluations are done with and without a
human-head model. The effect of the EM energy radiated by
the wearable antenna based on the SAR distribution in a realistic
human-head model is investigated numerically using the in-house
developed Matlab codes based on the FDTD method.

Method and models

FDTD method

The FDTD method [35] is one of the most powerful and widely
used methods for bio-EM applications due to its ability to handle
complex and heterogeneous geometries and provide solutions
over a wide band. The FDTD method solves Maxwell’s equations
in the time domain and calculates the model’s six vector compo-
nents of electric and magnetic fields in each cubic cell. The major
constraint [35] in the FDTD method is the cell size, which must
be 20 times smaller than the smallest wavelength in the model.
Finally, the convolution perfect matching layer (CPML) [36] is
applied as an absorbing boundary to truncate the problem
domain. In this work, a custom FDTD code is developed to ana-
lyze the EM interaction between the realistic human-head model
and the designed wearable antenna on a beret cap.

M-shaped wearable antenna on a textile substrate

The top and bottom views of the M-shaped antenna with all
dimensions are shown in Fig. 1. A partial ground backs the

M-shaped driven element on the bottom of the textile material
with a slot. The antenna designed using the FDTD method is fab-
ricated on a 2 mm thick textile substrate of dielectric constant
er = 1.54 with negligible loss. The photograph of the fabricated
M-shaped antenna on a beret cap is shown in Fig. 1. The simula-
tion and measurement input reflection coefficients (S11) of the
wearable antenna are shown in Fig. 2. It can be seen from the
plot that the dual-band resonant frequencies showed a good
agreement between the simulation and measurement.

Human-head model

A realistic human-head model proposed in [37] is used in this work.
The dimensions of the head model are 172 × 218 × 240mm3.
The head model is divided into 73 million cells whose sizes in all
directions are 0.5 mm. Thus, the total cell number of the FDTD
problem space with 10 CPML cells and 10 air gap cells on all sides
is about 100 million.

The head model consists of eight tissues: skin, fat, bone, eye,
blood vessel, muscle, white matter, and gray matter. The mass
density [20], relative permittivity, and conductivity of the head
tissues calculated from Debye coefficients in [20] and [38] for
2.4 and 5.8 GHz are tabulated in Tables 1 and 2. Figure 3
shows the human-head model’s x–y, x–z, and y–z cross sections.

Fig. 2. Simulated and measured S11 of the antenna on a textile substrate.

Fig. 1. (a) Top and (b) bottom views of the M-shaped wearable antenna with all
dimensions, and (c) the fabricated wearable antenna on a flat top textile beret
model.
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SAR calculation

The EM energy absorbed by biological tissues is quantified as
SAR. The SAR is defined as

SAR(r) = s(r)E(r)/2r(r)

where E is the root-mean-square magnitude of the electric field
strength in V/m, σ is the conductivity of tissue, ρ is the mass
density of the tissue, and r denotes the indexed cell. The IEEE
standard C95.3-2002 [39] is used to calculate the SAR distribu-
tions over 1-g of tissue (SAR1g) and 10-g of tissue (SAR10g) in
the human head model. The input power of the antenna for

Table 1. Mass density, relative permittivity, and conductivity of the head tissues
for 2.4 GHz

Tissues Mass density Permittivity Conductivity

Skin 1125 38.08 1.43

Fat 916 11.44 0.19

Bone 1810 12.41 0.31

Muscle 1047 54.11 1.50

Blood 1058 60.06 2.26

Eye 1100 45.91 1.30

W. matter 1038 37.13 1.05

G. matter 1038 50.28 1.58

Table 2. Relative permittivity and conductivity of the head tissues for 5.8 GHz

Tissues Permittivity Conductivity

Skin 35.11 3.72

Fat 11.01 0.71

Bone 11.21 1.16

Muscle 51.56 4.51

Blood 56.35 6.08

Eye 43.44 4.02

W. matter 34.74 3.24

G. matter 46.98 4.63

Fig. 3. (a) x–y, (b) x–z, (c) and y–z cross-sections of the
human-head model.

Fig. 4. Simulated and measured S11 of the wearable antenna with the human-head
model.

Fig. 5. Photograph of the wearable antenna with a real human head.
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2.4 and 5.8 GHz is set to 20 dBm, which is the maximum power of
wireless local area networks (WLANs). The assumption of being
exposed to such a power rating is realistic when the co-existence
of WLAN and WBAN in a medical environment is considered.

Numerical results

This section investigates the effects of the human-head model
on the input reflection coefficient and the wearable antenna’s
radiation patterns. Then, the EM effect of the wearable
antenna fabricated on the beret cap to the human-head
model is investigated at 2.4 and 5.8 GHz by using the FDTD

numerical solution. The SAR1g and SAR10g distributions in
the human-head model due to the wearable antenna are
calculated at each frequency of interest. The FDTD numerical
problem is constructed with the antenna printed on a
textile beret model placed 12 mm above the human-head
model. Matlab-based custom-developed FDTD codes are used
in this study. The simulations are done in the 2018 64-bit
Matlab version running on a 32-core high-power computing
system with 512 GB RAM. The computation time for the entireFig. 6. Radiation patterns of the wearable antenna with and without human-head

model on the (a) the x–y, (b) the x–z, and (c) the y–z plane cuts for 2.4 GHz and
(d) the x–y, (e) the x–z, and (f) the y–z plane cuts for 5.8 GHz (blue curves: only
antenna; red dashed curves: head with the antenna).

Table 3. Maximum gain (gain) and efficiency (eff.) of the antenna with and
without the head at 2.4 and 5.8 GHz

2.4 GHz 5.8 GHz

Gain Eff. Gain Eff.

Antenna w/o head 1.69 75 4.12 83

Antenna w/ head 6.20 68 2.96 57

Fig. 7. (a1), (a2), (a3) SAR1g and (b1), (b2), (b3) SAR10g (W/kg) distributions on the x–y,
x–z, and y–z cross sections of the human-head model for 2.4 GHz.

Fig. 8. (a1), (a2), (a3) SAR1g and (b1), (b2), (b3) SAR10g (W/kg) distributions on the x–y,
x–z, and y–z cross sections of the human-head model for 5.8 GHz.
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EM analysis and the SAR calculations is roughly 12 000min. The
solution is done without any simplification and mesh optimization.
The CPU-based numerical solution for such a big problem would
be incredibly long on a standard workstation. For such reason, this
study would be a reference for simplified solutions.

Effect of human-head model on the antenna performance

The simulations are done with a realistic human-head model, and
the measurements are taken while the beret cap is placed on a
human head. The superimposed plot having both the simulated
and measured input reflection coefficients is shown in Fig. 4. It
can be seen from the plot that the simulated and measured per-
formances match pretty well. Our FDTD algorithm is only
coded for the use case of a flat antenna substrate and does not
cover the case for bent structures. Therefore it is essential to
keep the antenna structure flat. The textile material is reinforced
from the perimeter of the top surface of the cap to keep the
antenna printed region flat while it is worn. The slight deviations
in the measured performance are due to the variation in the

electrical properties of textile material and fabrication tolerances.
Figure 5 shows the photograph taken during the measurements
while the textile beret with antenna was worn. The radiation pat-
terns of the wearable antenna with and without the human-head
model at resonance frequencies obtained using the FDTD method
are shown in Fig. 6. The maximum gain (dBi) and efficiency (%)
values of the antenna with and without the head model are tabu-
lated in Table 3.

SAR1g and SAR10g distributions in the human head due to the
wearable antenna

The SAR1g and SAR10g distributions in the x–y, x–z, and y–z cross
sections of the human head model are shown for 2.4 and 5.8 GHz
in Figs 7 and 8, respectively. The maximum values of SAR1g and
SAR10g at resonance frequencies are tabulated in Table 4. The
SAR1g and SAR10g values reported in Table 4, except the value
at 2.4 GHz, are less than 1.6W/kg [11] for 1-g of tissues and
2 W/kg [12] for 10-g of tissue, respectively. At 2.4 GHz, the
maximum SAR1g value just above 1.6W/kg is within an accept-
able range according to the studies in the literature. It can be
seen from Figs 7 and 8 that the maximum SAR values occur on
the top of the human head due to the wearable antenna on the
flat top textile beret. It is also realized from these figures the
SAR1g and SAR10g distributions appear in a good correlation. It
can be realized that the resonance frequencies affect the max-
imum SAR1g and SAR10g values and SAR distributions.

Calculation of the SAR distributions on the human body parts
due to a wearable textile antenna by using commercial software
tools is the prime topic of antenna research [24–34] in recent
years. A fair comparison of the obtained results is difficult because
the SAR distributions and maximum SAR values depend on
antenna types, substrates, input power, resonance frequencies,
and distance between the antenna and the human body phantom.

Textile antennas on the human body model have been
reported in [28, 32, 40–44]. Tables 5 and 6 summarize the existing
studies regarding design features (substrate type and thickness,
location on the human body model, and phantom model) and
performance metrics (antenna resonance frequencies, gain,
input power, SAR1g, and SAR10g values), respectively. The tables
show that the antenna’s properties, input power, and phantom
model affect the maximum SAR values.

Conclusion

The need for remote health operations is increased tremendously
over the last 2 years due to the global spread of pandemic diseases.

Table 5. Design features of some recent studies in the literature

Ref. Substrate
Thickness
(mm)

Phantom
model

Antenna
location

[40] Denim 0.7 Sphere Leg

[41] Composite 1.5 Voxel Wrist

[42] Latex 4 Voxel Chest

[28] Felt 6 Voxel Chest

[43] Textile 3 Cubic Wrist

[32] Kevlar 2.6 Voxel Arm

[44] Metasurfaces 3 Cubic Chest

This
study

Textile 2 Voxel Head

Table 6. Performance comparison of some recent studies in the literature

Ref. Frequency (GHz) Gain (dBi) Power (dBm) SAR1g (W/kg) SAR10g (W/kg)

[40] 2.4 7.8 20 0.29 −

[41] 2.44 5.1 20 0.18 −

[42] 2.45 5 30 1.47 0.71

[28] 2.45–5.2 −3.5 to 6.6 27 0.4–0.7 −

[43] 2.45–5.5 −0.7 to 7.4 23 0.48–0.02 −

[32] 1.58–2.45 2–2 20 0.78–0.71 −

[44] 2.45 4.3 23 0.65 −

This study 2.4–5.8 6.2–3.0 20 1.67–1.14 0.72–0.3

Table 4. Maximum SAR1g and SAR10g at 2.4 and 5.8 GHz

2.4 GHz 5.8 GHz

SAR1g (W/kg) 1.671 1.137

SAR10g (W/kg) 0.722 0.299
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The low-cost wearable RF devices find wide usage for diagnostic
and therapeutic purposes. In such cases, it would be a significant
question to answer if the wearable devices pose any discomfort or
health risk to the patients. In this study, the interactions between a
realistic human-head model and RF EM fields radiated by a wear-
able antenna were evaluated using the FDTD method at WBAN
and WLAN frequencies. A custom M-shaped antenna is designed
on a beret made out of textiles. The fabric is characterized as a 2
mm thick substrate. The antenna is manufactured and measured
in our RF lab. The simulation and measurement results show a
good agreement. Then, the effect of the wearable antenna, the
SAR1g, and SAR10g distributions on the human head are calcu-
lated using the FDTD method. Based on this study, it is con-
cluded that even under maximum WLAN power settings, the
SAR ratings of the wearable antenna designed for this study are
still under the IEEE maximum RF exposure limits.

Conflict of interest. None.
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