GENERALIZATION OF A THEOREM OF P.D. FINCH'S ON INTEGRATION OF SET-FUNGTIONS

F. CUNNINGHAM, Jr.

(Received 27 October 1965)

Let \mathscr{M} be a σ-field of subsets of a space \mathscr{X}. A partition of \mathscr{X} means a countable partition Π of \mathscr{X} into sets belonging to \mathscr{M}; the set of partitions is directed by refinement. A. Kolmogoroff in 1930 [1] discussed an integral

$$
\begin{equation*}
I_{F}(S)=(K) \int_{S} d F=\underset{M \in I}{\lim \sum_{M} F(M \cap S)} \tag{1}
\end{equation*}
$$

(Moore-Smith limit as Π gets finer) for set-functions F defined on \mathscr{K}. When it exists, I_{F} is σ-additive, and if by chance F is already σ-additive, then $I_{F}=F$.

In [2], P. D. Finch studies the same integral for the case that $F=f \mu$, μ being a positive σ-finite measure and f an arbitrary set-function on \mathscr{M}, whose values on sets of μ-measure 0 are evidently irrelevant. This case is not really special, since any Kolmogoroff-integrable F can be so written, modulo sets of μ-measure 0 , by using for μ the total variation of I_{F}, but the giving of μ enriches the situation with new questions such as those treated below. Let us call a function F on \mathscr{M}-integrable if I_{F} as defined in (1) exists, and call $f F$-integrable for μ if $f \mu$ is K-integrable.

An important example of an F-integrable function f is the quotient ν / μ of a signed measure by a measure. Here the singular part of ν with respect to μ has no effect on the integral of $f \mu$, because it can be isolated in a set of μ-measure 0 . In fact it is easy to see that $I_{j \mu}=\nu_{a}$, the absolutely continuous part of ν. If we let θ be the Radon-Nikodym derivative of ν_{a} with respect to μ, then this equation can be written

$$
\begin{equation*}
(K) \int d f \mu=\int \theta d \mu \tag{2}
\end{equation*}
$$

More generally, as remarked by Finch, any F-integrable f satisfies (2) if for θ we use the derivative of $I_{j \mu}$. Thus the generalized integration can be regarded as a way of assigning to certain set-functions specific random variables of which they are to be regarded as generalized averages. The questions I propose to answer are these:

1. When do two F-integrable set-functions have the same integral, and hence the same θ in (2)?
2. Given $f F$-integrable, how badly can the values of f be shaken up without destroying integrability? That is, for what real functions g will $g(f)$ still be integrable?
3. How does replacing f by $g(f)$ change θ ?

The first question was answered by Kolmogoroff, but has to be re-answered in Finch's terms for application to the others. The theorem referred to in the title ([3] Theorem 1) is a partial answer to questions 2 and 3 for the case that f has the form ν / μ and g is of bounded variation.

As in other integration theories, questions of F-integrability have two sides, one having to do with regularity of the integrand, the other with its size. I address myself first to the regularity side, which is to say the proofs are written for bounded f. The results hold in reality more generally, but their application to unbounded f requires fuller explanation, which I save for the last part of the paper. There is no loss of generality in supposing μ to be finite throughout, rather than only σ-finite.

If $S \in \mathscr{M}$ and Π is a partition, I shall write $S<\Pi$ to mean that $S \subset M$ for some $M \in I$. Adapting Kolmogoroff's phrase, I call set-functions f_{1} and f_{2} differentially equivalent for μ when for every $\delta>0$ there exists a partition Π such that

$$
\begin{equation*}
\left|f_{1}(S)-f_{2}(S)\right|<\delta \text { for all } S<\Pi, \mu(S)>0 . \tag{3}
\end{equation*}
$$

Theorem 1. Suppose that $f_{1}\left(\right.$ or $\left.f_{2}\right)$ is F-integrable for μ. Then a necessary and sufficient condition for $I_{f_{1} \mu}=I_{f_{2} \mu}$ is that f_{1} and f_{2} be differentially equivalent for μ.

Proof. Sufficiency. Let $S \in \mathscr{M}, \mu(S)>0$. Given $\varepsilon>0$, choose a partition Π (of S) to satisfy (3) with $\delta=\varepsilon / 2 \mu(S)$, and so fine that for any Π^{\prime} finer than Π

$$
\left|I_{f_{1} \mu}(S)-\sum_{\Pi^{\prime}} f_{1} \mu\right|<\frac{1}{2} \varepsilon
$$

Then we have

$$
\left|I_{f_{1} \mu}(S)-\sum_{\Pi^{\prime}} f_{2} \mu\right|<\frac{1}{2^{\prime}} \varepsilon+\sum_{\Pi^{\prime}}\left|f_{1}-f_{2}\right| \mu<\varepsilon
$$

whence $I_{f_{1}{ }^{\mu}}(S)=I_{f_{z^{\prime}}}(S)$ by definition.
Necessity. Suppose both integrals exist and f_{1} and t_{2} are not differentially equivalent for μ. Then there exists $\delta>0$ such that for any partition Π of \mathscr{X} there is some $S<\Pi$ with $\mu(S)>0$ and $\left|f_{1}(S)-f_{2}(S)\right| \geqq \delta$. Apply this to a partition Π so fine that both f_{1} and t_{2} have variations $\leqq \frac{1}{4} \delta$ on every $M \in I$ with $\mu(M)>0$ ([2] Theorem 3.3). Then

$$
\left|\mu(S)^{-1} I_{f_{1} \mu}(S)-f_{i}(S)\right|<\frac{1}{4} \delta \quad(i=1,2)
$$

Since $\left|f_{1}(S)-f_{2}(S)\right| \geqq \delta$, this implies $I_{f_{1} \mu}(S) \neq I_{f_{2} \mu}(S)$, finishing the proof.
If θ is a measurable real-valued function on \mathscr{X}, write $\theta(\mu)$ for the distribution of θ as a random variable, that is the measure defined for Borel sets E of the real line by $\theta(\mu)(E)=\mu\left(\theta^{-1}(E)\right)$.

Theorem 2. Suppose θ is μ-summable, and let $\nu=\int \theta d \mu$. The following three conditions on a bounded real function g of a real variable are equivalent:
(2.1) $g(\nu / \mu)$ is F-integrable for μ.
(2.2) The set of discontinuities of g has measure 0 for the continuous (non-atomic) part of $\theta(\mu)$.

$$
\begin{equation*}
(K) \int_{S} d g(v / \mu) \mu=\int_{S} g(\theta) d \mu \quad(S \in \mathscr{M}) \tag{2.3}
\end{equation*}
$$

Proof. $\theta(\mu)$ has at most countably many atoms situated at real points x_{1}, x_{2}, \cdots. Let $M_{n}=\theta^{-1}\left(x_{n}\right) \in \mathscr{M}$, and set $M_{0}=\mathscr{X}-\bigcup M_{n}$. It suffices to prove the theorem separately for each of the subspaces M_{n}. For $n \neq 0$ this is trivial, because then θ is constant on M_{n}, while on $M_{0} \mu$ has a continuous distribution. We can therefore assume that $\theta(\mu)$ is continuous.

Lemma. Let $a=\operatorname{ess} \inf \theta$ and $b=$ ess sup θ. Then $\nu(S) / \mu(S)$ for $\mu(S)>0$ takes every value in the interval (a, b) (which may be infinite).

Proof. For any $c>a, S_{c}=\theta^{-1}(a, c)$ has positive measure, and $a<\nu\left(S_{c}\right) / \mu\left(S_{c}\right)<c$. Similarly ν / μ has values arbitrarily close to b. Now (μ, v) is an atom-free vector valued measure having values on rays from the origin into the right half-plane with slopes approximating a and b. Since by Lyapounov's theorem the range of (μ, ν) is convex, (μ, ν) has values also on all rays with intermediate slopes.

Proof that (2.1) implies (2.2). Suppose the set of discontinuities of g has positive $\theta(\mu)$-measure. Then for some $\varepsilon>0$ the set E_{ε} of all points where g has saltus $\geqq \varepsilon$ has positive measure. For any partition Π of \mathscr{X} there is some $M \in \Pi$ which intersects $\theta^{-1}\left(E_{\varepsilon}\right)$ in a set of positive measure. Applying the lemma to the subspace M gives an open interval containing points of E_{ε}, every point of the interval being $\nu(S) / \mu(S)$ for some $S \subset M$ with $\mu(S)>0$. But then $g(\nu / \mu)$ has variation $\geqq \varepsilon$ on M, which by [2] Theorem 3.3 rules out F-integrability for $g(\nu / \mu)$.

Proof that (2.2) implies (2.3) Let $f_{1}=g(\nu / \mu)$ and $f_{2}=\int g(\theta) d \mu / \mu$. I shall prove that f_{1} and f_{2} are differentially equivalent for μ. Then it will follow from Theorem 1 that $I_{f_{1} \mu}=I_{f_{2} \mu}=f_{2} \mu$, and this is (2.3). To this end let $\varepsilon>0$ be given. The set $E_{t \varepsilon}=E$ where g has saltus $\geqq \frac{1}{2} \varepsilon$ being closed, its complement is a countable disjoint union of intervals. Partition each of these intervals into countably many disjoint subintervals on each
of which g has oscillation $<\varepsilon$, and let Π_{R} be the partition of the line consisting of E and all the intervals so formed. Let $\Pi=\theta^{-1}\left(\Pi_{R}\right)$ be the corresponding partition of \mathscr{X}. This is the partition required to show differential equivalence. Indeed, suppose $S<\Pi, \mu(S)>0$. Since $\mu\left(\theta^{-1}(E)\right)=0, S$ is contained in $\theta^{-1}(I)$ for some interval I of Π_{R}, and $g(I)$ is contained in some interval J of length ε. Since $\theta(S) \subset I, v(S)=\int_{S} \theta d \mu \in \mu(S) I$. (This estimation works only because I is an interval!) Therefore $f_{1}(S)=$ $g(\nu(S) / \mu(S)) \in J$. But also $g(\theta(S)) \subset J$, whence also $f_{2}(S) \in J$. Thus $\left|f_{1}(S)-f_{2}(S)\right|<\varepsilon$.

Since (2.3) obviously implies (2.1), Theorem 2 is proved.
Remark. The bounded functions g which satisfy the three conditions of the theorem for all μ and θ are just those having at most countably many discontinuities. This function class includes the functions of bounded variation, so that Theorem 2 generalizes Theorem 1 of [3].

The next theorem generalizes Theorem 2 as far as possible to arbitrary integrable functions f in place of v / μ.

Theorem 3. Let f and f_{1} be set-functions F-integrable and differentially equivalent for μ. Let g be a bounded real function satisfying (2.2) with θ the derivative with respect to μ of $v=I_{f_{\mu}}=I_{f_{1} \mu}$. Then $g(f)$ and $g\left(f_{1}\right)$ are F integrable and differentiably equivalent for μ.

Proof. Nothing is lost by taking $f_{1}=\nu / \mu$, because of the transitivity of differential equivalence. Given $\varepsilon>0$, partition the real line as in the proof of Theorem 2 into E and countably many disjoint intervals on each of which g has oscillation $<\varepsilon$. Refine this partition by separating from each interval its end points, if any, so that aside from E each cell is either a point or an open interval. It suffices to consider the problem on each subspace $M=\theta^{-1}(I)$ for I in this partition, and this is trivial except when I is one of the open intervals. For this case form a partition Π of M as follows. Let $I=(a, b)$, and let $\left\{\delta_{n}\right\}$ be a decreasing sequence of numbers tending to 0 as limit, with $\delta_{1}<\frac{1}{2}(b-a)$. Let $I_{n}=\left(a+\delta_{n}, b-\delta_{n}\right)$, and let $M_{n}=\theta^{-1}\left(I_{n}-I_{n-1}\right)$ for $n=2,3, \ldots$ and $M_{1}=\theta^{-1}\left(I_{1}\right)$. Using the differential equivalence of f and f_{1} find for each n a partition Π_{n} of M_{n} such that $S \subset M_{n}, S<\Pi_{n}, \mu(S)>0$ implies $\left|f(S)-f_{1}(S)\right|<\delta_{n}$. The desired partition Π of M is formed by combining all the Π_{n} to refine the partition $\left\{M_{n}\right\}$. To see that this works, suppose $S<\Pi, \mu(S)>0$. Then $S \subset M_{n}$ for some n. Since $\theta(S) \subset I_{n}$, we have $f_{1}(S)=\nu(S) / \mu(S) \in I_{n}$, and since $\left|f(S)-f_{1}(S)\right|<\delta_{n}$, we have also $f(S) \in I$. Finally, g has oscillation $<\varepsilon$ on I, so that $\left|g(f(S))-g\left(f_{1}(S)\right)\right|<\varepsilon$.

Corollary. (2) and (2.2) together imply
$(K) \int d g(f) \mu=\int g(\theta) d \mu$.
The following simple example shows that, in contrast to Theorem 2, (2.2) is not necessary for the F-integrability of $g(f)$, and that F-integrability of both $g(f)$ and $g\left(f_{1}\right)$ is not sufficient for equality of their integrals. Let $(\mathscr{X}, \mathscr{M}, \mu)$ be the Borel unit interval with Lebesgue measure. Let $\theta(x)=x$, and $\boldsymbol{v}=\int \theta d \mu$. Define for $\mu(M)>0$
$f(M)=\left\{\begin{array}{l}v(M) / \mu(M) \text { when this is rational } \\ r, \text { where } r \text { is rational and }|r-v(M) / \mu(M)|<\mu(M) \text { otherwise; }\end{array}\right.$ $f_{1}(M)$ similarly, interchanging rational and irrational.

Let g be the characteristic function of the rationals. One verifies easily that f, f_{1}, and ν / μ are all differentially equivalent for μ. Moreover $g(f) \equiv 1$ and $g\left(t_{1}\right) \equiv 0$ are trivially F-integrable for μ, with unequal integrals. Yet g is discontinuous on a set of measure 1 , and $\theta(\mu)$ is continuous.

For set-functions f which are not essentially bounded [2] the above results are in doubt because they depend on the necessity of the condition for F-integrability proved by Finch only for essentially bounded functions. I shall call f bounded on M if $\{f(S) \mid S \subset M, \mu(M)>0\}$ is bounded, and I shall call f locally bounded if there exists a partition Π such that f is bounded on M for every $M \in \Pi$. This is weaker than essential boundedness. I shall prove that if the integral of f for μ as defined by (1) exists, then f is locally bounded. Finch's theorem on integrability then applies to each cell of the resulting partition, removing the above objection. Note that for Theorems 2 and 3 to apply also to unbounded functions g, (2.2) should be strengthened by requiring g to be summable for $\theta(\mu)$.

Assuming that $(K) \int d f \mu$ exists, there exists a partition such that $\sum_{n} f \mu$ is convergent and bounded on all finer partitions Π. By restricting our attention to one cell of this partition at a time we can assume at the outset that $\left|\sum_{\Pi} f \mu\right| \leqq 1$ for all Π. It is necessary to prove first that $f \mu$ is locally bounded. For this it suffices to show the existence of a set $M \in \mathscr{M}$ with $\mu(M)>0$ and f bounded on M, for then a maximal disjoint family of such M gives the required partition. If no such M exists we can build a decreasing sequence of sets $\left\{M_{n}\right\}$ with $M_{0}=\mathscr{X}, \mu\left(M_{n}\right)>0$ and $\left|f\left(M_{n}\right)\right|>\left|f\left(\mathscr{X}-M_{n-1}\right)\right|+2$. Then since

$$
\left|f\left(M_{n}\right)+f\left(M_{n-1}-M_{n}\right)+f\left(\mathscr{X}-M_{n-1}\right)\right| \leqq 1
$$

we have $\left|f\left(M_{n-1}-M_{n}\right)\right| \geqq$ 1. But then setting $M_{\infty}=\bigcap M_{n}$ and $\Pi=\left\{M_{n} \mid 0 \leqq n \leqq \infty\right\}$ we have $\sum_{\Pi} f \mu$ divergent.

We can now construct a partition to show f itself is locally bounded. First choose a maximal disjoint sequence $\left\{M_{1}^{m}\right\}$ from \mathscr{M} with $\mu\left(M_{1}^{m}\right)>0$
and $f\left(M_{1}^{m}\right)>1$. (If no such sets exist, all the better!) Let $M_{1}=\mathscr{X}-\bigcup_{m} M_{1}^{m}$. Then t is bounded above on M_{1}. Next choose, disjoint from M_{1} a maximal disjoint sequence $\left\{M_{2}^{m}\right\}$ with $f\left(M_{2}^{m}\right)>2$, and set $M_{2}=M_{1}-\bigcup_{m} M_{2}^{m}$. Then f is bounded above on M_{2}. Continue thus indefinitely, and let $M_{\infty}=\mathscr{X}-\bigcup_{n} M_{n}$. Clearly $\left\{M_{n} \mid 1 \leqq n \leqq \infty\right\}$ is the required partition, provided we show that $\mu\left(M_{\infty}\right)=0$. But for any n the partition Π consisting of the set $\bigcup_{i=1}^{n} M_{i}$ and the sets M_{n}^{m} gives a sum $\sum_{n I} f \mu>n \mu\left(M_{\infty}\right)-k$, where k is a bound for $f \mu$ on \mathscr{X}. If $\mu\left(M_{\infty}\right)>0$ this gives unbounded sums. For the partition constructed f is bounded above on each cell. Repeat the argument in each cell to bound f below.

References

[1] A. Kolmogoroff, 'Untersuchung uber das Integralbegriff', Math. Annalen 103 (1930), 654-696.
[2] P. D. Finch, 'Integration of real-valued set functions in abstract spaces', J. Australian Math. Soc. 4 (1964), 202-213.
[3] P. D. Finch, 'A generalization of the Radon-Nikodym theorem', J. Australian Math. Soc. 5 (1965), 17-24.

Bryn Mawr College
Bryn Mawr, Pennsylvania

