A THEOREM ON RINGS

I. N. HERSTEIN

In a recent paper, Kaplansky [2] proved the following theorem: Let R be a ring with centre Z, and such that $x^{n(x)} \in Z$ for every $x \in R$. If R, in addition, is semi-simple then it is also commutative.

The existence of non-commutative rings in which every element is nilpotent rules out the possibility of extending this result to all rings. One might hope, however, that if R is such that $x^{n(x)} \in Z$ for all $x \in \mathbb{R}$ and the nilpotent elements of R are reasonably "well-behaved," then Kaplansky's theorem should be true without the restriction of semi-simplicity.

This is in fact what we obtain in this paper. More precisely, we prove the following two theorems:

THEOREM. Let R be a ring with centre Z such that $x^{n(x)} \in Z$ for all $x \in R$. Then R is not commutative only if every element in the commutator ideal of R is nilpotent.

THEOREM. Let R be a ring with centre Z such that $x^{n(x)} \in Z$ for all $x \in R$. Then if R possesses no non-zero nil-ideals it is commutative.

Since every nil-ideal of a ring is in the radical of that ring, these results contain that of Kaplansky which we have cited. Any restriction on a ring which will forbid the commutator ideal from being a nil-ideal, in the presence of $x^{n(x)} \in Z$, will force commutativity on the ring in question.

Henceforth every ring R which we consider will have centre Z and the property that $x^{n(x)}$ is in Z for every x in R, where n(x) is a positive integer depending on x. Whenever we use the word ideal we mean a two-sided ideal.

We begin with

THEOREM 1. Suppose that in R,

(i) Z possesses no divisors of zero of R,

(ii) there is an $a \in Z$, $a \neq 0$, so that, given any non-zero ideal U of R, then for some integer m(U), $a^{m(u)} \in U$. Under these conditions R is commutative.

Proof. Consider the set of ordered pairs (r, s) where $r \in R$, $s \neq 0 \in Z$. We define $(r_1, s_1) \sim (r_2, s_2)$ if and only if $r_1 s_2 = r_2 s_1$. Clearly this is a proper equivalence relation. We denote the equivalence class of (r, s) by [r, s]. Let R^* be the set of all these equivalence classes. In R^* we define an addition and multiplication by

(1)
$$[b, c] + [d, g] = [bg + dc, cg]$$

(2) [b, c] [d, g] = [bd, cg].

Received December 10, 1951.

238

Since Z is free of divisors of zero of R, these operations are meaningful and independent of the particular representatives of the classes. Moreover R^* forms a ring under these operations. If we denote [rs, s] by [r, 1], then the set $\overline{R} = \{ [r, 1] \in R^* \mid r \in R \}$ is a ring isomorphic (in the obvious way) to R. Let Z^* be the centre of R^* . A simple computation shows that $[r, s] \in Z^*$ if and only if $r \in Z$. Moreover Z^* is now a field.

We wish to show that R^* is a simple ring. Suppose $U^* \neq (0)$ is an ideal of R^* . Let

$$U = \{x \in R \mid [x, 1] \in U^*\}.$$

U is not merely (0), for if $[b, z] \in U^*$, $b \neq 0$, then [z, 1] $[b, z] = [b, 1] \in U^*$. A simple verification shows that U is an ideal of R. Since this is so, by our hypothesis (2), $a^{m(u)} \in U$ for an appropriate integer m(u); that is $[a^{m(u)}, 1] \in U^*$. But since $[a^{m(u)}, 1] \in \mathbb{Z}^*$ it has an inverse in \mathbb{R}^* , whence $U^* = \mathbb{R}^*$. Hence \mathbb{R}^* is a simple ring, and so is semi-simple. In R^* we also have $x^{n(x)} \in Z^*$ for each $x \in R^*$, and so, by Kaplansky's theorem, R^* is commutative. Since $R^* \supset \overline{R}$ an isomorphic replica of R we immediately have that R is commutative.

We next proceed to

THEOREM 2. Suppose in R that $c \neq 0$ is an element of the commutator ideal of R. Then if U is any non-zero ideal of R there exists an integer m(u) so that $c^{m(u)} \in U.$

Proof. Suppose that there exists an ideal U or R such that

(3)
$$U \neq (0),$$

(4) $c^{i} \notin U$

$$(4) c^{i} \notin$$

By Zorn's lemma there exists an ideal V of R possessing the properties (3) and (4) of U and such that if W is any ideal of R with $W \supset V$ and $W \neq V$ then for some integer $K, c^{\kappa} \in W$. Consider $\overline{R} = R/V$. In \overline{R} , from the choice of V. we have

$$ar{x}^{n(ar{x})} \in ar{Z}$$
 for each $ar{x} \in ar{R}$:

for all i = 1, 2, ..., i

and if $\bar{a} = \bar{c}^{n(c)} \neq 0 \in \bar{Z}$, then for any non-zero ideal \bar{T} of \bar{R} some power of \bar{a} is in \overline{T} .

We claim that there are no divisors of zero of \overline{R} in \overline{Z} . For suppose $\overline{z} \in \overline{Z}$ and that $\bar{z}\bar{x} = 0$, $\bar{z} \neq 0 \neq \bar{x}$. Let

$$A(\bar{z}) = \{ \bar{x} \in \bar{R} \mid \bar{z}\bar{x} = 0 \}.$$

Clearly $A(\bar{z})$ is an ideal of R and is not the zero ideal, hence $\bar{a}^i \in A(\bar{z})$ for an appropriate i. Thus $za^i \in V$ where $\bar{z} = z + V$, $\bar{a} = a + V$. Without loss of generality $i = n(a)^t$ for large enough t. Let

$$T = \{ y \in R \mid ya^i \in V \}.$$

Since $a^i \in Z$, T is an ideal of R, and clearly $T \supset V$. If $T \neq V$ then $c^j \in T$ for appropriate j, whence a^{K} is in T for appropriate K; thus $a^{i+K} \in V$ and so some power of c is in V, a contradiction. Hence \overline{Z} has no zero-divisors of \overline{R} . But then all the conditions of Theorem 1 are fulfilled, so $\overline{R} = R/V$ is commutative. Hence $V \supset$ commutator ideal $\supset c$, a contradiction, and Theorem 2 is established.

We are now led to

THEOREM 3. Suppose $0 \neq c$ is in the commutator ideal of R and that c is not nilpotent. Then c is not a divisor of zero.

Proof. Let $a = c^{n(c)} \neq 0$; $a \in Z$, and suppose that cx = 0, $x \neq 0$. Then certainly ax = 0. Let

$$A(a) = \{x \in R \mid ax = 0\}.$$

Since $a \in Z$, A(a) is an ideal of R and $A(a) \neq (0)$. So by Theorem 2, $c^{t} \in A(a)$ for a suitable t, and so $a^{j} \in A(a)$ for some j; then $a^{j+1} = 0$, forcing a, and so c, to be nilpotent, contradicting our hypothesis. Thus Theorem 3 is established.

We are now in a position where we can prove the main theorem of the paper, namely,

THEOREM 4. Suppose R is a ring with centre Z and such that $x^{n(x)} \in Z$ for all $x \in R$. Then if R is not commutative, the commutator ideal of R is a non-zero nil-ideal.

Proof. Suppose that R is not commutative, and that $c \neq 0$ is in the commutator ideal of R and is not nilpotent. By Theorem 3, c is not a divisor of zero. Suppose there is a $z \neq 0$ in Z which is a divisor of zero, say zx = 0, $x \neq 0$. Let $A(z) = \{x \in R \mid zx = 0\}$. A(z) is an ideal of R and is not (0). So by Theorem 2, $c^i \in A(z)$ for some *i*. But then $c^i z = 0$, whence z = 0 since c is not a zero-divisor. So no $0 \neq z \in Z$ is a divisor of zero of R. Let us list the properties of R:

(a) $x^{n(x)} \in Z$ for all $x \in R$.

(b) Z has no divisors of zero of R.

(c) There exists a $b \in Z$ which is not nilpotent such that given any non-zero ideal U of R then $b^{m(u)} \in U$ (by the above remarks, $b = c^{n(c)}$ will do if c is any non-nilpotent element of the commutator ideal).

Thus all the conditions of Theorem 1 are satisfied, and so R is commutative, contrary to our assumption. Hence we are forced to conclude that every element in the commutator ideal is nilpotent, proving Theorem 4.

THEOREM 5. Suppose the ring R is such that $x^{n(x)} \in Z$, the centre of R, for all $x \in R$. Then if R has no non-zero nil-ideals, it must be commutative.

Theorem 5 is an immediate consequence of Theorem 4, but actually the two results are equivalent. For suppose R is a ring with non-zero nil-ideals, then by a result of Köthe [3] the sum of all nil-ideals of R is a nil-ideal T, R/T possesses no non-zero nil-ideals, and in R/T, $x^{n(x)}$ is in the centre. So by Theorem 5, R/T

is commutative; hence $T \supset$ commutator ideal, which thus must be a nil-ideal; consequently Theorem 5 implies Theorem 4.

It might be pointed out that Theorem 5 cannot be appreciably weakened. The only plausible weakening would be to change "no nil-ideals" to "no nil-potent ideals" in the statement of Theorem 5, but there is an example, due to Baer [1], of a nil-ring with no nilpotent ideals; this rules out the possibility of the stronger result.

References

- 1. Reinhold Baer, Radical ideals, Amer. J. Math., 65 (1943), 540.
- 2. Irving Kaplansky, A theorem on division rings, Can. J. Math., 3 (1951), 290-292.
- 3. G. Köthe, Die Struktur der Ringe, deren Restklassenring nach dem Radikal vollständig reduzibel ist, Math. Z., 32 (1930), 170.

Cowles Commission for Research in Economics and The University of Chicago