G. Ikegami Nagoya Math. J. Vol. 67 (1977), 15-34

EXISTENCE OF REGULAR COVERINGS ASSOCIATED WITH LEAVES OF CODIMENSION ONE FOLIATIONS

GIKŌ IKEGAMI

§1. Statement of results

In this paper we are concerned with transversely orientable codimension one foliations. Let \mathcal{F} be a C^r -foliation as above in a smooth manifold M, $r \ge 1$, and let F_0 be a closed leaf of \mathscr{F} . A neighborhood U of F_0 is called a *bicollar* of F_0 in this paper if there is a normal line bundle $\nu: U \to F_0$ with respect to a fixed Riemannian metric on M such that each fibre of ν is transverse to \mathscr{F} . For a bicollar U of F_0 , U_+ $=F_0 \cup (a \text{ component of } U-F_0) \text{ is called a collar of } F_0$. A leaf $F \in \mathscr{F}$ is said to be asymptotic to F_0 in U_+ if $F \cap V \neq \phi$ for any neighborhood V of F_0 in U_+ . Let F_V be a leaf asymptotic to F_0 of the restricted foliation $\mathscr{F}|V$, where V is a neighborhood of F_0 in U_+ . A plaque of F is a leaf of $F \mid N$ diffeomorphic to an open (n-1)-ball, where N is a sufficiently small open *n*-ball in the *n*-manifold *M*. A C^r -covering $\tilde{\nu}: \tilde{F}$ $ightarrow F_{\scriptscriptstyle 0}$ is said to be associated with $F_{\scriptscriptstyle V}$ if there is an injection $i\colon F_{\scriptscriptstyle V}
ightarrow ilde{F}$ such that $\tilde{\nu}i = \nu |F_{\nu}|$ and that *i* maps any plaque of $F_{\nu} C^{r}$ -diffeomorphically into \tilde{F} . The one sided holonomy group $\Phi_+(F_0)$ of F_0 is the holonomy group of F_0 defined by the restricted foliation $\mathcal{F} | U_+$.

The main purpose of this paper is to prove Theorem 2, which is an existence theorem of associated regular coverings. Theorem 1 is used in the proofs of Theorem 2 and Theorem 5. Theorem 3 and Theorem 4 are the properties of associated regular coverings. As an application we show Theorem 5, which is an unstability theorem of foliations.

THEOREM 2. Let \mathscr{F} be a transversely orientable C^r -foliation of codimension one, $r \geq 1$, F_0 be an orientable closed leaf of \mathscr{F} , and let U_+ be a collar of F_0 . Suppose that the one sided holonomy group $\Phi_+(F_0)$ is abelian. Then there is a neighborhood V_0 of F_0 in U_+ such that any

Received February 10, 1975.

Revised November 5, 1976.

neighborhood V of F_0 in V_0 satisfies the followings.

For each asymptotic leaf F to F_0 in U_+ let F_V be an asymptotic leaf of $\mathscr{F} | V$ to F_0 contained in F. Then, an unique (in the sense of the equivalence of coverings) C^r -regular covering $\tilde{\nu} \colon \tilde{F} \to F_0$ is associated with F_V and $\nu_*(\pi_1(F_V)) = \tilde{\nu}_*(\pi_1(\tilde{F}))$ in $\pi_1(F_0)$. Furthermore, the equivalence class of $\tilde{\nu}$ does not depend on V, and so an unique normal subgroup $G(F) = \nu_*(\pi_1(F_V))$ of $\pi_1(F_0)$ is associated with F.

 $\tilde{\nu}$ and G(F) are considered as invariants on the behavior of F in a neighborhood of F_0 in U_+ . There is an example of \mathscr{F} , F_0 , and an asymptotic leaf F to F_0 such that, for any one sided neighborhood V of F_0 , no regular covering is associated with F_V .

THEOREM 1. Suppose that \mathscr{F} , F_0 , and U_+ satisfy the same conditions as Theorem 2. Then, there are connected orientable codimension one submanifolds N_1, \dots, N_ℓ of F_0 satisfying the followings.

(i) $F_0 - N_1 \cup \cdots \cup N_\ell$ is connected.

(ii) Let F_* be the manifold obtained by cutting open F_0 along N_1, \dots, N_i , and let $g: F_* \to F_0$ be the map pasting F_* on F_0 naturally. (There are definitions of F_* and g in §3.) Thus $\partial F_* = \bigcup_{i=1}^i N'_i \cup N''_i$, $g^{-1}(N_i) = N'_i \cup N''_i$, and $g(N'_i) = N_i = g(N''_i)$. Then, there are injective diffeomorphisms $f_i: [0, \varepsilon] \to [0, \varepsilon]$, $i = 1, \dots, \ell$ with the following properties.

(a) f_i(0) = 0 and f_if_j(t) = f_jf_i(t) for any i, j = 1, ..., ℓ and t such that f_if_j(t) and f_jf_i(t) are defined. (b) Denote by X_f the quotient manifold obtained from F_{*}×[0,ε] by identifying (x, t) ∈ N'_i×[0,ε] and (x, f_i(t)) ∈ N''_i×[0,ε] for all i = 1, ..., ℓ and t ∈ [0,ε]. By the commutativity of f_i and f_j, X_f is well defined. The product foliation of F_{*}×[0,ε] induces a foliation F_f on X_f. Then, there is a neighborhood V of F₀ in U₊ such that there is a leaf preserving C^r-diffeomorphism from V onto X_f.
(c) The germs of f₁, ..., f_ℓ at 0 generate Φ₊(F₀). Moreover, if dim F₀ > 2, they are chosen so that the germs of f₁, ..., f_ℓ are a basis of Φ₊(F₀).

The following results are consequence of Theorem 1 and Theorem 2.

THEOREM 3. Let \mathscr{F} be a transversely orientable C¹-foliation of codimension one, and let F_0 be an orientable closed leaf of \mathscr{F} . Suppose that $\pi_1(F_0) = \mathbb{Z}^m \times G$ for a finite group G and that $\{\log h'_{a_1}, \dots, \log h'_{a_m}\}$

is rationally independent for a basis $\alpha_1, \dots, \alpha_m$ of \mathbb{Z}^m , where h'_{α_i} is the derivative of the holonomy of α_i .

Then there are collars U_+ and U_- in the both sides of F_0 such that any leaf meeting U_{σ} is asymptotic to F_0 in U_{σ} and that, for any neighborhood V of F_0 in U_{σ} and for any $F \in \mathscr{F}$ meeting U_{σ} , an unique regular covering \tilde{F} with $\pi_1(\tilde{F}) \cong G$ is associated with F_V . Here σ denotes + or -.

THEOREM 4. Let \mathscr{F} be a transversely orientable codimension one foliation of class C^r , for $r \geq 2$, and let F_0 be an orientable closed leaf of \mathscr{F} . Suppose that the holonomy group $\Phi(F_0)$ of F_0 is abelian and that there is $\tilde{f} \in \Phi(F_0)$ such that the derivative \tilde{f}' of \tilde{f} at 0 satisfies $\tilde{f}' \neq 1$.

Then, there is a bicollar $U = U_+ \cup U_-$ of F_0 satisfying the followings. Let σ denote + or -. (i) Any leaf meeting U_σ is asymptotic to F_0 in U_σ . (ii) For any neighborhood V of F_0 in U_σ and for any leaf F meeting U_σ , an unique regular covering $\tilde{\nu}$ of F_0 is associated with F_V and the normal subgroup G(F) of $\pi_1(F_0)$ is well defined. Moreover, (iii) $\tilde{\nu}$ and G(F) do not depend on U_+, U_- , and F.

This theorem shows that, under the above assumptions, all leaves near F_0 in a collar are in the same situation and $\mathscr{F} | U_+, \mathscr{F} | U_-$ have the same structure.

Let F be a closed submanifold of M, and let $\mathcal{F}, \mathcal{F}'$ be foliations on a neighborhood of F in M having F as a leaf. We say that \mathcal{F} and \mathcal{F}' are *locally equivalent* at F, if there are neighborhoods U and U' of Fsuch that there is a homomorphism from U onto U' mapping any leaf of $\mathcal{F} \mid U$ onto a leaf of $\mathcal{F}' \mid U'$.

Let \mathscr{F}_F^1 be the set of germs at F of codimension $k \ C^1$ -foliations \mathscr{F} defined on neighborhoods $U_{\mathscr{F}}$ of F in M such that \mathscr{F} has F as a leaf, and let \mathscr{F}_F^1 have a suitable topology defined by the germ of the section into the Grassmannian which defines the foliation. H. Levine and M. Shub show an unstability theorem [2] as follows: If $\pi_1(F)$ has the form $\mathbb{Z}^m \times G$ for m > 1 and an arbitrary group G, there are no stable elements in \mathscr{F}_F^1 with respect to local equivalence at F.

Here, we show an unstability theorem for foliations defined on a fixed neighborhood U of F in M. Let $\operatorname{Fol}_F^r(U)$ be the space of C^r -foliations \mathscr{F} of codimension one defined on a neighborhood U of F in M such that \mathscr{F} has F as a leaf. Let $\operatorname{Fol}_F^r(U)$ have the C^r -topology defined

in [1] using the charts $\{\varphi: I^{n-1} \times I \to M^n\}$.

THEOREM 5. Let F be an orientable closed submanifold of M of codimension one such that $\pi_1(F) = Z^m \times G$ for m > 1 and a finite group G. Let \mathcal{F} be a transversely orientable codimension one foliation of class C^r on a neighborhood of F in M with F as a leaf. Then,

(i) if r = 2, there is a neighborhood U of F such that for any neighborhood N of $\mathscr{F} | U$ in $\operatorname{Fol}_{F}^{1}(U)$ there is \mathscr{F}' in N which is not locally equivalent at F to \mathscr{F} . Moreover,

(ii) if r > 2, assume that there is α in $\pi_1(F)$ such that $|h'_{\alpha}| \neq 1$, where h'_{α} is the derivative of the holonomy of α . Then, the same result as (i) holds for $\operatorname{Fol}_{F^{-1}}^{r-1}(U)$.

In the preparation for this research the papers, [4] of Nishimori and [3] of Nakatsuka, were very helpful to the author.

§2. Preparation for Theorem 1

This section will be in the version of class C^{∞} . Let M be an oriented *n*-manifold, $n \geq 3$, and let N be an oriented closed smooth submanifold of M with codimension one. Let $F: B^{n-1} \times I \to M$ be an orientation preserving embedding such that $F(B^{n-1} \times I) \cap N = F(B^{n-1} \times \partial I)$, where B^{n-1} denotes an (n-1)-ball in \mathbb{R}^{n-1} with origin 0, I = [0, 1], and ∂ denotes the boundary. We obtain an (n-1)-submanifold

$$N_* = \{N - \operatorname{int} F(B^{n-1} \times \partial I)\} \cup F(\partial B^{n-1} \times I) .$$

By smoothing the corners, N_* can be regarded as a smooth manifold. Define a simple arc $f: I \to M$ by f(t) = F(0, t), $t \in I$. We shall say that N_* is obtained from N by attaching a 1-handle along a simple arc f. If the intersection number of N and f is zero, N_* is orientable. In this case we assume that N_* has the orientation compatible with that of N. Then, $[N_*] = [N]$ in $H_{n-1}(M; Z)$, where [] denotes the homology class.

LEMMA 1. Let M be an oriented manifold of dimension $n \ge 3$, and let N' be a connected oriented closed (n-1) submanifold of M. Then, for a simple closed path c in M which intersects N' at finite points, there is a connected oriented closed (n-1) submanifold N of M satisfying the following conditions.

(i) [N] = [N'] in $H_1(M; Z)$.

(ii) N intersects c at only $|[c] \cdot [N]|$ points.

(iii) For a small neighborhood U of c in M, N is included in $N' \cup U$.

Proof. We may assume $[c] \cdot [N'] \ge 0$ and that N' intersects with c transversely at more than $[c] \cdot [N']$ points, $x_1 = c(t_1), \dots, x_r = c(t_r), 0 < t_1 < \dots < t_r < 1$. We construct by induction on r the desired manifold N. There is i such that $1 \le i \le r-1$ and that the intersection number of N' and $c \mid [t_i, t_{i+1}]$ is zero. By attaching a 1-handle to N' along the simple subarc $c \mid [t_i, t_{i+1}]$, we obtain N'_* which intersects at (r-2) points and with $[N'_*] = [N']$. Then N'_* has the inductive property.

LEMMA 2. Let $N \subset M$ be a pair of oriented connected manifolds of codimension one. If there is γ in $H_1(M; \mathbb{Z})$ such that the intersection number $\gamma \cdot [N]$ is 1, then M - N is connected.

Proof. First, we show that there is a closed path $u: I \to M$, u(0) = u(1), such that u intersects with N at a single point. Let c be any closed path with $[c] = \gamma$. We may assume that c meets N transversely, and hence c meets N at finitely many points, $x_1 = c(t_1), \dots, x_r = c(t_r)$, $0 < t_1 < \dots < t_r < 1$. We shall construct by induction on r a closed path u as above. We may assume $r \ge 3$. There is i with $1 \le i \le r-1$ such that the intersection number of N and $c \mid [t_i, t_{i+1}]$ is zero. Since N is connected there is a path d from x_i to x_{i+1} in N. Let ε be a sufficiently small positive real number. Then, we can take a path d' from $c(t_i - \varepsilon)$ to $c(t_{i+1} + \varepsilon)$ along d so that d' does not intersect with N. $c([0, t_i - \varepsilon]) \cup (\text{image } d') \cup c([t_{i+1} + \varepsilon, 1])$ is an image of a path $c': I \to M$ which meets N at (r-2) points. Moreover, we have $[c'] \cdot [N] = \gamma \cdot [N] = 1$, where [c'] denotes the homology class of c'. Then c' has the inductive property, and therefore u is constructed.

For any two points p_0 and p_1 in M - N there is a path c from p_0 to p_1 . We may assume as above that c intersects N transversely, and hence c meets N at finite points, $y_1 = c(s_1), \dots, y_r = c(s_r), \ 0 < s_1 \dots < s_r$ < 1. We shall construct by induction on r a path v from p_0 to p_1 such that v does not intersect N. Let u be a closed path such that u intersects N at a single point $y_0 = u(t_0)$ for $t_0 \in (0, 1)$. There is a path dfrom y_1 to y_0 in N. Let $\varepsilon > 0$ be sufficiently small. Then, there is a path d_- in M - N from $c(s_1 - \varepsilon)$ to $u(t_0 - \delta)$ along d, where δ is a positive or negative real number with a sufficiently small absolute value. Similarly, there is d_+ from $c(s_1 + \varepsilon)$ to $u(t_0 + \delta)$. $c([0, s_1 - \varepsilon]) \cup (\text{image } d_-)$ $\cup u(I - (t_0 - \delta, t_0 + \delta)) \cup (\text{image } d_+) \cup c([s_1 + \varepsilon, 1])$ is an image of a path c' from p_0 to p_1 which intersects N at (r - 1) points. Then c' has the inductive property. This proves Lemma 2.

Let $H: H_1(M; \mathbb{Z}) \to \mathbb{Z}_{(1)} + \cdots + \mathbb{Z}_{(m)}$ be an epimorphism onto a free abelian group of rank m, $\mathbb{Z}_{(i)} \cong \mathbb{Z}$ $(i = 1, \dots, m)$. Let $p_i: \mathbb{Z}_{(1)} + \cdots + \mathbb{Z}_{(m)}$ $\to \mathbb{Z}_{(i)}$ be the projection onto the *i*-th factor. By Künneth's theorem the map $\kappa: H^1(M; \mathbb{Z}) \to \text{Hom}(H_1(M; \mathbb{Z}), \mathbb{Z})$ induced from slant operation is an isomorphism since $H_0(M; \mathbb{Z})$ is free abelian. Assume $\partial M = \phi$. Let $\delta: H^1(M; \mathbb{Z}) \to H_{n-1}(M; \mathbb{Z})$ be the Poincaré duality isomorphism, and let $\theta_i = \delta \kappa^{-1}(p_i H)$. For $\gamma \in H_1(M; \mathbb{Z})$,

$$egin{aligned} & \gamma \cdot heta_i = \gamma \, \cap \, \delta^{-1}(heta_i) \ &= \gamma \, \cap \, (\kappa^{-1}(p_iH)) \ &= p_i H(\gamma) \ , \end{aligned}$$

where \cap denotes cup product. Thus we have

(1) $\gamma \cdot \theta_i = p_i H(\gamma) \quad \text{for } \gamma \in H_1(M; \mathbb{Z}) .$

Now, we set the following result of Nakatsuka.

LEMMA 3 ([3]). Let M be a compact connected orientable manifold of dimension $n \ge 3$ and $\theta \in H_{n-1}(M; \mathbb{Z})$. Then, there is a connected orientable (n-1)-submanifold N in M such that $\theta = [N]$ if and only if there is a homology class $\gamma \in H_1(M; \mathbb{Z})$ such that the intersection number $\gamma \cdot \theta = 1$.

PROPOSITION 1. Let M be a connected orientable closed manifold of dimension $n \ge 3$, and let $H: H_1(M; \mathbb{Z}) \to \mathbb{Z}_{(1)} + \cdots + \mathbb{Z}_{(m)}$ be an epimorphism. Then, there are connected closed codimension one submanifolds N_1, \dots, N_m of M satisfying the followings.

(i) N_1, \dots, N_m are in general position in M.

(ii) $\gamma \cdot [N_i] = p_i H(\gamma)$ for any $\gamma \in H_1(M; \mathbb{Z}), i = 1, \dots, m$.

(iii) $N_i - N_1 \cup \cdots \cup N_{i-1}$ is connected for $i = 2, \cdots, m$.

(iv) $M - N_1 \cup \cdots \cup N_m$ is connected.

(v) $Hj_*(H_1(M - N_1 \cup \cdots \cup N_i; \mathbb{Z})) = \mathbb{Z}_{(i+1)} + \cdots + \mathbb{Z}_{(m)}$ for i = 1, $\cdots, m - 1$, and = 0 for i = m. Here, j is the inclusion $M - N_1 \cup \cdots \cup N_i \to M$.

Proof. Since $p_iH: H_1(M; \mathbb{Z}) \to \mathbb{Z}_{(i)}$ is an epimorphism, there is $\gamma_i \in H_1(M; \mathbb{Z})$ such that $H(\gamma_i)$ is the generator of $\mathbb{Z}_{(i)}$, $i = 1, \dots, m$. Then,

by Lemma 3, $\gamma_i \cdot \theta_i = p_i H(\gamma_i) = 1$ implies that there are connected orientable closed (n-1)-submanifolds N'_1, \dots, N'_m in M such that $[N'_i] = \theta_i$, $i = 1, \dots, m$. N'_1, \dots, N'_m may be assumed to be in general position.

We vary N'_i to N_i , $i = 1, \dots, m$, by induction on i so that N_1, \dots, N_i satisfy the following condition C(i). Denote $M_i = M - N_1 \cup \cdots \cup N_i$. *C*(i)

- (i) N_1, \dots, N_i are in general position in M.
 - (ii) $[N_k] = \theta_k, \ k = 1, \dots, i.$
 - (iii) $N_k N_1 \cup \cdots \cup N_{k-1}$ is connected for $k = 2, \cdots, i$ if $i \ge 2$.
 - (iv) M_i is connected.
 - (v) $H \circ j_*(H_1(M_k; Z) = Z_{(k+1)} + \cdots + Z_{(m)}$ for $k = 1, \cdots, i$.

First, we construct N_1 as follows. Since $n \ge 3$, there are simple closed paths c_2, \dots, c_m such that $[c_2] = \gamma_2, \dots, [c_m] = \gamma_m$ and that they are mutually disjoint. By Lemma 1, there is a manifold N_1 such that $[N_1] = [N'_1]$ and that N_1 does not intersects c_2, \dots, c_m . By Lemma 2, the existence of γ_1 implies that $M - N_1$ is connected. Since c_2, \dots, c_m are contained in M_1 and $0 = \gamma \cdot [N_1] = p_1 H(\gamma)$ for $\gamma \in H_1(M_1; \mathbb{Z})$, it is not difficult to see that $Hj_*(H_1(M_1; \mathbb{Z})) = \mathbb{Z}_{(2)} + \cdots + \mathbb{Z}_{(m)}$. Then, N_1 satisfies the condition C(1).

Next, suppose that N_1, \dots, N_i are constructed so that the condition C(i) is satisfied. Now, we construct N_{i+1} so that N_1, \dots, N_i, N_{i+1} satisfy C(i + 1). By (v) of C(i) there is a simple closed path c_{i+1} in M_i realizing $\gamma_{i+1} \in H_1(M; \mathbb{Z})$, and hence the intersection number $c_{i+1} \cdot (N'_{i+1} - N_1)$ $\cup \cdots \cup N_i = c_{i+1} \cdot N'_{i+1} = [c_{i+1}] \cdot [N'_{i+1}] = \gamma_{i+1} \cdot \theta_{i+1}$ is 1. We can take c_{i+1} so that it intersects N'_{i+1} transversely. Then, by the method of the proof of Lemma 3 in [3], there is a closed manifold $N_{i+1}^{\prime\prime}$ such that (i) $N_{i+1}'' \cap M_i$, so N_{i+1}'' , is connected and (ii) $[N_{i+1}''] = [N_{i+1}']$ in $H_{n-1}(M; Z)$ and $[N'_{i+1} \cap M_i] = [N'_{i+1} \cap M_i]$ in $H_{n-1}(M_i; \mathbb{Z})$. Here, N''_{i+1} is obtained by attaching slender 1-handles to N'_{i+1} along simple arcs in M_i . Next, we vary $N_{i+1}^{\prime\prime}$ to construct N_{i+1} so that N_1, \dots, N_i and N_{i+1} satisfy the condition C(i + 1). By (v) of C(i), there are simple closed paths c_{i+2}, \dots, c_m in M_i realizing $\gamma_{i+2}, \dots, \gamma_m$, respectively. We may assume that they intersect $N_{i+1}^{\prime\prime}$ transversely and that they are mutually disjoint. Similarly as the construction of N_1 , we obtain N_{i+1} from N''_{i+1} by attaching slender 1-handles along simple arcs contained in c_{i+2}, \dots, c_m so that N_{i+1} does not intersects c_{i+2}, \dots, c_m , that $[N_{i+1}] = [N'_{i+1}]$, and that $H \circ j_*(H_1(M-N_1))$ $(\cup \cdots \cup N_i \cup N_{i+1}; Z)) = Z_{(i+2)} + \cdots + Z_{(m)}$. Since c_{i+1} is a path in M_i and $c_{i+1} \cdot (N_{i+1} \cap M_i) = c_{i+1} \cdot N_{i+1} = 1$, Lemma 2 implies that $M_{i+1} = M_i$

 $-N_{i+1}$ is connected. From the above, we can see that N_1, \dots, N_{i+1} satisfy the condition C(i+1). This proves Proposition 1.

§3. Proof of Theorem 1

Let \mathscr{F} be a codimension one foliation of class C^r of an orientable (n + 1)-manifold M, and suppose that an orientable *n*-manifold F_0 is a closed leaf of \mathscr{F} . Let $\nu: U \to F_0$ is an R-bundle of a bicollar U of F_0 , and let $\nu_+: U_+ \to F_0$ is an R_+ -bundle of a collar U_+ of F_0 , $R = (-\infty, \infty)$ and $R_+ = [0, \infty)$. F_0 is identified with the zero section of ν or ν_+ , and the fibres of ν and ν_+ are identified with R and R_+ respectively.

A curve $u: [0, 1] \to U$ is called a *leaf curve* from u(0) to u(1) if the image of u is contained in a leaf. Let $y \in \nu^{-1}u(0)$ and let $u_y: [0, 1] \to U$ be a leaf curve such that $u_y(0) = y$ and $\nu u_y(t) = u(t)$ for any $t \in [0, 1]$. We call u_y the *y*-lift of u. There exists at most one *y*-lift of u. If there is the *y*-lift of u for any y in $[y_1, y_2] \subset \mathbf{R} = \nu^{-1}u(0)$ the holonomy map h_u from $[y_1, y_2]$ into $\mathbf{R} = \nu^{-1}u(b)$ is defined by $h_u(y) = u_y(b)$.

Let $x_* \in F_0$ and u be a closed leaf curve with base point x_* . The germ of h_u at 0 is called the *holonomy* of u. The holonomy of u is determined by the homotopy class [u] of u in $\pi_1(F_0, x_*)$ and is independent of the choice of ν up to conjugations by origin preserving diffeomorphism of \mathbf{R} . Let G^r be the group of the germs at 0 of all orientation-preserving local C^r -diffeomorphisms of \mathbf{R} which leave the origin fixed. A homomorphism $h: \pi_1(F_0, x_*) \to G^r$ is defined by corresponding the holonomy of u to $[u] \in \pi_1(F_0, x_*)$. The image of the homomorphism h is called the *holonomy group* of F_0 and denoted by $\Phi(F_0)$. The one-sided holonomy group $\Phi_+(F_0)$ of F_0 is defined similarly by replacing ν and \mathbf{R} by ν_+ and \mathbf{R}_+ .

A proof of the following Lemma 4 is found in the proof of Lemma 2 in [4].

LEMMA 4. If $\Phi_+(F_0)$ is the trivial group there is a neighborhood U_0 of F_0 in U_+ such that the restricted foliation $\mathscr{F} \mid U_0$ is trivial; i.e. for each leaf F of $\mathscr{F} \mid U_0$, $\nu: F \to F_0$ is a diffeomorphism.

In this paper, we assume that $\Phi_+(F_0)$ is abelian, then $\Phi_+(F_0)$ is free abelian since G^r has no torsion element. Let $\iota: \Phi_+(F_0) \to Z_{(1)} + \cdots + Z_{(m)}$ be an isomorphism and let $\eta: \pi_1(F_0, x_*) \to H_1(F_0; \mathbb{Z})$ be the Hurewicz homomorphism. Then, there is an epimorphism $H: H_1(F_0; \mathbb{Z}) \to \mathbb{Z}_{(1)} + \cdots$

 $+ Z_{(m)}$ such that $H_{\eta} = \iota h$. Let p_i be the projection from $Z_{(1)} + \cdots + Z_{(m)}$ onto the *i*-th factor. Thus we have the following diagram.

Let N_1, \dots, N_m be codimension one smooth submanifolds in F_0 such that they are in the general position and that $F_0 - N_1 \cup \dots \cup N_m$ is connected. Denote by F_1 the compact manifold with boundary obtained by attaching two copies N'_1 and N''_1 of N_1 to $F_0 - N_1$, so that $\partial F_1 = N'_1$ $\cup N''_1$. Then, a local diffeomorphism $g_1: F_1 \to F_0$ is defined by $g_1(x) = x$ for $x \notin \partial F_1$ and $g_1(y') = g_1(y'') = y$ for $y \in N_1$, where $y' \in N'_1$ and $y'' \in N''_1$ are the copies of $y \in N_1$. $g_1^{-1}(N_i) \subset F_1$ is denoted also by N_i , $i = 2, \dots, m$. Inductively we define F_2, \dots, F_m and $g_i: F_i \to F_{i-1}$, $i = 2, \dots, m$, similarly as above. The boundaries of F_2, \dots, F_m have possibly corners. Let $g: F_m \to F_0$ be the composition $g_j \cdots g_1$. F_m is said to be the manifold which is obtained by cutting open F_0 along N_1, \dots, N_m . g is said to be the map pasting F_m on F_0 .

Proof of Theorem 1. If n = 1, this theorem is well known in the theory of dynamical system. If n > 2, let N_1, \dots, N_m be the manifolds obtained by Proposition 1 for the epimorphism $H: H_1(F_0; \mathbb{Z}) \to \mathbb{Z}_{(1)} + \cdots + \mathbb{Z}_{(m)} \cong \Phi_+(F_0)$ defined above. If n = 2, let p be the genus of F_0 . Then we can take simple closed curves N_1, \dots, N_{2p} in F_0 such that $N_i \cap N_j$ is at most one point for any different i, j and that $F_0 - N_1 \cup \cdots \cup N_{2p}$ is an open 2-ball. We define N_1, \dots, N_i in the theorem as above.

Since $F_0 - N_1 \cup \cdots \cup N_\ell$ is a 2-ball for n = 2, $\Phi_+(F_0 - N_1 \cup \cdots \cup N_\ell) = 0$ in $\mathscr{F}|_{\nu_+^{-1}}(F_0 - N_1 \cup \cdots \cup N_\ell)$. When n > 2, let c be a simple closed path in $F_0 - N_1 \cup \cdots \cup N_m$. Let γ be the homotopy class of c in $\pi_1(F_0, x_*)$, $x_* \in F_0 - N_1 \cup \cdots \cup N_m$, and $[N_i]$ be the homology class of N_i in $H_1(F_0; \mathbb{Z})$. Then, by Proposition 1,

$$egin{aligned} p_i \iota h(\gamma) &= p_i H_\eta(\gamma) \;, \ &= p_i H([c]) \;, \ &= [c] \in H_1(F_0; Z) \ &= [c] \cdot [N_i] = 0 \end{aligned}$$

since $c \cap N_i = \phi$, for $i = 1, \dots, m$. This implies $\Phi_+(F_0 - N_1 \cup \dots \cup N_\ell) = 0$, if n > 2. By using Lemma 4, we see that there is a injective

 C^r -diffeomorphism $\xi: (F_0 - N_1 \cup \cdots \cup N_\ell) \times [0, \delta] \to U_+$ such that (i) ξ maps each $(F_0 - N_1 \cup \cdots \cup N_\ell) \times \{t\}$ into a leaf of $\mathscr{F} | U_+$ and that (ii) $\nu_+\xi(x,t) = x$ for $x \in F_0 - N_1 \cup \cdots \cup N_\ell$ and $t \in [0, \delta]$. Put $\xi((F_0 - N_1 \cup \cdots \cup N_\ell) \times [0, \delta]) = \tilde{F}_* \subset \nu_+^{-1}(F_0 - N_1 \cup \cdots \cup N_\ell)$. By identifying $\xi(x, t)$ with $(x, t), (x, t) \in (F_0 - N_1 \cup \cdots \cup N_\ell) \times [0, \delta]$ is a coordinates of \tilde{F}_* . Putting $V' = \operatorname{cl} F_*, V'$ is a closed neighborhood of F_0 in U_+ . We are dealing with the holonomy maps and the holonomies for closed paths in F_0 with the fixed base point $x_* \in \operatorname{int} \tilde{F}_*$. From now on in this section a holonomy maps are considered as local diffeomorphisms of $[0, \delta]$ by identifying $[0, \delta]$ with $x_* \times [0, \delta]$, where $x_* \times [0, \delta]$ is the expression of the above coordinates.

The number of the connected components of $N_i - N_1 \cup \cdots \cup N_{i-1}$ $\cup N_{i+1} \cup \cdots \cup N_i$ is only one if n = 2. For n > 3, let N_{ij} be one of these components. For any x in N_{ij} there is a closed path v_x in F_0 with base point x_* such that v_x intersects $N_1 \cup \cdots \cup N_\ell$ at only one point x, since $F_0 - N_1 \cup \cdots \cup N_\ell$ is connected. There is ε_x with $0 < \varepsilon_x$ $\leq \delta$ such that there is a leaf curve of $\mathscr{F}|V'$ which is the lift of v_x starting from $(x_*, \varepsilon_x) \in v_+^{-1}(x_*)$. So, the holonomy map f_x of v_x is defined on $[0, \varepsilon_x]$. Let \tilde{v}_x be a lift of v_x and let $\tilde{v}_x(0) = s'$, $v_x(1) = s''$ in $\{x_*\}$ $\times [0, s_x] \subset v_+^{-1}(x_*).$ Let $\tilde{v}_x(t_0) \in v_+^{-1}(x).$ For any t', t'' with $0 \leq t' < t_0 < t''$ ≤ 1 , we have $\tilde{v}_x(t') = (v_x(t'), s')$ and $\tilde{v}_x(t'') = (v_x(t''), s'')$ in the coordinates $\tilde{F}_* = (F_0 - N_1 \cup \cdots \cup N_\ell) \times [0, \delta]$, since $\mathscr{F} | \tilde{F}_*$ is trivial. Hence, we have $f_x(s') = s''$. Let N_{ij} have the orientation which is compatible with the inclusion $N_{ij} \subset N_i$ and the given orientation of N_i . For another point y in N_{ij} let v_y be a closed curve as above such that $[v_y] \cdot [N_{ij}]$ $= [v_x] \cdot [N_{ij}]$. From the triviality of $\mathscr{F} | \tilde{F}_*$ it is easy to see that the source of the holonomy map f_y of v_y is same as f_x and that $f_y = f_x$ on it, i.e. $f_y(s) = f_x(s)$ for any $s \in [0, \varepsilon_x]$. Therefore, there are ε_{ij} with $0 < \varepsilon_{ij} < \delta$ and an injective diffeomorphism $f_{ij}: [0, \varepsilon_{ij}] \rightarrow [0, \delta]$ satisfying the following property; for any x in N_{ij} and any closed path v_x in F_0 with base point x_* such that v_x intersects $N_1 \cup \cdots \cup N_\ell$ at only one point x and that $[v_x] \cdot [N_i] = 1$, the holonomy map of v_x is defined on $[0, \varepsilon_{ij}]$ and is equal to f_{ij} . For two components N_{ij} and N_{ik} of $N_i - N_1$ $\cup \cdots \cup N_{i-1} \cup N_{i+1} \cup \cdots \cup N_{\ell}$ the holonomy maps f_{ij} and f_{ik} are coincide on a small neighborhood of 0, since $[v_x] \cdot [N_i] = [v_y] \cdot [N_i] = 1$ so the holonomies of v_x and v_y are coincide. Hence, there are ε_i with $0 < \varepsilon_i$ $< \delta$ and an injective diffeomorphism $f_i: [0, \varepsilon_i] \to [0, \delta]$ satisfying the same

property as above. Therefore, there are $0 < \varepsilon < \delta$ and injective diffeomorphisms f_1, \dots, f_{ℓ} for N_1, \dots, N_{ℓ} satisfying the following property; for any x in N_i and any closed path v_x in F_0 with base point x_* such that v_x intersects $N_1 \cup \dots \cup N_{\ell}$ at only one point x and that $[v_x] \cdot [N_i]$ = 1, the holonomy map of v_x is defined on $[0, \varepsilon]$ and is equal to f_i . Since $\Phi(F_0)$ is abelian, we may assume that f_1, \dots, f_{ℓ} are mutually commutative by choosing ε sufficiently small.

Since f_i and f_i^{-1} are monotonously increasing, $f_i(\varepsilon) > \varepsilon$ implies $\varepsilon > f_i^{-1}(\varepsilon)$. So, replacing f_i by f_i^{-1} (i.e. replacing the orientation of N_i) if necessary, we can suppose that $\varepsilon \geq f_i(\varepsilon)$ for all *i*. Notice that $N_i = \bigcup \operatorname{cl} N_{ij}$ and $g^{-1}(N_{ij}) = N'_{ij} \cup N''_{ij}$. Here, $g: F_* \to F_0$ is the diffeomorphism pasting F_* on F_0 , F_* is the manifold obtained by cutting open F_0 along N_1, \dots, N_ℓ , and N'_{ij}, N''_{ij} are diffeomorphic manifolds such that $g(N'_{ij})$ $= N_{ij} = g(N_{ij}')$. Then, $g^{-1}(N_i) = N_i' \cup N_i''$, where N_i' and N_i'' are diffeomorphic manifolds such that $N'_i = \bigcup_i \operatorname{cl} N'_{ij}$, $N''_i = \bigcup_i \operatorname{cl} N''_{ij}$ and $g(N'_i) = N_i$ $= g(N_i'')$. Since N_1, \dots, N_ℓ are in general position and f_1, \dots, f_ℓ are mutually commutative, it is not difficult to show that a quotient manifold X_f is well defined from $F_* \times [0, \varepsilon]$ by identifying $(x, s) \in N'_i \times [0, \varepsilon]$ and $(x, f_i(s)) \in N''_i \times [0, \varepsilon]$. Let \mathscr{F}_f be the foliation on X_f induced from the trivial foliation of $F_* imes [0,\varepsilon]$. Since int F_* is diffeomorphic to $F_0 - N_1$ $\cup \cdots \cup N_i$, we can see from the above facts that there is a C^r -diffeomorphism from a neighborhood V of F_0 in U_+ onto X_f mapping each leaf of $\mathscr{F} | V$ onto a leaf of \mathscr{F}_{f} .

By the constructions of f_1, \dots, f_ℓ , these maps satisfies the property (ii)-(c) in the theorem. This completes the proof of Theorem 1.

§4. Proof of Theorem 2

LEMMA 5. Let f_1, \dots, f_{ℓ} be injective homeomorphisms from $[0, \varepsilon]$ into $[0, \varepsilon]$ such that $f_i(0) = 0$ for $i = 1, \dots, \ell$. Suppose

$$f_i f_j(t) = f_j f_i(t)$$
, $i, j = 1, \dots, \ell$.

Put

(1)
$$h_1(t) = f_{i_\alpha}^{\sigma_\alpha} \cdots f_{i_1}^{\sigma_1}(t) , \qquad \sigma_a = \pm 1 ,$$

 $h_2(2) \qquad \qquad h_2(t) = f_{j_\beta}^{ au_\beta} \cdots f_{j_1}^{ au_1}(t) \;, \qquad au_b = \pm 1 \;.$

Then $h_1(t) = h_2(t)$ for any t such that $h_1(t)$ and $h_2(t)$ are defined if

(3) $\sum_{i_a=i} \sigma_{i_a} = \sum_{j_b=i} \tau_{j_b}$, $i = 1, \dots, \ell$, $a = 1, \dots, \alpha$, $b = 1, \dots, \beta$. Here, f_i^{-1} is considered to be defined on $[0, f_i(\varepsilon)]$.

Proof. By the assumption we have

$$f_i^{\sigma} f_j^{\tau}(t) = f_j^{\tau} f_i^{\sigma}(t)$$
, $\sigma, \tau = \pm 1$, $i, j = 1, \dots, \ell$

for any t such that both sides of the expression are defined. We define a linear order \leq in the set $\{f_1, \dots, f_i, f_1^{-1}, \dots, f_i^{-1}\}$ as follows; for f_i , f_j and f_i^{-1}, f_j^{-1} , we define $f_i \leq f_j$ and $f_i^{-1} \leq f_j^{-1}$ respectively if $i \leq j$, and we define $f_i \leq f_j^{-1}$ for any f_i and f_j^{-1} . It is not difficult to see that \leq is a linear order.

Next, we show that if $f_i^{\sigma_i} f_j^{\sigma_j}(t)$ is defined and $f_i^{\sigma_i} < f_j^{\sigma_j}, f_j^{\sigma_j} f_i^{\sigma_i}(t)$ is also defined and $f_i^{\sigma_i} f_j^{\sigma_j}(t) = f_j^{\sigma_j} f_i^{\sigma_i}(t)$. This property is trivial for f_i and f_j . For f_i^{-1} and f_j^{-1} it is shown as follows. Suppose $f_i^{-1} < f_j^{-1}$. If $f_i^{-1} f_j^{-1}(t)$ is defined, $f_j^{-1}(t) \leq f_i(\varepsilon)$, so $t \leq f_j f_i(\varepsilon)$. Since $f_j f_i(\varepsilon) = f_i f_j(\varepsilon)$, $t \leq f_i f_j(\varepsilon)$. Hence, $f_i^{-1}(t) \leq f_j(\varepsilon)$, and so $f_j^{-1} f_i^{-1}(t)$ is defined. Then $f_i^{-1} f_j^{-1}(t) = f_j^{-1} f_i^{-1}(t)$. Finally, for f_i and f_j^{-1} it is shown as follows. Suppose $f_i < f_j^{-1}$. If $f_i f_j^{-1}(t)$ is defined, $t \leq f_j(\varepsilon)$, so $t_i(t) \leq f_i f_j(\varepsilon)$. Since $f_i f_j(\varepsilon) = f_j f_i(\varepsilon) \leq f_j(\varepsilon)$, $f_i(t) \leq f_j(\varepsilon)$. Then, $f_j^{-1} f_i(t)$ is defined, and so $f_i f_j^{-1}(t) = f_j^{-1} f_i(t)$.

If $f_j(t)$ or $f_j^{-1}(t)$ is defined, $f_j(f_i^{-1}f_i)(t)$ or $(f_i^{-1}f_i)f_j^{-1}(t)$ is defined and $f_j(t) = f_j(f_i^{-1}f_i)(t)$ or $f_j^{-1}(t) = (f_i^{-1}f_i)f_j^{-1}(t)$, respectively. Next, we interplate $f_i^{-1}f_i$ in the right hand of the expressions of (1) and (2) if necessary so that the same number of f_i and f_i^{-1} are contained in these expressions for each $i = 1, \dots, \ell$. Finally, we change the order in the rows of the terms in these expressions to the order induced from \leq . Then, the obtained expressions are identical. This proves $h_1(t) = h_2(t)$.

LEMMA 6. Let \mathscr{F} be a transversely orientable C^r -foliation of codimension one, $r \geq 1$, and let F_0 be a compact leaf of \mathscr{F} . Let ν be a normal \mathbf{R}_+ -bundle map from a collar U_+ onto F_0 such that ν is transverse to \mathscr{F} , and let $F \in \mathscr{F}$ be asymptotic to F_0 in U_+ . Then, the following properties are satisfied.

(i) For a neighborhood V of F_0 in U_+ , let F_V be an asymptotic leaf of $\mathscr{F} | V$ to F_0 such that $F_V \cap F \neq \phi$. Then, an unique regular covering $\tilde{\nu} \colon \tilde{F} \to F_0$ is associated with F_V and $\nu_*(\pi_1(F_V)) = \tilde{\nu}_*(\pi_1(\tilde{F}))$ in $\pi_1(F_0)$ if and only if the following condition (*) is satisfied.

(*) For a point x_* in F_0 and any closed path u in F_0 with the base

points x_* let y and z be any two points in $\nu^{-1}(x_*) \cap F_{\nu}$ such that $h_u(y)$ and $h_u(z)$ are defined, where h_u is the holonomy map of u. Then, $h_u(y) = y$ if and only if $h_u(z) = z$.

(ii) Suppose F and V satisfies (*). Then, for any neighborhood V' of F_0 in V, the same regular covering as $\tilde{\nu}$ is associated with $F_{V'}$.

Proof. Let $\tilde{\nu}: \tilde{F} \to F_0$ be a regular covering and let u be a closed curve in F_0 with base point x_* . For y and z in $\tilde{\nu}^{-1}(x_*)$ let u_y and u_z be the lifts of u starting from y and z respectively. Then, u_y is a closed curve if and only if u_z is so. Therefore, if there is an associated regular covering with F_V , condition (*) is satisfied.

Next, we prove the converse. Define a subgroup $G(F_V)$ of $\pi_1(F_0, x_*)$ by

 $G(F_{\nu}) = \{ \alpha \in \pi_1(F_0, x_*) | \text{ there is a closed curve } \overline{u} \text{ in } F_{\nu} \\ \text{ such that } [\nu \overline{u}] = \alpha \} \text{,}$

where [] denotes the homotopy class. We must show that $G(F_V)$ is a subgroup of $\pi_1(F_0, x_*)$. For α and β in $G(F_V)$ there are closed curves \overline{u} and \overline{v} in F_V such that $[\nu \overline{u}] = \alpha$ and $[\nu \overline{v}] = \beta^{-1}$. Let $y, z \in \nu^{-1}(x_*)$ be the base point of $\overline{u}, \overline{v}$. Assume $x_* < y < z$ in the line $\nu^{-1}(x_*)$. Put $\nu \overline{u} = u$ and $\nu \overline{v} = v$. By the existence of $\overline{v}, h_v(y)$ is defined. Condition (*) implies $h_v(y) = y$. So, there is the lift \tilde{v} of v starting from y. \tilde{v} is a closed curve in F_V . Then, $\overline{u}\tilde{v}$ is a closed curve in F_V such that $[\nu(\overline{u}\tilde{v})]$ $= \alpha\beta^{-1}$. Therefore, $\alpha\beta^{-1} \in G(F_V)$.

To the conjugacy class of a subgroup of $\pi_1(F_0, x_*)$ an unique covering of F_0 exists. Let $\tilde{\nu} \colon \tilde{F} \to F_0$ be the covering corresponding to the conjugacy class including $G(F_V)$. Then, for $\tilde{y} \in \tilde{\nu}^{-1}(x_*)$, $\tilde{\nu}_*(\pi_1(F, y))$ is a subgroup of $\pi_1(F_0, x_*)$ which is conjugate to $G(F_V)$.

Next, we define the map $i: F_V \to \tilde{F}$. Fix two points $y_* \in F_V$ and $\tilde{y}_* \in \tilde{F}$ so that $\nu(y_*) = \tilde{\nu}(\tilde{y}_*) = x_*$ and that $\tilde{\nu}_*(\pi_1(\tilde{F}, \tilde{y}_*)) = G(F_V)$. For any point y in F_V there is a curve $u: [0, 1] \to F_V$ such that $u(0) = y_*$ and u(1) = y. Let \tilde{u} be the lift of νu starting from \tilde{y}_* for the covering $\tilde{\nu}$. We define $i(y) \in \tilde{F}$ by $i(y) = \tilde{u}(1)$. i(y) is well defined, i.e. for another curve v in F_V from y_* to y, $\tilde{v}(1) = \tilde{u}(1)$. In fact, since $[\nu(uv^{-1})] \in G(F_V)$ and $G(F_V) = \tilde{\nu}_*(\pi_1(\tilde{F}, \tilde{y}_*))$, the lift of $\nu(uv^{-1})$ starting from $\tilde{y}_* \in \tilde{F}$ is a closed curve. Hence, $\tilde{u}^{-1}\tilde{v}$ is a closed curve with the base point $\tilde{u}(1)$. This implies $\tilde{v}(1) = \tilde{u}(1)$. By the definition of i, $\tilde{\nu} \circ i = \nu$ is obvious.

If $\nu(y) \neq \nu(y')$, clearly $i(y) \neq i(y')$. Next, we show that $i(y) \neq i(y')$

when $\nu(y) = \nu(y')$ and $y \neq y'$. Let u' and v' be the curves in F_v from y_* to y and y' respectively. Put $\nu u' = u$ and $\nu v' = v$. We can assume that y < y' in $\nu^{-1}(y)$. Since $h_{v^{-1}}(y') = y_*$, $h_{v^{-1}}(y)$ is defined and $h_{v^{-1}}(y) < y_*$ in $\nu^{-1}(x_*)$. Since $h_{uv^{-1}}(y_*) = h_{v^{-1}}(y) < y_*$, $[uv^{-1}] \notin G(F_v)$. So that, the lift of uv^{-1} starting from \tilde{y}_* in \tilde{F} is never a closed curve. Hence, $i(y) = \tilde{u}(1) \neq \tilde{v}(1) = i(y')$. Therefore, i is an injection.

It is obvious that *i* maps any plaque of $F_v C^r$ -diffeomorphically into \tilde{F} .

To show $\tilde{\nu}$ is a regular covering we are sufficient to show that $G(F_{\nu})$ is a normal subgroup of $\pi_1(F_0, x_*)$. Let u and v be closed curves in F_0 with the base point x_* . Assume $[u] \in G(F_{\nu})$. Since F_{ν} is asymptotic to F_0 there is y in $\nu^{-1}(x_*) \cap F_{\nu}$ such that $h_{vuv-1}(y)$ is defined. Since $[u] \in G(F_{\nu})$, $h_u h_v(y) = h_v(y)$. So that, $h_{vuv-1}(y) = h_{\nu-1}h_u h_v(y) = y$. Hence, $[vuv^{-1}] \in G(F_{\nu})$. This implies that $G(F_{\nu})$ is a normal subgroup. Therefore, (i) is proved.

To prove (ii) it is sufficient, if $G(F_V) = G(F_{V'})$ is shown. But, this is obvious since F_V is asymptotic to F_0 .

Proof of Theorem 2. By Theorem 1 we obtain $N_1, \dots, N_\ell \subset F_0, V$, and the functions f_1, \dots, f_ℓ . Let $x_* \in F_0 - N_1 \cup \dots \cup N_\ell$. For an asymptotic leaf F of $\mathscr{F} | V$ to F_0 , let F_V be an asymptotic leaf of $\mathscr{F} | V$ to F_0 such that $F_V \subset F$.

First, we show that, if u, v are closed paths in F_0 with base point x_* in a same homology class of $H_1(F_0; \mathbb{Z})$, $h_u(y) = h_v(y)$ for any $y \in \nu^{-1}(x_*)$ $\cap V$ such that $h_u(y), h_v(y)$ are defined. Let \tilde{u}, \tilde{v} be the leaf curves of $\mathscr{F} | V$ which are lifts of u, v starting from y. We may assume that \tilde{u}, \tilde{v} intersect $\nu^{-1}(N_1 \cup \cdots \cup N_\ell)$ transversely. So, since $F_0 - N_1 \cup \cdots \cup N_\ell$ is connected, \tilde{u} and \tilde{v} are homotopic to $\tilde{u}_1 \cdots \tilde{u}_a$ and $\tilde{v}_1 \cdots \tilde{v}_\beta$ by homotopies such that the homotopies preserve the end points of the paths and that each homotopy level is a leaf curve of $\mathscr{F} | V$, where $\tilde{u}_1 \cdots \tilde{u}_a$ and $\tilde{v}_1 \cdots \tilde{v}_\beta$ are the paths which are the compositions of the paths \tilde{u}_a, \tilde{v}_b with end points in $\nu^{-1}(x_*)$ such that putting $\nu \tilde{u}_a = u_a$ and $\nu \tilde{v}_b = v_b$, u_a and v_b are closed paths in F_0 each of which intersect $N_1 \cup \cdots \cup N_\ell$ at one point. Here, the composition of paths is defined by

$$uv(x) = \begin{cases} u(2t) & \text{for } 0 \leq t \leq \frac{1}{2} \\ v(2t-1) & \text{for } \frac{1}{2} \leq t \leq 1 \end{cases}$$

Define N_{i_a} and N_{j_b} by $u_a \cap (N_1 \cup \cdots \cup N_b) = u_a \cap N_{i_a}$ and $v_b \cap (N_1 \cup \cdots \cup N_b) = u_a \cap N_{i_a}$

 $\cup \cdots \cup N_{\ell} = v_b \cap N_{j_b}$. Let the intersection numbers be $[u_a] \cdot [N_{i_a}] = \sigma_a$ and $[v_b] \cdot [n_{j_b}] = \tau_b$, where $\sigma_a, \tau_b = \pm 1$. Here, N_1, \cdots, N_{ℓ} are imposed the orientations such that if a closed path u intersects $N_1 \cup \cdots \cup N_{\ell}$ at only one point in N_i with the intersection number $[u] \cdot [N_i] = \sigma$, as in the proof of Theorem 1, then the holonomy map h_u of u is coincide with f_i^{σ} . Thus, we have

$$h_u(y) = h_{u_1 \cdots h_a}(y) = h_{u_a} \cdots h_{u_1}(y)$$
$$= f_{i_a}^{\sigma_a} \cdots f_{i_1}^{\sigma_1}(y) .$$

Similarly,

$$h_v(y) = f_{j_\beta}^{\tau_\beta} \cdots f_{j_1}^{\tau_1}(y) \; .$$

Since u and v are in the same homology class, Lemma 5 implies $h_u(y) = h_v(y)$.

If we can show that V and F_V satisfy the condition (*) in Lemma 6, the proof of Theorem 2 is completed by Lemma 6. (*) is shown as follows. Let y, z be two points in $\nu^{-1}(x_*) \cap F_V$ such that $h_u(y)$ and $h_u(z)$ are defined, where u is a closed path in F_0 with end points x_* . We can assume $y \ge h_u(y)$; if $y < h_u(y)$, consider the curve u^{-1} with the inverse direction of u. Here, < is considered in the coordinates $\nu^{-1}(x_*) \cap V = x_* \times [0, \epsilon]$. Let y > z. Since h_u is a homomorphism, $h_u(y) > h_u(z)$. There is a path \tilde{w} in F_V from y to z. Put $w = \nu \tilde{w}$. Since $h_u(y)$ is defined. $h_u(y) \le y$ implies $z = h_w(y) \ge h_w h_u(y)$. Notice that $y = h_u(y)$ if and only if $z = h_w h_u(y)$. We have $h_{w^{-1}uw}(z) = h_w h_u h_{w^{-1}v}(z) = h_w h_u(y)$. Since $w^{-1}uw$ and u are in the same homology class, $h_{w^{-1}uv}(z) = h_u(z)$ by the fact that we proved above. Thus, $h_u(z) = h_w h_u(y)$. Since $z = h_w(y)$, we have $y = h_u(y)$ if and only if $z = h_u(y)$. This proves Theorem 2.

§ 5. Proof of Theorem 3

Let $\nu_+: U'_+ \to F_0$ be a collar. Since $\{\log h'_{a_1}, \dots, \log h'_{a_m}\}$ is rationally independent, there is a closed curve u in F_0 such that $h'_u \neq 1$. We can assume that $0 < h'_u < 1$. Let x be the base point of u. There is an interval [t, z) in $\nu_+^{-1}(x)$ and a positive number r < 1 such that for any yin $[x, z) h_u(y)$ is defined and that $h'_u(y) < r$. Hence, $\lim_{i \to \infty} (h_u)^i(y) = x$ for any y in [x, z). Therefore, by taking a sufficiently small collar U_+ , any leaf meeting U_+ is asymptotic to F_0 . We can U_- similarly.

By the assumption of $\pi_1(F_0)$, the one sided holonomy group $\Phi_{\sigma}(F_0)$ is abelian for $\sigma = +$ or -. Let V be any neighborhood of F_0 in U_{σ} . Then, for any leaf F meeting U_{σ} a regular covering $\tilde{\nu}: \tilde{F} \to F_0$ is associated with F_V , by Theorem 2.

Since holonomy has no torsion element, $G(F) = \nu_* \pi_1(F_V) = \tilde{\nu}_* \pi_1(\tilde{F})$ $\supset G. \quad \nu_*$ and $\tilde{\nu}_*$ are injections. Suppose that there is a leaf F such that, for the associated covering $\tilde{\nu}: \tilde{F} \to F_0$ with F_V , $G(F) \neq G$. Then, there is a closed curve \tilde{u} in \tilde{F} with base point in $\tilde{\nu}^{-1}(x)$ such that the homotopy class $\alpha = [\tilde{\nu}\tilde{u}]$ is not contained in G. By the definition of \tilde{F} , there is a closed curve u in F_V starting from a point y in $\nu_{\sigma}^{-1}(x)$ such that $[\nu_{\sigma}u] = \alpha$. Then, for any y' in the interval [x, y] in $\nu_{\sigma}^{-1}(x)$, the holonomy map $h_{\alpha}(y')$ is defined. As above, there is a sequence of points $y_0 = y, y_1, y_2, \cdots$ in $[x, y] \cap F_V$ such that $\lim_{i \to \infty} y_i = x$. By condition (*) of Lemma 6, $h_{\alpha}(y_i) = y_i$ for each y_i . Since $\pi_1(F_0, x) = Z_{(1)} + \cdots + Z_{(m)} + G$, and $\nu_*\pi_1(F_V) \supset G$, we can put

$$\alpha = a_1\alpha_1 + a_2\alpha_2 + \cdots + a_m\alpha_m$$

for the integers a_1, \dots, a_m with $(a_1, \dots, a_m) \neq (0, \dots, 0)$. Let u_1, \dots, u_m be the closed curves with base point x realizing the homotopy classes $\alpha_1, \dots, \alpha_m$ respectively. Then, the multiple $v = u_1^{a_1} \cdots u_m^{a_m}$ realizes α , so that, $[v] = [\nu_s u]$. Let v_t be a homotopy from u to v, $t \in [0, 1]$. Since $h_{v_t}(y')$ is defined for arbitrary $y' \in [x, y]$ which is sufficiently close to x, we have $h_u(y') = h_v(y')$. Hence, for such y'

$$h_{\alpha}(y') = (h_{\alpha_m})^{a_m} \cdots (h_{\alpha_1})^{a_1}(y') .$$

Since $\lim y_i = x$ and $h_{\alpha}(y_i) = y_i$, we have $h'_{\alpha} = 1$. Hence,

$$(h'_{a_m})^{a_m} \cdots (h'_{a_1})^{a_1} = 1$$
.

Therefore,

$$a_1 \log h'_{a_1} + \cdots + a_m \log h'_{a_m} = 0$$

with $(a_1, \dots, a_m) \neq (0, \dots, 0)$. But, this contradicts to the assumption of the theorem. This proves Theorem 3.

§6. Proof of Theorem 4

The proof of (i) and (ii) of Theorem 4 is contained in the proof of Theorem 3.

Next we prove (iii). Since f is a local diffeomorphism of class C^2 with f(0) = 0 and f'(0) > 1, by a theorem of Sterenberg [5], there is a C^1 -diffeomorphism g from a neighborhood of 0 of R into R such that $f'(0) \cdot t = gfg^{-1}(t)$ for any t in the image of g. Hence, by a C¹-alternation of the coordinate of $\nu^{-1}(x) \cap U$, we may assume that f(t) = dt, where d = f'(0) < 1. Hereafter we use the new coordinate of $\nu^{-1}(x) \cap U$ translated by g. Let f_1, \dots, f_ℓ be local diffeomorphisms of **R** generating $\Phi(F_0)$. Since $\Phi(F_0)$ is abelian, we may assume $f_i f = f f_i$ for i = 1, ..., m by choosing U sufficiently small. Hence, $f'_i(f(t)) \cdot f'(t) = f'(f_i(t))$ $f'_{i}(t)$, and so $f'_{i}(f(t)) = f'_{i}(t)$, for f'(t) = d. Then, $f'_{i}(t) = f'_{i}(0)$, since lim $f^n(t) = 0$ and f_i is of class C^1 . Therefore, $f_i(t) = d_i \cdot t$, where d_i $= f'_i(0)$. To show (iii), it is sufficient if G(F) = G(F') is shown for any asymptotic leaves F and F' to F_0 . Let α be a closed curve realizing an element of G(F) and let h_{α} be the holonomy map defined by $\alpha \in \pi_1(F_0, x)$. Then, h_{α} can be written as $h_{\alpha} = f_1^{k_1} \cdots f_{\ell}^{k_\ell}$. By the definition of G(F), there is a closed curve β in $F \cap U$ with the end point t in $\nu^{-1}(x)$ such that $\alpha = \nu \circ \beta$. Hence, $t = h_{\alpha}(t) = f_1^{k_1} \cdots f_{\ell}^{k_\ell}(t) = d_1^{k_1} \cdots d_{\ell}^{k_\ell} \circ t$. Thus, $h_{\alpha} = id$. since $d_1^{k_1} \cdots d_{\ell}^{k_{\ell}} = 1$. Therefore, a lift of α to F' is a closed curve, and so the holonomy class of α is contained in G(F'). This implies G(F)= G(F').This completes the proof of Theorem 3.

Remark 1. For $\tilde{f} \in \Phi(F_0)$ let $\tilde{f}' \in \mathbf{R}$ be the derivative of \tilde{f} at 0. Denoting $D\Phi(F_0) = \{\tilde{f}' \mid \tilde{f} \in \Phi(F_0)\}$, $D\Phi(F_0)$ is a multiplicative subgroup of $\mathbf{R} - \{0\}$. Let $D: \Phi(F_0) \to D\Phi(F_0)$ be the homomorphism defined by the derivation. Then, for any asymptotic leaf F to F_0 , we see that $G(F) \subset \ker Dh$, where h is the homomorphism $\pi_1(F_0, x_*) \to \Phi(F_0)$ defined in § 3.

Remark 2. If \mathscr{F} is of class C^2 , then, by the method used in the proof of Theorem 4, we see that the sequence

$$1 \longrightarrow G(F) \stackrel{\subset}{\longrightarrow} \pi_1(F_0) \stackrel{h}{\longrightarrow} \varPhi(F_0) \longrightarrow 1$$

is exact for any asymptotic leaf F to F_0 .

§7. Proof of Theorem 5

Assuming that $\pi_1(F) = Z_{(1)} + \cdots + Z_{(m)} + G$ for a finite group G, let N_1, \dots, N_m be the manifolds of F obtained by Proposition 1 for the isomorphism $H: H_1(F:Z) \to Z_{(1)} + \cdots + Z_{(m)}$. Here, we may assume

that dim $F \ge 2$, because if dim F = 2, F is a torus. By observing the proof of Theorem 1, the same conclusion of Theorem 1 is satisfied for these N_1, \dots, N_m . Then, if \mathscr{F} is a foliation of class C^r , there are injective C^r -diffeomorphisms $f_i^+: [0, \epsilon] \to [0, \epsilon]$ for $i = 1, \dots, m$ with the properties (a) and (b) of Theorem 1. By the proof of Theorem 1, f_i can be identified with an one sided holonomy map $h_{\alpha_i}^+$ of a generator α_i of $Z_{(i)}$.

We divide the stage into Case 1 and Case 2. (i) of Theorem 5 is divided into the both cases and (ii) is contained in Case 1.

Case 1: The case that \mathscr{F} is of class C^r , $r \geq 2$, and that there is *i* such that $(f_i^+)'(0) \neq 1$. Let f_j be a (both sided) holonomy map of α_j . Then $f'_{i}(0) = (f^{+}_{j})'(0)$. By Sternberg's theorem, f_{1}, \dots, f_{m} are C^{r-1} -conjugate to linear functions by a same conjugation map g in a small neighborhood of 0. (See the proof of Theorem 4.) Then, $gf_ig^{-1}(t)$ $= f'_{i}(0) \cdot t$ if |t| is sufficiently small. Let U_{-} be a collar of F such that U_{-} is in the another side of U_{+} . Using Theorem 1 we get $f_{i}^{-}: [-\epsilon', 0]$ $\rightarrow [-\epsilon', 0]$ for $i = 1, \dots, m$. f_i^- is the other sided holonomy map of a generator α'_i of $Z_{(i)}$. $|f_i(t)| \leq |t|$ for sufficiently small |t| if and only if $|f'_{i}(0)| \leq 1$ since $\bar{f}_{i} = gf_{i}g^{-1}$ is linear and $\bar{f}_{i}(t) = f'_{i}(0) \cdot t, \ i = 1, \dots, m.$ Hence, by taking ε' small, $\alpha'_i = \alpha_i$, i.e. f_i^+ and f_i^- are the one sided holonomies of the same generator α_i of $Z_{(i)}$. Therefore, there are injective linear maps $\bar{f}_i: [-\varepsilon, \varepsilon] \to [-\varepsilon, \varepsilon], i = 1, \dots, m$ with the following properties: Let N'_i, N''_i , and F_* be the manifolds defined in Theorem 1. Denote by $X_{\overline{j}}$ the quotient manifold obtained from $F_* \times [-\varepsilon, \varepsilon]$ by identifying $(x, t) \in N'_i \times [-\varepsilon, \varepsilon]$ and $(x, \overline{f}_i(t)) \in N''_i \times [-\varepsilon, \varepsilon]$ for all $i = 1, \dots, m$ and $t \in [-\varepsilon, \varepsilon]$. The product foliation of $F_* \times [-\varepsilon, \varepsilon]$ induces a foliation \mathscr{F}_7 on X_7 . Then, there is a neighborhood V of F such that there is a leaf preserving C^{r-1} -diffeomorphism φ from V onto $X_{\bar{j}}$ which maps F onto $F_* \times 0/\sim$.

By Theorem 4, for any leaf F' meeting V an unique regular covering \tilde{F} is associated with F'_V . Since \bar{f}_i is linear, by Theorem 3, $\nu_*\pi_1(F'_V) = \tilde{\nu}_*\pi_1(\tilde{F}) \cong \pi_1(\tilde{F}) \cong G$ if and only if $\log \bar{f}'_1, \dots, \log \bar{f}'_m$ are rationally independent. By an arbitrarily small perturbations of $\bar{f}_1, \dots, \bar{f}_m$, we can take linear maps $\bar{g}_1, \dots, \bar{g}_m : [-\varepsilon, \varepsilon] \to [-\varepsilon, \varepsilon]$ such that $\log \bar{g}'_1, \dots, \log \bar{g}'_m$ are rationally independent or dependent when $\log \bar{f}'_1, \dots, \log \bar{f}'_m$ are rationally dependent or independent, respectively.

Let U be an open neighborhood of F contained in V. Let N be a

neighborhood of $\mathscr{F} | U$ in $\operatorname{Fol}_{\mathbb{F}^{-1}}^{r-1}(U)$. $\varphi(U)$ is a neighborhood of $F_* \times 0/\sim$ in $X_{\overline{j}}$. Since $\overline{g}_1, \dots, \overline{g}_m$ are close to $\overline{f}_1, \dots, \overline{f}_m$ we may assume that $\varphi(U) \subset X_{\overline{g}} \subset X_{\overline{j}}$ and that $\mathscr{F}_{\overline{g}} | \varphi(U)$ is close to $\mathscr{F}_{\overline{j}} | \varphi(U)$. $\mathscr{F}_{\overline{g}} | \varphi(U)$ induce a foliation \mathscr{F}' of U. By taking $\overline{g}_1, \dots, \overline{g}_m$ sufficiently close to $\overline{f}_1, \dots, \overline{f}_m$ we can $\mathscr{F}' \in N$.

Case 2. The case that \mathscr{F} is of class C^1 and that $(f_i^+)'(0) = 1$ for all $i = 1, \dots, m$. f_i^+ is the one sided holonomy map of α_i defined on $[0, \epsilon]$. First, assume that there is no neighborhood U of F such that F | U is a product foliation. For small $\delta > 0$ we define a C^1 -diffeomorphism $g_i^+: [0, \varepsilon + \delta] \to \mathbb{R}_+$ by

$$g_i^{\scriptscriptstyle +}(t) = egin{cases} t & ext{ for } 0 \leq t < \delta \ f_i^{\scriptscriptstyle +}(t-\delta) + \delta & ext{ for } t > \delta \ . \end{cases}$$

Since $(f_i^*)'(0) = 1$, g_i^+ is of class C^1 . It is easy to see that g_1^+, \dots, g_m^+ are mutually commutative since f_1^+, \dots, f_m^+ are so. $g_i^+ | [0, \varepsilon]$ is a C^1 perturbation of f_i^+ . Let \mathscr{F}_f and X_f be the ones defined in Theorem 1 from f_i^+ and $F_* \times [0, \varepsilon]$. Define \mathscr{F}_g and X_g similarly from g_i^+ and $F_* \times [0, \varepsilon + \delta]$. We can consider that $X_f \subset X_g$ and that $\mathscr{F}_g | X_f$ is C^1 close to \mathscr{F}_f is δ is small enough. There is a neighborhood V_+ of F in U_+ and a C^1 -diffeomorphism $\varphi \colon V_+ \to X_f$ mapping $\mathscr{F} | V_+$ to \mathscr{F}_f . Let \mathscr{F}'_+ be the foliation induced by φ^{-1} from $\mathscr{F}_g | X_f$. \mathscr{F}'_+ is C^1 -close to $\mathscr{F} | V_+$ if δ is small enough. We get \mathscr{F}'_- on V_- similarly. On small neighborhoods of F, \mathscr{F}'_+ and \mathscr{F}'_- are product foliations. Let $U = V_+ \cup V_-$. Then, we get \mathscr{F}' on U by $\mathscr{F}' | V_g = \mathscr{F}'_g, \ \sigma = \pm$. We can take \mathscr{F}' in any neighborhood N of $\mathscr{F} | U$ in $\operatorname{Fol}^r_F(U)$. By the assumption \mathscr{F}' is not locally equivalent to $\mathscr{F} | U$.

Next, we assume that there is a neighborhood V of F such that $\mathscr{F} | V$ is a product foliation. Then, V is leaf preservingly diffeomorphic to $F \times [-\varepsilon, \varepsilon]$. Consider that $V = F \times [-\varepsilon, \varepsilon]$ and $F = F \times 0$. Let $U = F \times (-\varepsilon/2, \varepsilon/2)$. Let α_i be a generator of $Z_{(i)}$. Then, the holonomy map $f_i: [-\varepsilon, \varepsilon] \to [-\varepsilon, \varepsilon]$ of α_i is the identity map. Let g_i be the perturbation of f_i such that $g_i = f_i$ for i > 1 and that $|g_1(t)| < |t|$ and $|g_1(\pm \varepsilon)| > \varepsilon/2$. Let \mathscr{F}_g and X_g be as above defined from g_i and $F_* \times [-\varepsilon, \varepsilon]$. Then, we can consider that $U \subset X_g \subset V$ and that $\mathscr{F}_g | U$ is close to $\mathscr{F} | U$ if g_1 is close enough to f_1 . Any leaf of \mathscr{F}_g is asymptotic to F, but any leaf of $\mathscr{F} | V$ is not asymptotic. Hence, $\mathscr{F}_g | U$ is not locally equivalent to $\mathscr{F} | V$. This completes the proof of Theorem 5.

References

- M. Hirsch, Stability of compact leaves of foliations, Dynamical Systems, ed. M. Peixoto, Academic Press, N.Y., 1973, 135-153.
- [2] H. Levine and M. Shub, Stability of foliations, Trans. A.M.S., 184 (1973), 419-437.
- [3] H. Nakatsuka, On representations of homology classes, Proc. Japan Acad., 48 (1972), 360-364.
- [4] T. Nishimori, Compact leaves with abelian holonomy, Töhoku Math. J. The Second Series, 27 (1975), 259-272.
- [5] S. Sterenberg, Local Cⁿ transformation of the real line, Duke Math. J., 24 (1957), 97-102.

Department of Mathematics College of General Education Nagoya University