EXISTENCE OF REGULAR COVERINGS ASSOCIATED WITH LEAVES OF CODIMENSION ONE FOLIATIONS

GIKŌ IKEGAMI

§ 1. Statement of results

In this paper we are concerned with transversely orientable codimension one foliations. Let \mathscr{F} be a C^{r}-foliation as above in a smooth manifold $M, r \geqq 1$, and let F_{0} be a closed leaf of \mathscr{F}. A neighborhood U of F_{0} is called a bicollar of F_{0} in this paper if there is a normal line bundle $\nu: U \rightarrow F_{0}$ with respect to a fixed Riemannian metric on M such that each fibre of ν is transverse to \mathscr{F}. For a bicollar U of F_{0}, U_{+} $=F_{0} \cup$ (a component of $U-F_{0}$) is called a collar of F_{0}. A leaf $F \in \mathscr{F}$ is said to be asymptotic to F_{0} in U_{+}if $F \cap V \neq \phi$ for any neighborhood V of F_{0} in U_{+}. Let F_{V} be a leaf asymptotic to F_{0} of the restricted foliation $\mathscr{F} \mid V$, where V is a neighborhood of F_{0} in U_{+}. A plaque of F is a leaf of $F \mid N$ diffeomorphic to an open ($n-1$)-ball, where N is a sufficiently small open n-ball in the n-manifold M. A C^{r}-covering $\tilde{\nu}: \tilde{F}$ $\rightarrow F_{0}$ is said to be associated with F_{V} if there is an injection $i: F_{V} \rightarrow \tilde{F}$ such that $\dot{i} i=\nu \mid F_{V}$ and that i maps any plaque of $F_{V} C^{r}$-diffeomorphically into \tilde{F}. The one sided holonomy group $\Phi_{+}\left(F_{0}\right)$ of F_{0} is the holonomy group of F_{0} defined by the restricted foliation $\mathscr{F} \mid U_{+}$.

The main purpose of this paper is to prove Theorem 2, which is an existence theorem of associated regular coverings. Theorem 1 is used in the proofs of Theorem 2 and Theorem 5. Theorem 3 and Theorem 4 are the properties of associated regular coverings. As an application we show Theorem 5, which is an unstability theorem of foliations.

THEOREM 2. Let \mathscr{F} be a transversely orientable C^{r}-foliation of codimension one, $r \geqq 1, F_{0}$ be an orientable closed leaf of \mathscr{F}, and let U_{+} be a collar of F_{0}. Suppose that the one sided holonomy group $\Phi_{+}\left(F_{0}\right)$ is abelian. Then there is a neighborhood V_{0} of F_{0} in U_{+}such that any

[^0]neighborhood V of F_{0} in V_{0} satisfies the followings.
For each asymptotic leaf F to F_{0} in U_{+}let F_{V} be an asymptotic leaf of $\mathscr{F} \mid V$ to F_{0} contained in F. Then, an unique (in the sense of the equivalence of coverings) C^{r}-regular covering $\tilde{\nu}: \tilde{F} \rightarrow \boldsymbol{F}_{0}$ is associated with F_{V} and $\nu_{*}\left(\pi_{1}\left(F_{V}\right)\right)=\tilde{\nu}_{*}\left(\pi_{1}(\tilde{F})\right)$ in $\pi_{1}\left(F_{0}\right)$. Furthermore, the equivalence class of \tilde{j} does not depend on V, and so an unique normal subgroup $G(F)=\nu_{*}\left(\pi_{1}\left(F_{V}\right)\right)$ of $\pi_{1}\left(F_{0}\right)$ is associated with F.
$\tilde{\nu}$ and $G(F)$ are considered as invariants on the behavior of F in a neighborhood of F_{0} in U_{+}. There is an example of \mathscr{F}, F_{0}, and an asymptotic leaf F to F_{0} such that, for any one sided neighborhood V of F_{0}, no regular covering is associated with F_{V}.

Theorem 1. Suppose that \mathscr{F}, F_{0}, and U_{+}satisfy the same conditions as Theorem 2. Then, there are connected orientable codimension one submanifolds N_{1}, \cdots, N_{ℓ} of F_{0} satisfying the followings.
(i) $F_{0}-N_{1} \cup \cdots \cup N_{\ell}$ is connected.
(ii) Let F_{*} be the manifold obtained by cutting open F_{0} along N_{1}, \cdots, N_{ℓ}, and let $g: F_{*} \rightarrow F_{0}$ be the map pasting F_{*} on F_{0} naturally. (There are definitions of F_{*} and g in §3.) Thus $\partial F_{*}=\bigcup_{i=1}^{\ell} N_{i}^{\prime} \cup N_{i}^{\prime \prime}$, $g^{-1}\left(N_{i}\right)=N_{i}^{\prime} \cup N_{i}^{\prime \prime}$, and $g\left(N_{i}^{\prime}\right)=N_{i}=g\left(N_{i}^{\prime \prime}\right)$. Then, there are injective diffeomorphisms $f_{i}:[0, \varepsilon] \rightarrow[0, \varepsilon], \quad i=1, \cdots, \ell$ with the following properties.
(a) $f_{i}(0)=0$ and $f_{i} f_{j}(t)=f_{j} f_{i}(t)$ for any $i, j=1, \cdots, \ell$ and t such that $f_{i} f_{j}(t)$ and $f_{j} f_{i}(t)$ are defined. (b) Denote by X_{f} the quotient manifold obtained from $F_{*} \times[0, \varepsilon]$ by identifying $(x, t) \in N_{i}^{\prime} \times[0, \varepsilon]$ and $\left(x, f_{i}(t)\right)$ $\in N_{i}^{\prime \prime} \times[0, \varepsilon]$ for all $i=1, \cdots, \ell$ and $t \in[0, \varepsilon]$. By the commutativity of f_{i} and f_{j}, X_{f} is well defined. The product foliation of $F_{*} \times[0, \varepsilon]$ induces a foliation \mathscr{F}_{f} on X_{f}. Then, there is a neighborhood V of F_{0} in U_{+} such that there is a leaf preserving C^{r}-diffeomorphism from V onto X_{f}. (c) The germs of f_{1}, \cdots, f_{ℓ} at 0 generate $\Phi_{+}\left(F_{0}\right)$. Moreover, if $\operatorname{dim} F_{0}$ >2, they are chosen so that the germs of f_{1}, \cdots, f_{ℓ} are a basis of $\Phi_{+}\left(F_{0}\right)$.

The following results are consequence of Theorem 1 and Theorem 2.

Theorem 3. Let \mathscr{F} be a transversely orientable C^{1}-foliation of codimension one, and let F_{0} be an orientable closed leaf of \mathscr{F}. Suppose that $\pi_{1}\left(F_{0}\right)=Z^{m} \times G$ for a finite group G and that $\left\{\log h_{\alpha_{1}}^{\prime}, \cdots, \log h_{\alpha_{m}}^{\prime}\right\}$
is rationally independent for a basis $\alpha_{1}, \cdots, \alpha_{m}$ of \boldsymbol{Z}^{m}, where $h_{\alpha_{i}}^{\prime}$ is the derivative of the holonomy of α_{i}.

Then there are collars U_{+}and U_{-}in the both sides of F_{0} such that any leaf meeting U_{σ} is asymptotic to F_{0} in U_{σ} and that, for any neighborhood V of F_{0} in U_{o} and for any $F \in \mathscr{F}$ meeting U_{o}, an unique regular covering \tilde{F} with $\pi_{1}(\tilde{F}) \cong G$ is associated with F_{V}. Here σ denotes + or -.

ThEOREM 4. Let \mathscr{F} be a transversely orientable codimension one foliation of class C^{r}, for $r \geqq 2$, and let F_{0} be an orientable closed leaf of \mathscr{F}. Suppose that the holonomy group $\Phi\left(F_{0}\right)$ of F_{0} is abelian and that there is $\tilde{f} \in \Phi\left(F_{0}\right)$ such that the derivative \tilde{f}^{\prime} of \tilde{f} at 0 satisfies $\tilde{f}^{\prime} \neq 1$.

Then, there is a bicollar $U=U_{+} \cup U_{-}$of F_{0} satisfying the followings. Let σ denote + or -. (i) Any leaf meeting U_{σ} is asymptotic to F_{0} in U_{σ}. (ii) For any neighborhood V of F_{0} in U_{0} and for any leaf F meeting U_{σ}, an unique regular covering \tilde{i} of F_{0} is associated with F_{V} and the normal subgroup $G(F)$ of $\pi_{1}\left(F_{0}\right)$ is well defined. Moreover, (iii) i and $G(F)$ do not depend on U_{+}, U_{-}, and F.

This theorem shows that, under the above assumptions, all leaves near F_{0} in a collar are in the same situation and $\mathscr{F}\left|U_{+}, \mathscr{F}\right| U_{-}$have the same structure.

Let F be a closed submanifold of M, and let $\mathscr{F}, \mathscr{F}^{\prime}$ be foliations on a neighborhood of F in M having F as a leaf. We say that \mathscr{F} and \mathscr{F}^{\prime} are locally equivalent at F, if there are neighborhoods U and U^{\prime} of F such that there is a homomorphism from U onto U^{\prime} mapping any leaf of $\mathscr{F} \mid U$ onto a leaf of $\mathscr{F}^{\prime} \mid U^{\prime}$.

Let \mathscr{F}_{F}^{1} be the set of germs at F of codimension $k C^{1}$-foliations \mathscr{F} defined on neighborhoods $U_{\mathcal{F}}$ of F in M such that \mathscr{F} has F as a leaf, and let \mathscr{F}_{F}^{1} have a suitable topology defined by the germ of the section into the Grassmannian which defines the foliation. H. Levine and M. Shub show an unstability theorem [2] as follows: If $\pi_{1}(F)$ has the form $Z^{m} \times G$ for $m>1$ and an arbitrary group G, there are no stable elements in \mathscr{F}_{F}^{1} with respect to local equivalence at F.

Here, we show an unstability theorem for foliations defined on a fixed neighborhood U of F in M. Let $\mathrm{Fol}_{F}^{r}(U)$ be the space of C^{r} foliations \mathscr{F} of codimension one defined on a neighborhood U of F in M such that \mathscr{F} has F as a leaf. Let $\operatorname{Fol}_{F}^{r}(U)$ have the C^{r}-topology defined
in [1] using the charts $\left\{\varphi: I^{n-1} \times I \rightarrow M^{n}\right\}$.
THEOREM 5. Let F be an orientable closed submanifold of M of codimension one such that $\pi_{1}(F)=\boldsymbol{Z}^{m} \times G$ for $m>1$ and a finite group G. Let \mathscr{F} be a transversely orientable codimension one foliation of class C^{r} on a neighborhood of F in M with F as a leaf. Then,
(i) if $r=2$, there is a neighborhood U of F such that for any neighborhood N of $\mathscr{F} \mid U$ in $\operatorname{Fol}_{F}^{1}(U)$ there is \mathscr{F}^{\prime} in N which is not locally equivalent at F to \mathscr{F}. Moreover,
(ii) if $r>2$, assume that there is α in $\pi_{1}(F)$ such that $\left|h_{\alpha}^{\prime}\right| \neq 1$, where h_{α}^{\prime} is the derivative of the holonomy of α. Then, the same result as (i) holds for $\mathrm{Fol}_{F}^{r-1}(U)$.

In the preparation for this research the papers, [4] of Nishimori and [3] of Nakatsuka, were very helpful to the author.

§2. Preparation for Theorem 1

This section will be in the version of class C^{∞}. Let M be an oriented n-manifold, $n \geqq 3$, and let N be an oriented closed smooth submanifold of M with codimension one. Let $F: B^{n-1} \times I \rightarrow M$ be an orientation preserving embedding such that $F\left(B^{n-1} \times I\right) \cap N=F\left(B^{n-1} \times \partial I\right)$, where B^{n-1} denotes an $(n-1)$-ball in R^{n-1} with origin $0, I=[0,1]$, and ∂ denotes the boundary. We obtain an $(n-1)$-submanifold

$$
N_{*}=\left\{N-\operatorname{int} F\left(B^{n-1} \times \partial I\right)\right\} \cup F\left(\partial B^{n-1} \times I\right) .
$$

By smoothing the corners, N_{*} can be regarded as a smooth manifold. Define a simple arc $f: I \rightarrow M$ by $f(t)=F(0, t), t \in I$. We shall say that N_{*} is obtained from N by attaching a 1-handle along a simple arc f. If the intersection number of N and f is zero, N_{*} is orientable. In this case we assume that N_{*} has the orientation compatible with that of N. Then, $\left[N_{*}\right]=[N]$ in $H_{n-1}(M ; Z)$, where [] denotes the homology class.

Lemma 1. Let M be an oriented manifold of dimension $n \geqq 3$, and let N^{\prime} be a connected oriented closed $(n-1)$ submanifold of M. Then, for a simple closed path c in M which intersects N^{\prime} at finite points, there is a connected oriented closed $(n-1)$ submanifold N of M satisfying the following conditions.
(i) $[N]=\left[N^{\prime}\right]$ in $H_{1}(M ; Z)$.
(ii) N intersects c at only $|[c] \cdot[N]|$ points.
(iii) For a small neighborhood U of c in M, N is included in $N^{\prime} \cup U$.

Proof. We may assume $[c] \cdot\left[N^{\prime}\right] \geqq 0$ and that N^{\prime} intersects with c transversely at more than [c]•[N^{\prime}] points, $x_{1}=c\left(t_{1}\right), \cdots, x_{r}=c\left(t_{r}\right), 0<t_{1}$ $<\ldots<t_{r}<1$. We construct by induction on r the desired manifold N. There is i such that $1 \leqq i \leqq r-1$ and that the intersection number of N^{\prime} and $c \mid\left[t_{i}, t_{i+1}\right]$ is zero. By attaching a 1 -handle to N^{\prime} along the simple subarc $c \mid\left[t_{i}, t_{i+1}\right]$, we obtain N_{*}^{\prime} which intersects at $(r-2)$ points and with $\left[N_{*}^{\prime}\right]=\left[N^{\prime}\right] . \quad$ Then N_{*}^{\prime} has the inductive property.

Lemma 2. Let $N \subset M$ be a pair of oriented connected manifolds of codimension one. If there is γ in $H_{1}(M ; \boldsymbol{Z})$ such that the intersection number $\gamma \cdot[N]$ is 1 , then $M-N$ is connected.

Proof. First, we show that there is a closed path $u: I \rightarrow M, u(0)$ $=u(1)$, such that u intersects with N at a single point. Let c be any closed path with $[c]=\gamma$. We may assume that c meets N transversely, and hence c meets N at finitely many points, $x_{1}=c\left(t_{1}\right), \cdots, x_{r}=c\left(t_{r}\right)$, $0<t_{1}<\cdots<t_{r}<1$. We shall construct by induction on r a closed path u as above. We may assume $r \geqq 3$. There is i with $1 \leqq i \leqq r-1$ such that the intersection number of N and $c \mid\left[t_{i}, t_{i+1}\right]$ is zero. Since N is connected there is a path d from x_{i} to x_{i+1} in N. Let ε be a sufficiently small positive real number. Then, we can take a path d^{\prime} from $c\left(t_{i}-\varepsilon\right)$ to $c\left(t_{i+1}+\varepsilon\right)$ along d so that d^{\prime} does not intersect with N. $c\left(\left[0, t_{i}-\varepsilon\right]\right) \cup\left(\right.$ image $\left.d^{\prime}\right) \cup c\left(\left[t_{i+1}+\varepsilon, 1\right]\right)$ is an image of a path $c^{\prime}: I \rightarrow M$ which meets N at $(r-2)$ points. Moreover, we have $\left[c^{\prime}\right] \cdot[N]=\gamma \cdot[N]$ $=1$, where $\left[c^{\prime}\right]$ denotes the homology class of c^{\prime}. Then c^{\prime} has the inductive property, and therefore u is constructed.

For any two points p_{0} and p_{1} in $M-N$ there is a path c from p_{0} to p_{1}. We may assume as above that c intersects N transversely, and hence c meets N at finite points, $y_{1}=c\left(s_{1}\right), \cdots, y_{r}=c\left(s_{r}\right), 0<s_{1} \cdots<s_{r}$ <1. We shall construct by induction on r a path v from p_{0} to p_{1} such that v does not intersect N. Let u be a closed path such that u intersects N at a single point $y_{0}=u\left(t_{0}\right)$ for $t_{0} \in(0,1)$. There is a path d from y_{1} to y_{0} in N. Let $\varepsilon>0$ be sufficiently small. Then, there is a path d_{-}in $M-N$ from $c\left(s_{1}-\varepsilon\right)$ to $u\left(t_{0}-\delta\right)$ along d, where δ is a positive or negative real number with a sufficiently small absolute value. Similarly, there is d_{+}from $c\left(s_{1}+\varepsilon\right)$ to $u\left(t_{0}+\delta\right) . \quad c\left(\left[0, s_{1}-\varepsilon\right]\right) \cup$ (image d_{-})
$\cup u\left(I-\left(t_{0}-\delta, t_{0}+\delta\right)\right) \cup$ (image $\left.d_{+}\right) \cup c\left(\left[s_{1}+\varepsilon, 1\right]\right)$ is an image of a path c^{\prime} from p_{0} to p_{1} which intersects N at $(r-1)$ points. Then c^{\prime} has the inductive property. This proves Lemma 2.

Let $H: H_{1}(M ; \boldsymbol{Z}) \rightarrow \boldsymbol{Z}_{(1)}+\cdots+\boldsymbol{Z}_{(m)}$ be an epimorphism onto a free abelian group of rank $m, \boldsymbol{Z}_{(i)} \cong \boldsymbol{Z}(i=1, \cdots, m)$. Let $p_{i}: \boldsymbol{Z}_{(1)}+\cdots+\boldsymbol{Z}_{(m)}$ $\rightarrow \boldsymbol{Z}_{(i)}$ be the projection onto the i-th factor. By Künneth's theorem the map $\kappa: H^{1}(M ; \boldsymbol{Z}) \rightarrow \operatorname{Hom}\left(H_{1}(M ; \boldsymbol{Z}), \boldsymbol{Z}\right)$ induced from slant operation is an isomorphism since $H_{0}(M ; \boldsymbol{Z})$ is free abelian. Assume $\partial M=\phi$. Let $\delta: H^{1}(M ; Z) \rightarrow H_{n-1}(M ; Z)$ be the Poincaré duality isomorphism, and let $\theta_{i}=\delta \kappa^{-1}\left(p_{i} H\right)$. For $\gamma \in H_{1}(M ; \boldsymbol{Z})$,

$$
\begin{aligned}
& \gamma \cdot \theta_{i}=\gamma \cap \delta^{-1}\left(\theta_{i}\right) \\
& =\gamma \cap\left(\kappa^{-1}\left(p_{i} H\right)\right) \\
& =p_{i} H(\gamma),
\end{aligned}
$$

where \cap denotes cup product. Thus we have

$$
\begin{equation*}
\gamma \cdot \theta_{i}=p_{i} H(\gamma) \quad \text { for } \gamma \in H_{1}(M ; Z) . \tag{1}
\end{equation*}
$$

Now, we set the following result of Nakatsuka.
Lemma 3 ([3]). Let M be a compact connected orientable manifold of dimension $n \geqq 3$ and $\theta \in H_{n-1}(M ; \boldsymbol{Z})$. Then, there is a connected orientable ($n-1$)-submanifold N in M such that $\theta=[N]$ if and only if there is a homology class $\gamma \in H_{1}(M ; \boldsymbol{Z})$ such that the intersection number $\gamma \cdot \theta=1$.

Proposition 1. Let M be a connected orientable closed manifold of dimension $n \geqq 3$, and let $H: H_{1}(M ; \boldsymbol{Z}) \rightarrow \boldsymbol{Z}_{(1)}+\cdots+\boldsymbol{Z}_{(m)}$ be an epimorphism. Then, there are connected closed codimension one submanifolds N_{1}, \cdots, N_{m} of M satisfying the followings.
(i) N_{1}, \cdots, N_{m} are in general position in M.
(ii) $\gamma \cdot\left[N_{i}\right]=p_{i} H(\gamma)$ for any $\gamma \in H_{1}(M ; \boldsymbol{Z}), i=1, \cdots, m$.
(iii) $\quad N_{i}-N_{1} \cup \cdots \cup N_{i-1}$ is connected for $i=2, \cdots, m$.
(iv) $M-N_{1} \cup \cdots \cup N_{m}$ is connected.
(v) $H j_{*}\left(H_{1}\left(M-N_{1} \cup \cdots \cup N_{i} ; \boldsymbol{Z}\right)\right)=\boldsymbol{Z}_{(i+1)}+\cdots+\boldsymbol{Z}_{(m)}$ for $i=1$, $\cdots, m-1$, and $=0$ for $i=m$. Here, j is the inclusion $M-N_{1} \cup \ldots$ $\cup N_{i} \rightarrow M$.

Proof. Since $p_{i} H: H_{1}(M ; Z) \rightarrow Z_{(i)}$ is an epimorphism, there is γ_{i} $\in H_{1}(M ; \boldsymbol{Z})$ such that $H\left(\gamma_{i}\right)$ is the generator of $\boldsymbol{Z}_{(i)}, i=1, \cdots, m$. Then,
by Lemma 3, $\gamma_{i} \cdot \theta_{i}=p_{i} H\left(\gamma_{i}\right)=1$ implies that there are connected orientable closed ($n-1$)-submanifolds $N_{1}^{\prime}, \cdots, N_{m}^{\prime}$ in M such that [N_{i}^{\prime}] $=\theta_{i}$, $i=1, \cdots, m . \quad N_{1}^{\prime}, \cdots, N_{m}^{\prime}$ may be assumed to be in general position.

We vary N_{i}^{\prime} to $N_{i}, i=1, \cdots, m$, by induction on i so that N_{1}, \cdots, N_{i} satisfy the following condition $C(i)$. Denote $M_{i}=M-N_{1} \cup \cdots \cup N_{i}$.
C (i) (i) N_{1}, \cdots, N_{i} are in general position in M.
(ii) $\left[N_{k}\right]=\theta_{k}, k=1, \cdots, i$.
(iii) $N_{k}-N_{1} \cup \cdots \cup N_{k-1}$ is connected for $k=2, \cdots, i$ if $i \geqq 2$.
(iv) M_{i} is connected.
(v) $H \circ j_{*}\left(H_{1}\left(M_{k} ; \boldsymbol{Z}\right)=\boldsymbol{Z}_{(k+1)}+\cdots+\boldsymbol{Z}_{(m)}\right.$ for $k=1, \cdots, i$.

First, we construct N_{1} as follows. Since $n \geqq 3$, there are simple closed paths c_{2}, \cdots, c_{m} such that $\left[c_{2}\right]=\gamma_{2}, \cdots,\left[c_{m}\right]=\gamma_{m}$ and that they are mutually disjoint. By Lemma 1, there is a manifold N_{1} such that $\left[N_{1}\right]=\left[N_{1}^{\prime}\right]$ and that N_{1} does not intersects c_{2}, \cdots, c_{m}. By Lemma 2, the existence of γ_{1} implies that $M-N_{1}$ is connected. Since c_{2}, \cdots, c_{m} are contained in M_{1} and $0=\gamma \cdot\left[N_{1}\right]=p_{1} H(\gamma)$ for $\gamma \in H_{1}\left(M_{1} ; \boldsymbol{Z}\right)$, it is not difficult to see that $H j_{*}\left(H_{1}\left(M_{1} ; \boldsymbol{Z}\right)\right)=\boldsymbol{Z}_{(2)}+\cdots+\boldsymbol{Z}_{(m)}$. Then, N_{1} satisfies the condition $C(1)$.

Next, suppose that N_{1}, \cdots, N_{i} are constructed so that the condition $C(\mathrm{i})$ is satisfied. Now, we construct N_{i+1} so that $N_{1}, \cdots, N_{i}, N_{i+1}$ satisfy $C(i+1)$. By (v) of $C(i)$ there is a simple closed path c_{i+1} in M_{i} realizing $\gamma_{i+1} \in H_{1}(M ; Z)$, and hence the intersection number $c_{i+1} \cdot\left(N_{i+1}^{\prime}-N_{1}\right.$ $\left.\cup \cdots \cup N_{i}\right)=c_{i+1} \cdot N_{i+1}^{\prime}=\left[c_{i+1}\right] \cdot\left[N_{i+1}^{\prime}\right]=\gamma_{i+1} \cdot \theta_{i+1}$ is 1 . We can take c_{i+1} so that it intersects N_{i+1}^{\prime} transversely. Then, by the method of the proof of Lemma 3 in [3], there is a closed manifold $N_{i+1}^{\prime \prime}$ such that (i) $N_{i+1}^{\prime \prime} \cap M_{i}$, so $N_{i+1}^{\prime \prime}$, is connected and (ii) $\left[N_{i+1}^{\prime \prime}\right]=\left[N_{i+1}^{\prime}\right]$ in $H_{n-1}(M ; Z)$ and $\left[N_{i+1}^{\prime} \cap M_{i}\right]=\left[N_{i+1}^{\prime} \cap M_{i}\right]$ in $H_{n-1}\left(M_{i} ; Z\right)$. Here, $N_{i+1}^{\prime \prime}$ is obtained by attaching slender 1-handles to N_{i+1}^{\prime} along simple arcs in M_{i}. Next, we vary $N_{i+1}^{\prime \prime}$ to construct N_{i+1} so that N_{1}, \cdots, N_{i} and N_{i+1} satisfy the condition $C(i+1)$. By (v) of $C(\mathrm{i})$, there are simple closed paths c_{i+2}, \cdots, c_{m} in M_{i} realizing $\gamma_{i+2}, \cdots, \gamma_{m}$, respectively. We may assume that they intersect $N_{i+1}^{\prime \prime}$ transversely and that they are mutually disjoint. Similarly as the construction of N_{1}, we obtain N_{i+1} from $N_{i+1}^{\prime \prime}$ by attaching slender 1-handles along simple arcs contained in c_{i+2}, \cdots, c_{m} so that N_{i+1} does not intersects c_{i+2}, \cdots, c_{m}, that $\left[N_{i+1}\right]=\left[N_{i+1}^{\prime}\right]$, and that $H \circ j_{*}\left(H_{1}\left(M-N_{1}\right.\right.$ $\left.\left.\cup \cdots \cup N_{i} \cup N_{i+1} ; \boldsymbol{Z}\right)\right)=\boldsymbol{Z}_{(i+2)}+\cdots+\boldsymbol{Z}_{(m)}$. Since c_{i+1} is a path in M_{i} and $c_{i+1} \cdot\left(N_{i+1} \cap M_{i}\right)=c_{i+1} \cdot N_{i+1}=1$, Lemma 2 implies that $M_{i+1}=M_{i}$

- N_{i+1} is connected. From the above, we can see that N_{1}, \cdots, N_{i+1} satisfy the condition $C(i+1)$. This proves Proposition 1.

§ 3. Proof of Theorem 1

Let \mathscr{F} be a codimension one foliation of class C^{r} of an orientable ($n+1$)-manifold M, and suppose that an orientable n-manifold F_{0} is a closed leaf of \mathscr{F}. Let $\nu: U \rightarrow F_{0}$ is an R-bundle of a bicollar U of F_{0}, and let $\nu_{+}: U_{+} \rightarrow F_{0}$ is an R_{+}-bundle of a collar U_{+}of $F_{0}, \boldsymbol{R}=(-\infty, \infty)$ and $R_{+}=[0, \infty) . \quad F_{0}$ is identified with the zero section of ν or ν_{+}, and the fibres of ν and ν_{+}are identified with \boldsymbol{R} and \boldsymbol{R}_{+}respectively.

A curve $u:[0,1] \rightarrow U$ is called a leaf curve from $u(0)$ to $u(1)$ if the image of u is contained in a leaf. Let $y \in \nu^{-1} u(0)$ and let $u_{y}:[0,1] \rightarrow U$ be a leaf curve such that $u_{y}(0)=y$ and $\nu u_{y}(t)=u(t)$ for any $t \in[0,1]$. We call u_{y} the y-lift of u. There exists at most one y-lift of u. If there is the y-lift of u for any y in $\left[y_{1}, y_{2}\right] \subset R=\nu^{-1} u(0)$ the holonomy map h_{u} from [y_{1}, y_{2}] into $R=\nu^{-1} u(b)$ is defined by $h_{u}(y)=u_{y}(b)$.

Let $x_{*} \in F_{0}$ and u be a closed leaf curve with base point x_{*}. The germ of h_{u} at 0 is called the holonomy of u. The holonomy of u is determined by the homotopy class [u] of u in $\pi_{1}\left(F_{0}, x_{*}\right)$ and is independent of the choice of ν up to conjugations by origin preserving diffeomorphism of \boldsymbol{R}. Let G^{r} be the group of the germs at 0 of all orientation-preserving local C^{r}-diffeomorphisms of \boldsymbol{R} which leave the origin fixed. A homomorphism $h: \pi_{1}\left(F_{0}, x_{*}\right) \rightarrow G^{r}$ is defined by corresponding the holonomy of u to $[u] \in \pi_{1}\left(F_{0}, x_{*}\right)$. The image of the homomorphism h is called the holonomy group of F_{0} and denoted by $\Phi\left(F_{0}\right)$. The one-sided holonomy group $\Phi_{+}\left(F_{0}\right)$ of F_{0} is defined similarly by replacing ν and R by ν_{+}and \boldsymbol{R}_{+}.

A proof of the following Lemma 4 is found in the proof of Lemma 2 in [4].

LEMMA 4. If $\Phi_{+}\left(F_{0}\right)$ is the trivial group there is a neighborhood U_{0} of F_{0} in U_{+}such that the restricted foliation $\mathscr{F} \mid U_{0}$ is trivial; i.e. for each leaf F of $\mathscr{F} \mid U_{0}, \nu: F \rightarrow F_{0}$ is a diffeomorphism.

In this paper, we assume that $\Phi_{+}\left(F_{0}\right)$ is abelian, then $\Phi_{+}\left(F_{0}\right)$ is free abelian since G^{r} has no torsion element. Let $\iota: \Phi_{+}\left(F_{0}\right) \rightarrow \boldsymbol{Z}_{(1)}+\cdots+\boldsymbol{Z}_{(m)}$ be an isomorphism and let $\eta: \pi_{1}\left(F_{0}, x_{*}\right) \rightarrow H_{1}\left(F_{0}: Z\right)$ be the Hurewicz homomorphism. Then, there is an epimorphism $H: H_{1}\left(F_{0} ; \boldsymbol{Z}\right) \rightarrow \boldsymbol{Z}_{(1)}+\cdots$
$+Z_{(m)}$ such that $H_{\eta}=c h$. Let p_{i} be the projection from $Z_{(1)}+\cdots+Z_{(m)}$ onto the i-th factor. Thus we have the following diagram.

Let N_{1}, \cdots, N_{m} be codimension one smooth submanifolds in F_{0} such that they are in the general position and that $F_{0}-N_{1} \cup \cdots \cup N_{m}$ is connected. Denote by F_{1} the compact manifold with boundary obtained by attaching two copies N_{1}^{\prime} and $N_{1}^{\prime \prime}$ of N_{1} to $F_{0}-N_{1}$, so that $\partial F_{1}=N_{1}^{\prime}$ $\cup N_{1}^{\prime \prime}$. Then, a local diffeomorphism $g_{1}: F_{1} \rightarrow F_{0}$ is defined by $g_{1}(x)=x$ for $x \notin \partial F_{1}$ and $g_{1}\left(y^{\prime}\right)=g_{1}\left(y^{\prime \prime}\right)=y$ for $y \in N_{1}$, where $y^{\prime} \in N_{1}^{\prime}$ and $y^{\prime \prime} \in N_{1}^{\prime \prime}$ are the copies of $y \in N_{1} . \quad g_{1}^{-1}\left(N_{i}\right) \subset F_{1}$ is denoted also by $N_{i}, i=2, \cdots, m$. Inductively we define F_{2}, \cdots, F_{m} and $g_{i}: F_{i} \rightarrow F_{i-1}, i=2, \cdots, m$, similarly as above. The boundaries of F_{2}, \cdots, F_{m} have possibly corners. Let $g: F_{m} \rightarrow F_{0}$ be the composition $g_{j} \cdots g_{1} . \quad F_{m}$ is said to be the manifold which is obtained by cutting open F_{0} along $N_{1}, \cdots, N_{m} . g$ is said to be the map pasting F_{m} on F_{0}.

Proof of Theorem 1. If $n=1$, this theorem is well known in the theory of dynamical system. If $n>2$, let N_{1}, \cdots, N_{m} be the manifolds obtained by Proposition 1 for the epimorphism $H: H_{1}\left(F_{0} ; Z\right) \rightarrow Z_{(1)}+\cdots$ $+Z_{(m)} \cong \Phi_{+}\left(F_{0}\right)$ defined above. If $n=2$, let p be the genus of F_{0}. Then we can take simple closed curves $N_{1}, \cdots, N_{2 p}$ in F_{0} such that $N_{i} \cap N_{j}$ is at most one point for any different i, j and that $F_{0}-N_{1} \cup \cdots \cup N_{2 p}$ is an open 2-ball. We define N_{1}, \cdots, N_{ℓ} in the theorem as above.

Since $F_{0}-N_{1} \cup \cdots \cup N_{\ell}$ is a 2 -ball for $n=2, \Phi_{+}\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right)$ $=0$ in $\mathscr{F} \mid \nu_{+}^{-1}\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right)$. When $n>2$, let c be a simple closed path in $F_{0}-N_{1} \cup \cdots \cup N_{m}$. Let γ be the homotopy class of c in $\pi_{1}\left(F_{0}, x_{*}\right)$, $x_{*} \in F_{0}-N_{1} \cup \cdots \cup N_{m}$, and [N_{i}] be the homology class of N_{i} in $H_{1}\left(F_{0} ; Z\right)$. Then, by Proposition 1,

$$
\begin{aligned}
p_{i} h h(\gamma) & =p_{i} H_{\eta}(\gamma), \\
& =p_{i} H([c]), \quad[c] \in H_{1}\left(F_{0} ; Z\right) \\
& =[c] \cdot\left[N_{i}\right]=0
\end{aligned}
$$

since $c \cap N_{i}=\phi$, for $i=1, \cdots, m$. This implies $\Phi_{+}\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right)$ $=0$, if $n>2$. By using Lemma 4, wee see that there is a injective
C^{r}-diffeomorphism $\xi:\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right) \times[0, \delta] \rightarrow U_{+}$such that (i) ξ maps each $\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right) \times\{t\}$ into a leaf of $\mathscr{F} \mid U_{+}$and that (ii) $\nu_{+} \xi(x, t)=x$ for $x \in F_{0}-N_{1} \cup \cdots \cup N_{\ell}$ and $t \in[0, \delta]$. Put $\xi\left(\left(F_{0}-N_{1}\right.\right.$ $\left.\left.\cup \cdots \cup N_{\ell}\right) \times[0, \delta]\right)=\tilde{F}_{*} \subset \nu_{+}^{-1}\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right)$. By identifying $\xi(x, t)$ with $(x, t),(x, t) \in\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right) \times[0, \delta]$ is a coordinates of \tilde{F}_{*}. Putting $V^{\prime}=\mathrm{cl} F_{*}, V^{\prime}$ is a closed neighborhood of F_{0} in U_{+}. We are dealing with the holonomy maps and the holonomies for closed paths in F_{0} with the fixed base point $x_{*} \in \operatorname{int} \tilde{F}_{*}$. From now on in this section a holonomy maps are considered as local diffeomorphisms of $[0, \delta]$ by identifying $[0, \delta]$ with $x_{*} \times[0, \delta]$, where $x_{*} \times[0, \delta]$ is the expression of the above coordinates.

The number of the connected components of $N_{i}-N_{1} \cup \cdots \cup N_{i-1}$ $\cup N_{i+1} \cup \cdots \cup N_{\ell}$ is only one if $n=2$. For $n>3$, let $N_{i j}$ be one of these components. For any x in $N_{i j}$ there is a closed path v_{x} in F_{0} with base point x_{*} such that v_{x} intersects $N_{1} \cup \cdots \cup N_{\ell}$ at only one point x, since $F_{0}-N_{1} \cup \cdots \cup N_{\ell}$ is connected. There is ε_{x} with $0<\varepsilon_{x}$ $\leqq \delta$ such that there is a leaf curve of $\mathscr{F} \mid V^{\prime}$ which is the lift of v_{x} starting from $\left(x_{*}, \varepsilon_{x}\right) \in v_{+}^{-1}\left(x_{*}\right)$. So, the holonomy map f_{x} of v_{x} is defined on $\left[0, \varepsilon_{x}\right]$. Let \tilde{v}_{x} be a lift of v_{x} and let $\tilde{v}_{x}(0)=s^{\prime}, v_{x}(1)=s^{\prime \prime}$ in $\left\{x_{*}\right\}$ $\times\left[0, s_{x}\right] \subset v_{+}^{-1}\left(x_{*}\right)$. Let $\tilde{v}_{x}\left(t_{0}\right) \in v_{+}^{-1}(x)$. For any $t^{\prime}, t^{\prime \prime}$ with $0 \leqq t^{\prime}<t_{0}<t^{\prime \prime}$ $\leqq 1$, we have $\tilde{v}_{x}\left(t^{\prime}\right)=\left(v_{x}\left(t^{\prime}\right), s^{\prime}\right)$ and $\tilde{v}_{x}\left(t^{\prime \prime}\right)=\left(v_{x}\left(t^{\prime \prime}\right), s^{\prime \prime}\right)$ in the coordinates $\tilde{F}_{*}=\left(F_{0}-N_{1} \cup \cdots \cup N_{\ell}\right) \times[0, \delta]$, since $\mathscr{F} \mid \tilde{F}_{*}$ is trivial. Hence, we have $f_{x}\left(s^{\prime}\right)=s^{\prime \prime}$. Let $N_{i j}$ have the orientation which is compatible with the inclusion $N_{i j} \subset N_{i}$ and the given orientation of N_{i}. For another point y in $N_{i j}$ let v_{y} be a closed curve as above such that $\left[v_{y}\right] \cdot\left[N_{i j}\right]$ $=\left[v_{x}\right] \cdot\left[N_{i j}\right]$. From the triviality of $\mathscr{F} \mid \tilde{F}_{*}$ it is easy to see that the source of the holonomy map f_{y} of v_{y} is same as f_{x} and that $f_{y}=f_{x}$ on it, i.e. $f_{y}(s)=f_{x}(s)$ for any $s \in\left[0, \varepsilon_{x}\right]$. Therefore, there are $\varepsilon_{i j}$ with $0<\varepsilon_{i j}<\delta$ and an injective diffeomorphism $f_{i j}:\left[0, \varepsilon_{i j}\right] \rightarrow[0, \delta]$ satisfying the following property; for any x in $N_{i j}$ and any closed path v_{x} in F_{0} with base point x_{*} such that v_{x} intersects $N_{1} \cup \cdots \cup N_{\ell}$ at only one point x and that $\left[v_{x}\right] \cdot\left[N_{i}\right]=1$, the holonomy map of v_{x} is defined on [$0, \varepsilon_{i j}$] and is equal to $f_{i j}$. For two components $N_{i j}$ and $N_{i k}$ of $N_{i}-N_{1}$ $\cup \cdots \cup N_{i-1} \cup N_{i+1} \cup \cdots \cup N_{\ell}$ the holonomy maps $f_{i j}$ and $f_{i k}$ are coincide on a small neighborhood of 0 , since $\left[v_{x}\right] \cdot\left[N_{i}\right]=\left[v_{y}\right] \cdot\left[N_{i}\right]=1$ so the holonomies of v_{x} and v_{y} are coincide. Hence, there are ε_{i} with $0<\varepsilon_{i}$ $<\delta$ and an injective diffeomorphism $f_{i}:\left[0, \varepsilon_{i}\right] \rightarrow[0, \delta]$ satisfying the same
property as above. Therefore, there are $0<\varepsilon<\delta$ and injective diffeomorphisms f_{1}, \cdots, f_{ℓ} for N_{1}, \cdots, N_{ℓ} satisfying the following property; for any x in N_{i} and any closed path v_{x} in F_{0} with base point x_{*} such that v_{x} intersects $N_{1} \cup \cdots \cup N_{\ell}$ at only one point x and that $\left[v_{x}\right] \cdot\left[N_{i}\right]$ $=1$, the holonomy map of v_{x} is defined on $[0, \varepsilon]$ and is equal to f_{i}. Since $\Phi\left(F_{0}\right)$ is abelian, we may assume that f_{1}, \cdots, f_{ℓ} are mutually commutative by choosing ε sufficiently small.

Since f_{i} and f_{i}^{-1} are monotonously increasing, $f_{i}(\varepsilon)>\varepsilon$ implies $\varepsilon>f_{i}^{-1}(\varepsilon)$. So, replacing f_{i} by f_{i}^{-1} (i.e. replacing the orientation of N_{i}) if necessary, we can suppose that $\varepsilon \geqq f_{i}(\varepsilon)$ for all i. Notice that $N_{i}=\bigcup_{j} \operatorname{cl} N_{i j}$ and $g^{-1}\left(N_{i j}\right)=N_{i j}^{\prime} \cup N_{i j}^{\prime \prime}$. Here, $g: F_{*} \rightarrow F_{0}$ is the diffeomorphism pasting F_{*} on F_{0}, F_{*} is the manifold obtained by cutting open F_{0} along N_{1}, \cdots, N_{ℓ}, and $N_{i j}^{\prime}, N_{i j}^{\prime \prime}$ are diffeomorphic manifolds such that $g\left(N_{i j}^{\prime}\right)$ $=N_{i j}=g\left(N_{i j}^{\prime \prime}\right)$. Then, $g^{-1}\left(N_{i}\right)=N_{i}^{\prime} \cup N_{i}^{\prime \prime}$, where N_{i}^{\prime} and $N_{i}^{\prime \prime}$ are diffeomorphic manifolds such that $N_{i}^{\prime}=\bigcup_{j} \operatorname{cl} N_{i j}^{\prime}, N_{i}^{\prime \prime}=\bigcup_{j} \operatorname{cl} N_{i j}^{\prime \prime}$ and $g\left(N_{i}^{\prime}\right)=N_{i}$ $=g\left(N_{i}^{\prime \prime}\right)$. Since N_{1}, \cdots, N_{ℓ} are in general position and f_{1}, \cdots, f_{ℓ} are mutually commutative, it is not difficult to show that a quotient manifold X_{f} is well defined from $F_{*} \times[0, \varepsilon]$ by identifying $(x, s) \in N_{i}^{\prime} \times[0, \varepsilon]$ and $\left(x, f_{i}(s)\right) \in N_{i}^{\prime \prime} \times[0, \varepsilon]$. Let \mathscr{F}_{f} be the foliation on X_{f} induced from the trivial foliation of $F_{*} \times[0, \varepsilon]$. Since int F_{*} is diffeomorphic to $F_{0}-N_{1}$ $\cup \cdots \cup N_{\ell}$, we can see from the above facts that there is a C^{r}-diffeomorphism from a neighborhood V of F_{0} in U_{+}onto X_{f} mapping each leaf of $\mathscr{F} \mid V$ onto a leaf of \mathscr{F}_{f}.

By the constructions of f_{1}, \cdots, f_{ℓ}, these maps satisfies the property (ii)-(c) in the theorem. This completes the proof of Theorem 1.

§4. Proof of Theorem 2

Lemma 5. Let f_{1}, \cdots, f_{ℓ} be injective homeomorphisms from $[0, \varepsilon]$ into $[0, \varepsilon]$ such that $f_{i}(0)=0$ for $i=1, \cdots, \ell$. Suppose

$$
f_{i} f_{j}(t)=f_{j} f_{i}(t), \quad i, j=1, \cdots, \ell .
$$

Put

$$
\begin{array}{lr}
h_{1}(t)=f_{i_{\alpha}}^{\sigma_{\alpha}} \cdots f_{\imath_{1}}^{\sigma_{1}}(t), & \sigma_{a}= \pm 1, \\
h_{2}(t)=f_{j_{\beta}}^{\tau_{\beta}} \cdots f_{j_{1}}^{\tau_{1}}(t), & \tau_{b}= \pm 1 . \tag{2}
\end{array}
$$

Then $h_{1}(t)=h_{2}(t)$ for any t such that $h_{1}(t)$ and $h_{2}(t)$ are defined if

$$
\begin{equation*}
\sum_{i_{a}=i} \sigma_{i_{a}}=\sum_{j_{b}=i} \tau_{j_{b}}, \quad i=1, \cdots, \ell, \quad a=1, \cdots, \alpha, \quad b=1, \cdots, \beta \tag{3}
\end{equation*}
$$

Here, f_{i}^{-1} is considered to be defined on $\left[0, f_{i}(\varepsilon)\right]$.
Proof. By the assumption we have

$$
f_{i}^{a} f_{j}^{\tau}(t)=f_{j}^{\tau} f_{i}^{o}(t), \quad \sigma, \tau= \pm 1, i, j=1, \cdots, \ell
$$

for any t such that both sides of the expression are defined. We define a linear order $<$ in the set $\left\{f_{1}, \cdots, f_{\ell}, f_{1}^{-1}, \cdots, f_{\ell}^{-1}\right\}$ as follows; for f_{i}, f_{j} and f_{i}^{-1}, f_{j}^{-1}, we define $f_{i}<f_{j}$ and $f_{i}^{-1}<f_{j}^{-1}$ respectively if $i<j$, and we define $f_{i}<f_{j}^{-1}$ for any f_{i} and f_{j}^{-1}. It is not difficult to see that $<$ is a linear order.

Next, we show that if $f_{i}^{\sigma_{i}} f_{j}^{\sigma_{j}}(t)$ is defined and $f_{i}^{\sigma_{i}}<f_{j}^{\sigma_{j}}, f_{j}^{\sigma_{j}} f_{i}^{\sigma_{i}}(t)$ is also defined and $f_{i}^{\sigma_{i}} f_{j}^{\sigma_{j}}(t)=f_{j}^{\sigma_{j}} f_{i}^{\sigma_{i}}(t)$. This property is trivial for f_{i} and f_{j}. For f_{i}^{-1} and f_{j}^{-1} it is shown as follows. Suppose $f_{i}^{-1}<f_{j}^{-1}$. If $f_{i}^{-1} f_{j}^{-1}(t)$ is defined, $f_{j}^{-1}(t) \leqq f_{i}(\varepsilon)$, so $t \leqq f_{j} f_{i}(\varepsilon)$. Since $f_{j} f_{i}(\varepsilon)=f_{i} f_{j}(\varepsilon)$, $t \leqq f_{i} f_{j}(\varepsilon)$. Hence, $f_{i}^{-1}(t) \leqq f_{j}(\varepsilon)$, and so $f_{j}^{-1} f_{i}^{-1}(t)$ is defined. Then $f_{i}^{-1} f_{j}^{-1}(t)=f_{j}^{-1} f_{i}^{-1}(t)$. Finally, for f_{i} and f_{j}^{-1} it is shown as follows. Suppose $f_{i}<f_{j}^{-1}$. If $f_{i} f_{j}^{-1}(t)$ is defined, $t \leqq f_{j}(\varepsilon)$, so $t_{i}(t) \leqq f_{i} f_{j}(\varepsilon)$. Since $f_{i} f_{j}(\varepsilon)=f_{j} f_{i}(\varepsilon) \leqq f_{j}(\varepsilon), f_{i}(t) \leqq f_{j}(\varepsilon)$. Then, $f_{j}^{-1} f_{i}(t)$ is defined, and so $f_{i} f_{j}^{-1}(t)=f_{j}^{-1} f_{i}(t)$.

If $f_{j}(t)$ or $f_{j}^{-1}(t)$ is defined, $f_{j}\left(f_{i}^{-1} f_{i}\right)(t)$ or $\left(f_{i}^{-1} f_{i}\right) f_{j}^{-1}(t)$ is defined and $f_{j}(t)=f_{j}\left(f_{i}^{-1} f_{i}\right)(t)$ or $f_{j}^{-1}(t)=\left(f_{i}^{-1} f_{i}\right) f_{j}^{-1}(t)$, respectively. Next, we interplate $f_{i}^{-1} f_{i}$ in the right hand of the expressions of (1) and (2) if necessary so that the same number of f_{i} and f_{i}^{-1} are contained in these expressions for each $i=1, \cdots, \ell$. Finally, we change the order in the rows of the terms in these expressions to the order induced from $<$. Then, the obtained expressions are identical. This proves $h_{1}(t)=h_{2}(t)$.

Lemma 6. Let \mathscr{F} be a transversely orientable C^{r}-foliation of codimension one, $r \geqq 1$, and let F_{0} be a compact leaf of \mathscr{F}. Let ν be a normal \boldsymbol{R}_{+}-bundle map from a collar U_{+}onto F_{0} such that ν is transverse to \mathscr{F}, and let $F \in \mathscr{F}$ be asymptotic to F_{0} in U_{+}. Then, the following properties are satisfied.
(i) For a neighborhood V of F_{0} in U_{+}, let F_{V} be an asymptotic leaf of $\mathscr{F} \mid V$ to F_{0} such that $F_{V} \cap F \neq \phi$. Then, an unique regular covering $\tilde{\nu}: \tilde{F} \rightarrow F_{0}$ is associated with F_{V} and $\nu_{*}\left(\pi_{1}\left(F_{V}\right)\right)=\tilde{\nu}_{*}\left(\pi_{1}(\tilde{F})\right)$ in $\pi_{1}\left(F_{0}\right)$ if and only if the following condition (*) is satisfied.
(*) For a point x_{*} in F_{0} and any closed path u in F_{0} with the base
points x_{*} let y and z be any two points in $\nu^{-1}\left(x_{*}\right) \cap F_{V}$ such that $h_{u}(y)$. and $h_{u}(z)$ are defined, where h_{u} is the holonomy map of u. Then, $h_{u}(y)$, $=y$ if and only if $h_{u}(z)=z$.
(ii) Suppose F and V satisfies (*). Then, for any neighborhood V^{\prime} of F_{0} in V, the same regular covering as $\tilde{\nu}$ is associated with $F_{V /}$.

Proof. Let $\tilde{\Sigma}: \tilde{F} \rightarrow F_{0}$ be a regular covering and let u be a closed curve in F_{0} with base point x_{*}. For y and z in $\tilde{\nu}^{-1}\left(x_{*}\right)$ let u_{y} and u_{z} be the lifts of u starting from y and z respectively. Then, u_{y} is a closed curve if and only if u_{z} is so. Therefore, if there is an associated regular covering with F_{V}, condition ($*$) is satisfied.

Next, we prove the converse. Define a subgroup $G\left(F_{V}\right)$ of $\pi_{1}\left(F_{0}, x_{*}\right)$ by

$$
\begin{array}{r}
G\left(F_{V}\right)=\left\{\alpha \in \pi_{1}\left(F_{0}, x_{*}\right) \mid \text { there is a closed curve } \bar{u} \text { in } F_{V}\right. \\
\text { such that }[\nu \bar{u}]=\alpha\},
\end{array}
$$

where [] denotes the homotopy class. We must show that $G\left(F_{V}\right)$ is a subgroup of $\pi_{1}\left(F_{0}, x_{*}\right)$. For α and β in $G\left(F_{V}\right)$ there are closed curves \bar{u} and \bar{v} in F_{V} such that $[\nu \bar{u}]=\alpha$ and $[\nu \bar{v}]=\beta^{-1}$. Let $y, z \in \nu^{-1}\left(x_{*}\right)$ be the base point of \bar{u}, \bar{v}. Assume $x_{*}<y<z$ in the line $\nu^{-1}\left(x_{*}\right)$. Put $\nu \bar{u}=u$ and $\nu \bar{v}=v$. By the existence of $\bar{v}, h_{v}(y)$ is defined. Condition (*) implies $h_{v}(y)=y$. So, there is the lift \tilde{v} of v starting from $y . \tilde{v}$ is a closed curve in F_{V}. Then, $\bar{u} \tilde{v}$ is a closed curve in F_{V} such that $[\nu(\bar{u} \tilde{v})]$ $=\alpha \beta^{-1}$. Therefore, $\alpha \beta^{-1} \in G\left(F_{V}\right)$.

To the conjugacy class of a subgroup of $\pi_{1}\left(F_{0}, x_{*}\right)$ an unique covering of F_{0} exists. Let $\tilde{\nu}: \tilde{F} \rightarrow F_{0}$ be the covering corresponding to the conjugacy class including $G\left(F_{V}\right)$. Then, for $\tilde{y} \in \tilde{\nu}^{-1}\left(x_{*}\right), \tilde{\nu}_{*}\left(\pi_{1}(F, y)\right)$ is a subgroup of $\pi_{1}\left(F_{0}, x_{*}\right)$ which is conjugate to $G\left(F_{V}\right)$.

Next, we define the map $i: F_{V} \rightarrow \tilde{F}$. Fix two points $y_{*} \in F_{V}$ and $\tilde{y}_{*} \in \tilde{F}$ so that $\nu\left(y_{*}\right)=\tilde{\nu}\left(\tilde{y}_{*}\right)=x_{*}$ and that $\tilde{\nu}_{*}\left(\pi_{1}\left(\tilde{F}, \tilde{y}_{*}\right)\right)=G\left(F_{V}\right)$. For any point y in F_{V} there is a curve $u:[0,1] \rightarrow F_{V}$ such that $u(0)=y_{*}$ and $u(1)=y$. Let \tilde{u} be the lift of νu starting from \tilde{y}_{*} for the covering $\tilde{\nu}$. We define $i(y) \in \tilde{F}$ by $i(y)=\tilde{u}(1)$. $i(y)$ is well defined, i.e. for another curve v in F_{V} from y_{*} to $y, \tilde{v}(1)=\tilde{u}(1)$. In fact, since $\left[\nu\left(u v^{-1}\right)\right] \in G\left(F_{V}\right)$ and $G\left(F_{V}\right)=\tilde{\nu}_{*}\left(\pi_{1}\left(\tilde{F}, \tilde{y}_{*}\right)\right)$, the lift of $\nu\left(u v^{-1}\right)$ starting from $\tilde{y}_{*} \in \tilde{F}$ is a closed curve. Hence, $\tilde{u}^{-1} \tilde{v}$ is a closed curve with the base point $\tilde{u}(1)$. This implies $\tilde{v}(1)=\tilde{u}(1)$. By the definition of i, $\tilde{\nu} \circ i=\nu$ is obvious.

If $\nu(y) \neq \nu\left(y^{\prime}\right)$, clearly $i(y) \neq i\left(y^{\prime}\right)$. Next, we show that $i(y) \neq i\left(y^{\prime}\right)$
when $\nu(y)=\nu\left(y^{\prime}\right)$ and $y \neq y^{\prime}$. Let u^{\prime} and v^{\prime} be the curves in F_{V} from y_{*} to y and y^{\prime} respectively. Put $\nu u^{\prime}=u$ and $\nu v^{\prime}=v$. We can assume that $y<y^{\prime}$ in $\nu^{-1}(y)$. Since $h_{v^{-1}}\left(y^{\prime}\right)=y_{*}, h_{v-1}(y)$ is defined and $h_{v-1}(y)$ $<y_{*}$ in $\nu^{-1}\left(x_{*}\right)$. Since $h_{u v^{-1}}\left(y_{*}\right)=h_{v-1}(y)<y_{*}, \quad\left[u v^{-1}\right] \notin G\left(F_{V}\right)$. So that, the lift of $u v^{-1}$ starting from \tilde{y}_{*} in \tilde{F} is never a closed curve. Hence, $i(y)=\tilde{u}(1) \neq \tilde{v}(1)=i\left(y^{\prime}\right)$. Therefore, i is an injection.

It is obvious that i maps any plaque of $F_{V} C^{r}$-diffeomorphically into \tilde{F}.

To show \tilde{v} is a regular covering we are sufficient to show that $G\left(\boldsymbol{F}_{V}\right)$ is a normal subgroup of $\pi_{1}\left(F_{0}, x_{*}\right)$. Let u and v be closed curves in F_{0} with the base point x_{*}. Assume $[u] \in G\left(F_{V}\right)$. Since F_{V} is asymptotic to F_{0} there is y in $\nu^{-1}\left(x_{*}\right) \cap F_{\nu}$ such that $h_{v u v-1}(y)$ is defined. Since [u] $\in G\left(F_{V}\right), \quad h_{u} h_{v}(y)=h_{v}(y)$. So that, $h_{v u v-1}(y)=h_{v-1} h_{u} h_{v}(y)=y$. Hence, [vuv ${ }^{-1}$] $G\left(F_{V}\right)$. This implies that $G\left(F_{V}\right)$ is a normal subgroup. Therefore, (i) is proved.

To prove (ii) it is sufficient, if $G\left(F_{V}\right)=G\left(F_{V^{\prime}}\right)$ is shown. But, this is obvious since F_{V} is asymptotic to F_{0}.

Proof of Theorem 2. By Theorem 1 we obtain $N_{1}, \cdots, N_{\ell} \subset F_{0}, V$, and the functions f_{1}, \cdots, f_{ℓ}. Let $x_{*} \in F_{0}-N_{1} \cup \cdots \cup N_{\ell}$. For an asymptotic leaf F of $\mathscr{F} \mid V$ to F_{0}, let F_{V} be an asymptotic leaf of $\mathscr{F} \mid V$ to F_{0} such that $F_{V} \subset F$.

First, we show that, if u, v are closed paths in F_{0} with base point x_{*} in a same homology class of $H_{1}\left(F_{0} ; Z\right), h_{u}(y)=h_{v}(y)$ for any $y \in \nu^{-1}\left(x_{*}\right)$ $\cap V$ such that $h_{u}(y), h_{v}(y)$ are defined. Let \tilde{u}, \tilde{v} be the leaf curves of $\mathscr{F} \mid V$ which are lifts of u, v starting from y. We may assume that \tilde{u}, \tilde{v} intersect $\nu^{-1}\left(N_{1} \cup \cdots \cup N_{\ell}\right)$ transversely. So, since $F_{0}-N_{1} \cup \cdots \cup N_{\ell}$ is connected, \tilde{u} and \tilde{v} are homotopic to $\tilde{u}_{1} \cdots \tilde{u}_{\alpha}$ and $\tilde{v}_{1} \cdots \tilde{v}_{\beta}$ by homotopies such that the homotopies preserve the end points of the paths and that each homotopy level is a leaf curve of $\mathscr{F} \mid V$, where $\tilde{u}_{1} \cdots \tilde{u}_{\alpha}$ and $\tilde{v}_{1} \cdots \tilde{v}_{\beta}$ are the paths which are the compositions of the paths $\tilde{u}_{a}, \tilde{v}_{b}$ with end points in $\nu^{-1}\left(x_{*}\right)$ such that putting $\nu \tilde{u}_{a}=u_{a}$ and $\nu \tilde{v}_{b}=v_{b}, u_{a}$ and v_{b} are closed paths in F_{0} each of which intersect $N_{1} \cup \cdots \cup N_{\ell}$ at one point. Here, the composition of paths is defined by

$$
u v(x)= \begin{cases}u(2 t) & \text { for } 0 \leqq t \leqq \frac{1}{2} \\ v(2 t-1) & \text { for } \frac{1}{2} \leqq t \leqq 1\end{cases}
$$

Define $N_{i_{a}}$ and $N_{j_{b}}$ by $u_{a} \cap\left(N_{1} \cup \cdots \cup N_{\ell}\right)=u_{a} \cap N_{i_{a}}$ and $v_{b} \cap\left(N_{1}\right.$
$\left.\cup \cdots \cup N_{\ell}\right)=v_{b} \cap N_{j_{b}}$. Let the intersection numbers be $\left[u_{a}\right] \cdot\left[N_{i_{a}}\right]=\sigma_{a}$ and $\left[v_{b}\right] \cdot\left[n_{j_{b}}\right]=\tau_{b}$, where $\sigma_{a}, \tau_{b}= \pm 1$. Here, N_{1}, \cdots, N_{ℓ} are imposed the orientations such that if a closed path u intersects $N_{1} \cup \cdots \cup N_{\ell}$ at only one point in N_{i} with the intersection number $[u] \cdot\left[N_{i}\right]=\sigma$, as in the proof of Theorem 1, then the holonomy map h_{u} of u is coincide with f_{i}^{σ}. Thus, we have

$$
\begin{aligned}
h_{u}(y) & =h_{u_{1} \cdots h_{\alpha}}(y)=h_{u_{\alpha}} \cdots h_{u_{1}}(y) \\
& =f_{i_{\alpha}}^{\sigma_{\alpha}} \cdots f_{i_{1}}^{\alpha_{1}}(y) .
\end{aligned}
$$

Similarly,

$$
h_{v}(y)=f_{j_{\beta}}^{\tau_{\beta}} \cdots f_{j_{1}}^{\tau_{1}}(y) .
$$

Since u and v are in the same homology class, Lemma 5 implies $h_{u}(y)$ $=h_{v}(y)$.

If we can show that V and F_{V} satisfy the condition (*) in Lemma 6, the proof of Theorem 2 is completed by Lemma 6. (*) is shown as follows. Let y, z be two points in $\nu^{-1}\left(x_{*}\right) \cap F_{V}$ such that $h_{u}(y)$ and $h_{u}(z)$ are defined, where u is a closed path in F_{0} with end points x_{*}. We can assume $y \geqq h_{u}(y)$; if $y<h_{u}(y)$, consider the curve u^{-1} with the inverse direction of u. Here, $<$ is considered in the coordinates $\nu^{-1}\left(x_{*}\right) \cap V$ $=x_{*} \times[0, \varepsilon]$. Let $y>z$. Since h_{u} is a homomorphism, $h_{u}(y)>h_{u}(z)$. There is a path \tilde{w} in F_{V} from y to z. Put $w=\nu \tilde{w}$. Since $h_{u}(y) \leqq y$ and $h_{w} h_{u}(y)$ is defined. $h_{u}(y) \leqq y$ implies $z=h_{w}(y) \geqq h_{w} h_{u}(y)$. Notice that $y=h_{u}(y)$ if and only if $z=h_{w} h_{u}(y)$. We have $h_{w-1 u w}(z)=h_{w} h_{u} h_{w-1}(z)$ $=h_{w} h_{u}(y)$. Since $w^{-1} u w$ and u are in the same homology class, $h_{w-1 u v}(z)$ $=h_{u}(z)$ by the fact that we proved above. Thus, $h_{u}(z)=h_{w} h_{u}(y)$. Since $z=h_{w}(y)$, we have $y=h_{u}(y)$ if and only if $z=h_{u}(z)$. This proves Theorem 2.

§ 5. Proof of Theorem 3

Let $\nu_{+}: U_{+}^{\prime} \rightarrow F_{0}$ be a collar. Since $\left\{\log h_{\alpha_{1}}^{\prime}, \cdots, \log h_{\alpha_{n}}^{\prime}\right\}$ is rationally independent, there is a closed curve u in F_{0} such that $h_{u}^{\prime} \neq 1$. We can assume that $0<h_{u}^{\prime}<1$. Let x be the base point of u. There is an interval $[t, z)$ in $\nu_{+}^{-1}(x)$ and a positive number $r<1$ such that for any y in $[x, z) h_{u}(y)$ is defined and that $h_{u}^{\prime}(y)<r$. Hence, $\lim _{i \rightarrow \infty}\left(h_{u}\right)^{i}(y)=x$ for any y in $[x, z)$. Therefore, by taking a sufficiently small collar U_{+}, any leaf meeting U_{+}is asymptotic to F_{0}. We can U_{-}similarly.

By the assumption of $\pi_{1}\left(F_{0}\right)$, the one sided holonomy group $\Phi_{o}\left(F_{0}\right)$ is abelian for $\sigma=+$ or - . Let V be any neighborhood of F_{0} in U_{σ}. Then, for any leaf F meeting U_{o} a regular covering $\tilde{\nu}: \tilde{F} \rightarrow F_{0}$ is associated with F_{V}, by Theorem 2.

Since holonomy has no torsion element, $G(F)=\nu_{*} \pi_{1}\left(F_{V}\right)=\tilde{\nu}_{*} \pi_{1}(\tilde{F})$. $\supset G . \quad \nu_{*}$ and $\tilde{\nu}_{*}$ are injections. Suppose that there is a leaf F such that, for the associated covering $\tilde{\nu}: \tilde{F} \rightarrow F_{0}$ with $F_{V}, G(F) \neq G$. Then, there is a closed curve \tilde{u} in \tilde{F} with base point in $\tilde{\nu}^{-1}(x)$ such that the homotopy class $\alpha=[\tilde{\tilde{u}} \tilde{\sim}]$ is not contained in G. By the definition of \tilde{F}, there is a closed curve u in F_{V} starting from a point y in $\nu_{\sigma}^{-1}(x)$ such that $\left[\nu_{o} u\right]=\alpha$. Then, for any y^{\prime} in the interval $[x, y]$ in $\nu_{\sigma}^{-1}(x)$, the holonomy map $h_{\alpha}\left(y^{\prime}\right)$ is defined. As above, there is a sequence of points $y_{0}=y, y_{1}, y_{2}, \cdots$ in $[x, y] \cap F_{V}$ such that $\lim _{i \rightarrow \infty} y_{i}=x$. By condition (*) of Lemma 6, $h_{\alpha}\left(y_{i}\right)=y_{i}$ for each y_{i}. Since $\pi_{1}\left(F_{0}, x\right)=\boldsymbol{Z}_{(1)}+\cdots+Z_{(m)}+G$, and $\nu_{*} \pi_{1}\left(F_{V}\right) \supset G$, we can put

$$
\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\cdots+a_{m} \alpha_{m}
$$

for the integers a_{1}, \cdots, a_{m} with $\left(a_{1}, \cdots, a_{m}\right) \neq(0, \cdots, 0)$. Let u_{1}, \cdots, u_{m} be the closed curves with base point x realizing the homotopy classes $\alpha_{1}, \cdots, \alpha_{m}$ respectively. Then, the multiple $v=u_{1}^{a_{1}} \cdots u_{m}^{a_{m}}$ realizes α, so that, $[v]=\left[\nu_{o} u\right]$. Let v_{t} be a homotopy from u to $v, t \in[0,1]$. Since $h_{v_{t}}\left(y^{\prime}\right)$ is defined for arbitrary $y^{\prime} \in[x, y]$ which is sufficiently close to x, we have $h_{u}\left(y^{\prime}\right)=h_{v}\left(y^{\prime}\right)$. Hence, for such y^{\prime}

$$
h_{\alpha}\left(y^{\prime}\right)=\left(h_{\alpha_{m}}\right)^{a_{m}} \cdots\left(h_{\alpha_{1}}\right)^{a_{1}}\left(y^{\prime}\right) .
$$

Since $\lim _{i \rightarrow \infty} y_{i}=x$ and $h_{\alpha}\left(y_{i}\right)=y_{i}$, we have $h_{\alpha}^{\prime}=1$. Hence,

$$
\left(h_{\alpha_{m}}^{\prime}\right)^{a_{m}} \cdots\left(h_{\alpha_{1}}^{\prime}\right)^{a_{1}}=1 .
$$

Therefore,

$$
a_{1} \log h_{\alpha_{1}}^{\prime}+\cdots+a_{m} \log h_{\alpha_{m}}^{\prime}=0
$$

with $\left(a_{1}, \cdots, a_{m}\right) \neq(0, \cdots, 0)$. But, this contradicts to the assumption of the theorem. This proves Theorem 3.

§6. Proof of Theorem 4

The proof of (i) and (ii) of Theorem 4 is contained in the proof of Theorem 3.

Next we prove (iii). Since f is a local diffeomorphism of class C^{2} with $f(0)=0$ and $f^{\prime}(0)>1$, by a theorem of Sterenberg [5], there is a C^{1}-diffeomorphism g from a neighborhood of 0 of \boldsymbol{R} into \boldsymbol{R} such that $f^{\prime}(0) \cdot t=g f g^{-1}(t)$ for any t in the image of g. Hence, by a C^{1}-alternation of the coordinate of $\nu^{-1}(x) \cap U$, we may assume that $f(t)=d t$, where $d=f^{\prime}(0)<1$. Hereafter we use the new coordinate of $\nu^{-1}(x) \cap U$ translated by g. Let f_{1}, \cdots, f_{ℓ} be local diffeomorphisms of \boldsymbol{R} generating $\Phi\left(F_{0}\right)$. Since $\Phi\left(F_{0}\right)$ is abelian, we may assume $f_{i} f=f f_{i}$ for $i=1$, \cdots, m by choosing U sufficiently small. Hence, $f_{i}^{\prime}(f(t)) \cdot f^{\prime}(t)=f^{\prime}\left(f_{i}(t)\right)$ $\cdot f_{i}^{\prime}(t)$, and so $f_{i}^{\prime}(f(t))=f_{i}^{\prime}(t)$, for $f^{\prime}(t)=d$. Then, $f_{i}^{\prime}(t)=f_{i}^{\prime}(0)$, since $\lim _{n \rightarrow \infty} f^{n}(t)=0$ and f_{i} is of class C^{1}. Therefore, $f_{i}(t)=d_{i} \cdot t$, where d_{i} $=f_{i}^{\prime}(0)$. To show (iii), it is sufficient if $G(F)=G\left(F^{\prime}\right)$ is shown for any asymptotic leaves F and F^{\prime} to F_{0}. Let α be a closed curve realizing an element of $G(F)$ and let h_{α} be the holonomy map defined by $\alpha \in \pi_{1}\left(F_{0}, x\right)$. Then, h_{α} can be written as $h_{\alpha}=f_{1}^{k_{1}} \cdots f_{\ell}^{k_{\ell}}$. By the definition of $G(F)$, there is a closed curve β in $F \cap U$ with the end point t in $\nu^{-1}(x)$ such that $\alpha=\nu \circ \beta$. Hence, $t=h_{\alpha}(t)=f_{1}^{k_{1}} \cdots f_{\ell}^{k_{\ell}}(t)=d_{1}^{k_{1}} \cdots d_{\ell}^{k_{\varepsilon}} \circ t$. Thus, $h_{\alpha}=i d$. since $d_{1}^{k_{1}} \cdots d_{\ell}^{k_{\varepsilon}}=1$. Therefore, a lift of α to F^{\prime} is a closed curve, and so the holonomy class of α is contained in $G\left(F^{\prime}\right)$. This implies $G(F)$ $=G\left(F^{\prime}\right)$. This completes the proof of Theorem 3.

Remark 1. For $\tilde{f} \in \Phi\left(F_{0}\right)$ let $\tilde{f}^{\prime} \in \boldsymbol{R}$ be the derivative of \tilde{f} at 0. Denoting $D \Phi\left(F_{0}\right)=\left\{\tilde{f}^{\prime} \mid \tilde{f} \in \Phi\left(F_{0}\right)\right\}, D \Phi\left(F_{0}\right)$ is a multiplicative subgroup of $R-\{0\}$. Let $D: \Phi\left(F_{0}\right) \rightarrow D \Phi\left(F_{0}\right)$ be the homomorphism defined by the derivation. Then, for any asymptotic leaf F to F_{0}, we see that $G(F)$ $\subset \operatorname{ker} D h$, where h is the homomorphism $\pi_{1}\left(F_{0}, x_{*}\right) \rightarrow \Phi\left(F_{0}\right)$ defined in § 3.

Remark 2. If \mathscr{F} is of class C^{2}, then, by the method used in the proof of Theorem 4, we see that the sequence

$$
1 \longrightarrow G(F) \xrightarrow{\subset} \pi_{1}\left(F_{0}\right) \xrightarrow{h} \Phi\left(F_{0}\right) \longrightarrow 1
$$

is exact for any asymptotic leaf F to F_{0}.

§ 7. Proof of Theorem 5

Assuming that $\pi_{1}(F)=\boldsymbol{Z}_{(1)}+\cdots+Z_{(m)}+G$ for a finite group G, let N_{1}, \cdots, N_{m} be the manifolds of F obtained by Proposition 1 for the isomorphism $H: H_{1}(F: \boldsymbol{Z}) \rightarrow \boldsymbol{Z}_{(1)}+\cdots+\boldsymbol{Z}_{(m)}$. Here, we may assume
that $\operatorname{dim} F \geqq 2$, because if $\operatorname{dim} F=2, F$ is a torus. By observing the proof of Theorem 1, the same conclusion of Theorem 1 is satisfied for these N_{1}, \cdots, N_{m}. Then, if \mathscr{F} is a foliation of class C^{r}, there are injective C^{r}-diffeomorphisms $f_{i}^{+}:[0, \varepsilon] \rightarrow[0, \varepsilon]$ for $i=1, \cdots, m$ with the properties (a) and (b) of Theorem 1. By the proof of Theorem 1, f_{i} can be identified with an one sided holonomy map $h_{\alpha_{i}}^{+}$of a generator α_{i} of $\boldsymbol{Z}_{(i)}$.

We divide the stage into Case 1 and Case 2. (i) of Theorem 5 is divided into the both cases and (ii) is contained in Case 1.

Case 1: The case that \mathscr{F} is of class $C^{r}, r \geqq 2$, and that there is i such that $\left(f_{i}^{+}\right)^{\prime}(0) \neq 1$. Let f_{j} be a (both sided) holonomy map of α_{j}. Then $f_{j}^{\prime}(0)=\left(f_{j}^{+}\right)^{\prime}(0)$. By Sternberg's theorem, f_{1}, \cdots, f_{m} are C^{r-1}-conjugate to linear functions by a same conjugation map g in a small neighborhood of 0 . (See the proof of Theorem 4.) Then, $g f_{j} g^{-1}(t)$ $=f_{j}^{\prime}(0) \cdot t$ if $|t|$ is sufficiently small. Let U_{-}be a collar of F such that U_{-}is in the another side of U_{+}. Using Theorem 1 we get $f_{i}^{-}:\left[-\varepsilon^{\prime}, 0\right]$ $\rightarrow\left[-\varepsilon^{\prime}, 0\right]$ for $i=1, \cdots, m$. f_{i}^{-}is the other sided holonomy map of a generator α_{i}^{\prime} of $\boldsymbol{Z}_{(i)} . \quad\left|f_{i}(t)\right| \leqq|t|$ for sufficiently small $|t|$ if and only if $\left|f_{i}^{\prime}(0)\right| \leqq 1$ since $\bar{f}_{i}=g f_{i} g^{-1}$ is linear and $\bar{f}_{i}(t)=f_{i}^{\prime}(0) \cdot t, i=1, \cdots, m$. Hence, by taking ε^{\prime} small, $\alpha_{i}^{\prime}=\alpha_{i}$, i.e. f_{i}^{+}and f_{i}^{-}are the one sided holonomies of the same generator α_{i} of $\boldsymbol{Z}_{(i)}$. Therefore, there are injective linear maps $\bar{f}_{i}:[-\varepsilon, \varepsilon] \rightarrow[-\varepsilon, \varepsilon], i=1, \cdots, m$ with the following properties: Let $N_{i}^{\prime}, N_{i}^{\prime \prime}$, and F_{*} be the manifolds defined in Theorem 1. Denote by $X_{\mathcal{J}}$ the quotient manifold obtained from $F_{*} \times[-\varepsilon, \varepsilon]$ by identifying $(x, t) \in N_{i}^{\prime} \times[-\varepsilon, \varepsilon]$ and $\left(x, \bar{f}_{i}(t)\right) \in N_{i}^{\prime \prime} \times[-\varepsilon, \varepsilon]$ for all $i=1, \cdots, m$ and $t \in[-\varepsilon, \varepsilon]$. The product foliation of $F_{*} \times[-\varepsilon, \varepsilon]$ induces a foliation $\mathscr{F}_{\mathcal{J}}$ on $X_{\mathcal{F}}$. Then, there is a neighborhood V of F such that there is a leaf preserving C^{r-1}-diffeomorphism φ from V onto $X_{\mathcal{F}}$ which maps F onto $F_{*} \times 0 / \sim$.

By Theorem 4, for any leaf F^{\prime} meeting V an unique regular covering \tilde{F} is associated with F_{V}^{\prime}. Since \bar{f}_{i} is linear, by Theorem $3, \nu_{*} \pi_{1}\left(F_{V}^{\prime}\right)$ $=\tilde{\Sigma}_{*} \pi_{1}(\tilde{F}) \cong \pi_{1}(\tilde{F}) \cong G$ if and only if $\log \bar{f}_{1}^{\prime}, \cdots, \log \bar{f}_{m}^{\prime}$ are rationally independent. By an arbitrarily small perturbations of $\bar{f}_{1}, \cdots, \bar{f}_{m}$, we can take linear maps $\bar{g}_{1}, \cdots, \bar{g}_{m}:[-\varepsilon, \varepsilon] \rightarrow[-\varepsilon, \varepsilon]$ such that $\log \bar{g}_{1}^{\prime}, \cdots, \log \bar{g}_{m}^{\prime}$ are rationally independent or dependent when $\log \overline{f_{1}^{\prime}}, \cdots, \log \overline{f_{m}^{\prime}}$ are rationally dependent or independent, respectively.

Let U be an open neighborhood of F contained in V. Let N be a
neighborhood of $\mathscr{F} \mid U$ in $\operatorname{Fol}_{F}^{r-1}(U) . \varphi(U)$ is a neighborhood of $F_{*} \times 0 / \sim$ in $X_{\bar{f}}$. Since $\bar{g}_{1}, \cdots, \bar{g}_{m}$ are close to $\bar{f}_{1}, \cdots, \bar{f}_{m}$ we may assume that $\varphi(U) \subset X_{\bar{g}} \subset X_{\bar{J}}$ and that $\mathscr{F}_{\bar{g}} \mid \varphi(U)$ is close to $\mathscr{F}_{\bar{f}} \mid \varphi(U)$. $\mathscr{F}_{\bar{j}} \mid \varphi(U)$ induce a foliation \mathscr{F}^{\prime} of U. By taking $\bar{g}_{1}, \cdots, \bar{g}_{m}$ sufficiently close to $\bar{f}_{1}, \cdots, \bar{f}_{m}$ we can $\mathscr{F}^{\prime} \in N$.

Case 2. The case that \mathscr{F} is of class C^{1} and that $\left(f_{i}^{+}\right)^{\prime}(0)=1$ for all $i=1, \cdots, m . \quad f_{i}^{+}$is the one sided holonomy map of α_{i} defined on $[0, \varepsilon]$. First, assume that there is no neighborhood U of F such that $F \mid U$ is a product foliation. For small $\delta>0$ we define a C^{1}-diffeomorphism $g_{i}^{+}:[0, \varepsilon+\delta] \rightarrow \boldsymbol{R}_{+}$by

$$
g_{i}^{+}(t)= \begin{cases}t & \text { for } 0 \leqq t<\delta \\ f_{i}^{+}(t-\delta)+\delta & \text { for } t>\delta\end{cases}
$$

Since $\left(f_{i}^{+}\right)^{\prime}(0)=1, g_{i}^{+}$is of class C^{1}. It is easy to see that $g_{1}^{+}, \cdots, g_{m}^{+}$ are mutually commutative since $f_{1}^{+}, \cdots, f_{m}^{+}$are so. $g_{i}^{+} \mid[0, \varepsilon]$ is a $C^{1}-$ perturbation of f_{i}^{+}. Let \mathscr{F}_{f} and X_{f} be the ones defined in Theorem 1 from f_{i}^{+}and $F_{*} \times[0, \varepsilon]$. Define \mathscr{F}_{g} and X_{g} similarly from g_{i}^{+}and $F_{*} \times[0, \varepsilon+\delta]$. We can consider that $X_{f} \subset X_{g}$ and that $\mathscr{F}_{g} \mid X_{f}$ is $C^{1}-$ close to \mathscr{F}_{f} is δ is small enough. There is a neighborhood V_{+}of F in U_{+}and a C^{1}-diffeomorphism $\varphi: V_{+} \rightarrow X_{f}$ mapping $\mathscr{F} \mid V_{+}$to \mathscr{F}_{f}. Let \mathscr{F}_{+}^{\prime} be the foliation induced by φ^{-1} from $\mathscr{F}_{g} \mid X_{f}, \mathscr{F}_{+}^{\prime}$ is C^{1}-close to $\mathscr{F} \mid V_{+}$ if δ is small enough. We get \mathscr{F}_{-}^{\prime} on V_{-}similarly. On small neighborhoods of $F, \mathscr{F}_{+}^{\prime}$ and \mathscr{F}_{-}^{\prime} are product foliations. Let $U=V_{+} \cup V_{-}$. Then, we get \mathscr{F}^{\prime} on U by $\mathscr{F}^{\prime} \mid V_{\sigma}=\mathscr{F}_{\sigma}^{\prime}, \sigma= \pm$. We can take \mathscr{F}^{\prime} in any neighborhood N of $\mathscr{F} \mid U$ in $\operatorname{Fol}_{F}^{1}(U)$. By the assumption \mathscr{F}^{\prime} is not locally equivalent to $\mathscr{F} \mid U$.

Next, we assume that there is a neighborhood V of F such that $\mathscr{F} \mid V$ is a product foliation. Then, V is leaf preservingly diffeomorphic to $F \times[-\varepsilon, \varepsilon]$. Consider that $V=F \times[-\varepsilon, \varepsilon]$ and $F=F \times 0$. Let U $=F \times(-\varepsilon / 2, \varepsilon / 2)$. Let α_{i} be a generator of $Z_{(i)}$. Then, the holonomy map $f_{i}:[-\varepsilon, \varepsilon] \rightarrow[-\varepsilon, \varepsilon]$ of α_{i} is the identity map. Let g_{i} be the perturbation of f_{i} such that $g_{i}=f_{i}$ for $i>1$ and that $\left|g_{1}(t)\right|<|t|$ and $\left|g_{1}(\pm \varepsilon)\right|>\varepsilon / 2$. Let \mathscr{F}_{g} and X_{g} be as above defined from g_{i} and $F_{*} \times[-\varepsilon, \varepsilon]$. Then, we can consider that $U \subset X_{g} \subset V$ and that $\mathscr{F}_{g} \mid U$ is close to $\mathscr{F} \mid U$ if g_{1} is close enough to f_{1}. Any leaf of \mathscr{F}_{g} is asymptotic to F, but any leaf of $\mathscr{F} \mid V$ is not asymptotic. Hence, $\mathscr{F}_{g} \mid U$ is not locally equivalent to $\mathscr{F} \mid V$. This completes the proof of Theorem 5.

References

[1] M. Hirsch, Stability of compact leaves of foliations, Dynamical Systems, ed. M. Peixoto, Academic Press, N.Y., 1973, 135-153.
[2] H. Levine and M. Shub, Stability of foliations, Trans. A.M.S., 184 (1973), 419437.
[3] H. Nakatsuka, On representations of homology classes, Proc. Japan Acad., 48 (1972), 360-364.
[4] T. Nishimori, Compact leaves with abelian holonomy, Tōhoku Math. J. The Second Series, 27 (1975), 259-272.
[5] S. Sterenberg, Local C^{n} transformation of the real line, Duke Math. J., 24 (1957), 97-102.

Department of Mathematics
College of General Education
Nagoya University

[^0]: Received February 10, 1975.
 Revised November 5, 1976.

