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ABSTRACT

Several recent papers treated robust and efficient estimation of tail index para-
meters for (equivalent) Pareto and truncated exponential models, for large and
small samples. New robust estimators of “generalized median” (GM) and
“trimmed mean” (T) type were introduced and shown to provide more favor-
able trade-offs between efficiency and robustness than several well-established
estimators, including those corresponding to methods of maximum likelihood,
quantiles, and percentile matching. Here we investigate performance of the
above mentioned estimators on real data and establish — via the use of good-
ness-of-fit measures — that favorable theoretical properties of the GM and T
type estimators translate into an excellent practical performance. Further, we
arrive at guidelines for Pareto model diagnostics, testing, and selection of par-
ticular robust estimators in practice. Model fits provided by the estimators are
ranked and compared on the basis of Kolmogorov-Smirnov, Cramér-von Mises,
and Anderson-Darling statistics.

1. INTRODUCTION AND PRELIMINARIES

A single-parameter Pareto distribution plays a very significant role in actuarial
modeling because of its conceptual simplicity and ease of applicability in prac-
tice. The cdf of the Pareto P(s,�) model is given by

F(x) = 1 – (s/x)�, x > s, (1)

where � > 0 is the shape parameter that characterizes the tail of the distribution
and s > 0 is the scale parameter. When s is assumed known, the P(s,�) model
is called a single-parameter Pareto model. The assumption of s known is quite
typical in the actuarial literature because, as for example Philbrick (1985) states,
“although there may be situations where this value must be estimated, in vir-
tually all insurance applications this value will be selected in advance.” (See also
discussion by Rytgaard (1990).)
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In several recent papers Brazauskas and Serfling (2000a,b; 2001) treated
robust and efficient estimation of the tail index � for various setups: for large-
and small-samples and for one- and two-parameter models (corresponding to
s known or unknown). Developments presented there utilized a well-known
equivalence relation between model (1) and the truncated exponential distribu-
tion E(m,q) having cdf

G(z) = 1 – e –(z–m) /q, z > m, (2)

for q > 0 and –∞ < m < ∞. Specifically, if random variable X has cdf F given by
(1) then variable Z = logX has cdf G given by (2), with m = log s and q = �–1.

In large-sample studies, for example, new robust estimators of “generalized
median” (GM) type were introduced and “trimmed mean” (T) type estimators
were adapted from the E(m,q) model literature. These estimators were then
compared with the maximum likelihood, quantile type, percentile matching, and
other estimators. Using as efficiency criterion the asymptotic relative efficiency
(ARE) with respect to the maximum likelihood estimator (MLE) and as robust-
ness criterion the breakdown point (BP) (this is defined in Section 1.2), the GM
type was seen to dominate all competitors, with the T type second best. From
a practical point of view, the ARE is equivalent to the accuracy of the estimator
and can be interpreted in terms of the length of the confidence interval (see
Section 1.3 for precise discussion).

In the present paper we investigate performance of the above mentioned esti-
mators on real data and establish — via the use of goodness-of-fit measures —
that favorable theoretical properties of the GM and T type estimators trans-
late into an excellent practical performance. The goodness-of-fit measures,
defined in Section 1.1, are used here for two purposes: (i) to (formally) test the
appropriateness of the estimated Pareto model for a particular data set when
� is estimated by the MLE (this is defined in Section 1.3), and (ii) to evaluate
and compare Pareto fits when various estimators (not only the MLE) of � are
employed.

In the actuarial literature the issue of goodness-of-fit is addressed through
a combination of informal methods and formal statistical tests. Most informal
techniques are based on the difference (absolute or relative) between the fitted
and empirical values of relevant quantities, such as the number of claims or
expected value of claims for different claim layers. Additionally, for the Pareto
model in particular, comparisons of �̂ with a typical value of � for the same
insurance line of the entire industry are also used in the literature. (See Patrick
(1980), Philbrick (1985), and Reichle and Yonkunas (1985).) Regarding formal
approaches, tests based on Kolmogorov-Smirnov (KS) and x2 statistics seem to
have a leading role (see, e.g., Philbrick and Jurschak (1981)). More extensive
discussion on model validation principles is available in Klugman, Panjer, and
Willmot (1998), Section 2.9.

As is well-known in the statistical literature (e.g., D’Agostino and Stephens
(1986), p. 110), the x2 test is less powerful than tests based on the empirical cdf.
Therefore, here we use three widely popular goodness-of-fit measures which are
based on the empirical cdf — the above-mentioned KS statistic, the Cramér-
von Mises (CvM) statistic, and the Anderson-Darling (AD) statistic. All these
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statistics (though emphasizing different aspects of discrepancy) measure the dis-
tance in some sense between the fitted model cdf F and the empirical cdf Fn.
Thus estimators that lead to smaller values of these statistics are preferable.

The paper is organized as follows. First, in Section 2, we define precisely
several estimators for the parameter � in (1). Next, in Section 3, the data sets
are introduced, a method for data de-grouping is described, and preliminary
data visualization and diagnostic tools are applied to the sets. Finally, compar-
isons and conclusions are presented in Section 4. Also, in Section 4.2, we arrive
at guidelines for Pareto model diagnostics, testing, and selection of particular
robust estimators in practice.

In the remainder of this introduction, we formulate precisely our perfor-
mance criteria.

1.1. Goodness-of-Fit Measures

Let us consider a sample X1,…,Xn and denote the ordered sample values by
X(1) ≤ X(2) ≤ … ≤ X(n) and the empirical cdf by
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Also, for an estimator �̂ , let F(X( j)) denote the probability assigned to X( j) by
the model P (s, �̂ ), for j = 1,…,n. Note that Fn(X( j)) = j /n, for j = 1,…,n. The
goodness of fit statistics are then defined as follows.
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When the parameter � is estimated by �̂ML, critical values and formulas for
significance levels for the statistics Dn, W 2

n , and A2
n are available in D’Agostino
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and Stephens (1986), Tables 4.11 and 4.12, pp. 135-136. Actually, the results
developed there are for the model E(m,q) but, due to the equivalence relation
between (1) and (2), they can also be directly applied to the model P(s,�).

1.2. Robustness Criterion: Breakdown Point

A popular and effective criterion for robustness of an estimator is its break-
down point (BP), loosely characterized as the largest proportion of corrupted
sample observations that the estimator can cope with. In other words, the
BP of an estimator measures the degree of resistance of the estimator to the
influence of outlying observations which possibly (but not necessarily) represent
contamination of a data set rather than merely unusually extreme observations
generated by the target parametric model.

Brazauskas and Serfling (2000a,b) considered two types of contamination
— upper and lower contamination — and, consequently, defined separate ver-
sions of BP:

Lower (Upper) Breakdown Point (LBP/UBP): the largest proportion of lower
(upper) sample observations which may be taken to a lower (an upper) limit
without taking the estimator to a limit not depending on the parameter being
estimated.

For modeling insurance loss data, however, contamination of the lower type
is of lesser concern because the lower limit of losses is usually pre-defined by
a contract. (For example, the lower limit can be represented as a deductible.)
Thus, in the present treatment we favor estimators which have nonzero UBP.

1.3. Efficiency Criterion: Variance

If sample observations follow the postulated parametric model, then it is well-
known that, for large data sets, the MLE attains (in its approximating normal
distribution) the minimum possible variance among a large class of compet-
ing estimators. Therefore, it can be regarded as a quantitative benchmark for
efficiency considerations. In particular, for the model P(s,�) with s known, the
MLE of � is readily derived in Arnold (1983), and given by

ii 1= /
.

log X
n

snML =a
!

t
^ h

Its exact distribution theory is described by the statement that

n2

MLa
a

t has cdf x 2
2n ,

where x2
n denotes the chi-square distribution with n degrees of freedom. This

implies that �̂ML is a biased estimator of �, but multiplication by the factor
(n – 1)/n yields an unbiased version,

368 VYTARAS BRAZAUSKAS AND ROBERT SERFLING

https://doi.org/10.2143/AST.33.2.503698 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.2.503698


ii 1= /
.

logn
n

X
n

s
1 1

nMLU ML=
-

=
-a a

!
t t

^ h

For further details on exact distribution theory of �̂ML see Rytgaard (1990).
Following techniques in Brazauskas and Serfling (2000a,b), it can be shown

that for large sample size n, �̂MLU is approximately normal with mean � and vari-
ance �2/n. Moreover, other competing estimators �̂ for � considered here are
approximately normal with mean � and variance c�2/n for some constant c > 1
and large n. This means that confidence intervals for the parameter � based on
the competing estimators will be c times wider than those based on the MLU.
Such optimal precision of the MLU, however, is achieved at the price of robust-
ness, which becomes crucial when the actual data departs from the assumed para-
metric model. Hence, the MLU is most efficient but is nonrobust with UBP = 0.

2. THE ESTIMATORS

The MLE and MLU were given in Section 1.3. Here we introduce the other
methods considered in this study for estimation of the parameter �. In particu-
lar, we present quantile, trimmed mean, and generalized median type estima-
tors. For further details and discussion see Brazauskas and Serfling (2000a,b).

2.1. Quantile Type Estimators

Quantile type estimators of � are completely unaffected by additional informa-
tion about s. For this reason and for compatibility with the existing literature,
we describe this approach here for the case when s is treated as an unknown
nuisance parameter.

Quantile estimators based on k ≥ 2 (selected) quantile levels 0 < p1 < …<
pk < 1 are defined as follows:
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where ui = – log(1 – pi), 1 ≤ i ≤ k, and x denotes the least integer ≥ x. Such
estimators were introduced and studied for the Pareto problem by Quandt
(1966) for k = 2 and by Koutrouvelis (1981) for general k ≥ 2.

Choosing the minimum of the determinant of the asymptotic covariance
matrix of the estimators of s and � as an optimality criterion, Koutrouvelis
(1981) found that the optimal choice of p1 is always

p°1 = . ,n 0 5
1

+

and the remaining optimal quantile levels p°2, …, p°k are:

• For k = 2, take p°2 = 1 – (1 – p°1)e –1.5936 ≈ .80.

• For k = 5, take p°2 = 1 – (1 – p°1 )e – 0.6003 ≈ .45, p°3 = 1 – (1 – p°1 )e –1.3544 ≈ .74,
p°4 = 1 – (1 – p°1)e –2.3721 ≈ .91, and p°5 = 1 – (1 – p°1)e – 3.9657 ≈ .98.

We denote the optimal estimators of � by �̂Q
opt,k. We also consider a nonoptimal

case (denoted by �̂Q
* ):

• For k = 5, take p1 = .13, p2 = .315, p3 = .50, p4 = .685, and p5 = .87.

Remark. When the number k of quantiles is chosen to equal the number of
unknown parameters of the model, this method corresponds to what is called
percentile matching by Klugman, Panjer, and Willmot (1998).

2.2. Trimmed Mean Estimators

For specified b1 and b2 satisfying 0 ≤ b1, b2 < 1/2, a trimmed mean is formed
by discarding the proportion b1 lowermost observations and the proportion b2
uppermost observations and averaging the remaining ones in some sense. In
particular, for � we introduce the trimmed mean estimator
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with cni = 0 for 1 ≤ i ≤ [nb1], cni = 0 for n – [nb2] + 1 ≤ i ≤ n, and cni = 1/d (b1, b2,n)
for [nb1] + 1 ≤ i ≤ n – [nb2], where [ · ] denotes “greatest integer part’’, and
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These estimators correspond to the trimmed mean estimators introduced and
studied by Kimber (1983a,b) for the equivalent problem of estimation of q = �–1

in the model E(m,q) with m known. The above cni’s are a choice making q̂T =
�̂T

–1 mean-unbiased for q = �–1.

2.3. Generalized Median Estimators

Generalized median (GM) statistics are defined by taking the median of the n
kd n

evaluations of a given kernel h (x1,…,xk) over all k-sets of the data. See Ser-
fling (1984, 2000) for general discussion. In Brazauskas and Serfling (2000a),
such estimators were considered for the parameter � in the case of s known:

�̂GM = Median{h(Xi1
,…,Xik

)},

with a particular kernel h (x1,…,xk):
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where Ck is a multiplicative median-unbiasing factor, i.e., chosen so that
the distribution of h(Xi1

,…,Xik
; s) has median �. Values of Ck, for k = 2:10, are

provided in the following table. (For k > 10, Ck is given by a very accurate
approximation, Ck ≈ k/(k – 1/3).

k 2 3 4 5 6 7 8 9 10
Ck 1.1916 1.1219 1.0893 1.0705 1.0582 1.0495 1.0431 1.0382 1.0343

3. DATA SETS AND PRELIMINARY DIAGNOSTICS

We choose three data sets for analysis in this study: Wind Catastrophes (1977),
OLT Bodily Injury Liability Claims (1976), and Norwegian Fire Claims (1975).
These data sets are of interest because they have been analyzed extensively in
the actuarial literature. In this section we first present the data and briefly
mention methods of analysis proposed in the literature. Then we describe a
data de-grouping technique which we apply for the wind data, the liability
data, and the Norwegian data. Finally, for an initial assessment of the validity
of distributional assumptions, we provide histograms and quantile-quantile
plots (QQ-plots) for each data set.

3.1. Wind Catastrophes (1977)

The Wind Catastrophes (1977) data set is taken from Hogg and Klugman
(1984), p. 64. It represents 40 losses that occurred in 1977 due to wind-related
catastrophes. The data were recorded to the nearest $1,000,000 and include
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only those losses of $2,000,000 or more. The following display provides the losses
(in millions of dollars):

2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5
5 5 5 6 6 6 6 8 8 9 15 17 22 23 24 24 25 27 32 43

In Hogg and Klugman (1984) two parametric models were used to fit the wind
data: truncated exponential (with the truncation point 1.5) and two-parameter
Pareto. Derrig, Ostaszewski, and Rempala (2000) also studied this data set and,
in addition to the above parametric models, used the empirical nonparametric
and the bootstrap approaches to estimate the probability that a wind loss will
exceed 29.5 (that is, $29,500,000). Further, Philbrick (1985), among several
applications of the single-parameter Pareto distribution to real data, investi-
gated a P(s,�) fit to the wind data with the truncation point s = 2. He advo-
cated the use of the MLE for estimation of � but apparently was unaware that
this estimator is biased.

3.2. OLT Bodily Injury Liability Claims (1976)

The complete OLT Bodily Injury Liability (1976) data set is available in Patrik
(1980), p. 99. It is prepared by the Insurance Services Office and represents
Owners, Landlords and Tenants (OLT) bodily injury liability losses for the
policy limit $500,000 for policy year 1976 evaluated as of March 31, 1978. Patrik
(1980) described general principles of selection, estimation, and testing of loss
models for casualty insurance claims. For illustrative purposes he used the two-
parameter Pareto distribution to fit the entire range of claims, including the
OLT Bodily Injury Liability (1976) claims.

Here we follow Philbrick’s (1985) approach and fit the single-parameter
Pareto distribution only to the claims that are greater than $25,000. The grouped
losses (recorded in thousands of dollars) in exceedance of this threshold are
presented in Appendix, Table A.1.

3.3. Norwegian Fire Claims (1975)

This data set is one among 20 sets of Norwegian Fire Claims, for years 1972-1984
and 1986-1992, presented in Appendix I of Beirlant, Teugels, and Vynckier
(1996). It represents the total damage done by 142 fires in Norway for the year
1975. (For this year a single-parameter Pareto distribution seems to provide a
reasonably good fit to these data. Fits of similar quality are observed for sev-
eral other years as well.) A priority of 500,000 Norwegian krones was in force,
thus no claims below this limit were recorded. Actual losses (in thousands of
Norwegian krones) are provided in Appendix, Table A.2.

The Norwegian fire claims for various years have been extensively analyzed
by Beirlant, Teugels, and Vynckier (1996). Their approach is based on extreme
value theory, which concentrates exclusively on the upper tail of the data. We will
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not pursue that approach here. However, we will follow techniques developed
there for data diagnostics, namely, methods of Section 1.5 which describe how
to construct specific QQ-plots.

3.4. A Method for Data De-grouping

We start with a motivational example based on the wind data. Losses recorded
there are rounded to the nearest million which suggests that actual losses cor-
responding to 2, for example, were not exactly 2 but rather somewhere between
1.5 and 2.5. (This seems to be one of the reasons why Hogg and Klugman
(1984) considered the left-hand endpoint 1.5 for the truncated exponential
model.) To avoid ties and inappropriate clustering of claims due to such rounding,
we apply a simple data de-grouping method as follows.

Let us continue with the wind data and, in particular, losses of size 2. It is
reasonable to assume that actual observations that correspond to 2 are equally
spaced (or, equivalently, uniformly distributed) on the interval (1.5, 2.5). Thus,
for the wind data, instead of the 12 observations “2’’ we shall use 1.58, 1.65,
1.73, 1.81, 1.88, 1.96, 2.04, 2.12, 2.19, 2.27, 2.35, 2.42, as the actual data. More
formally,

if (A,B) is an interval of losses and m is the number of losses within (A,B),
then m uniformly distributed losses x1,…,xm in that interval are found accord-
ing to the formula:

, ,..., .x m
k A m

k B k m1
1 1

1k = -
+

+
+

=b l

We emphasize that such an approach neither distorts the original grouping
nor changes the total loss amount within a group. It is easy to implement in
practice and, most importantly, it makes the data continuous, thus allowing
methods of estimation and goodness-of-fit to be applied directly. We apply this
technique to all three data sets. Finally, one may also consider more sophisticated
data de-grouping schemes by employing, for example, the beta family of distri-
butions instead of uniform. In that case, however, additional information, such
as mean and variance of losses within the interval, is required.

3.5. Preliminary Diagnostics

In Figure 1, we illustrate the results of preliminary diagnostics for the three data
sets at hand. Three plots in the first column correspond to the Wind Cata-
strophes (1977), in the second column — OLT Bodily Injury Liability Claims
(1976), and in the third column — Norwegian Fire Claims (1975) data. The fol-
lowing conclusions are quite evident:

• Histograms for all the data sets exhibit a similar shape for the underlying dis-
tribution. Two one-parameter models seem to be appropriate candidates: the
truncated exponential, and the Pareto.
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• The exponential QQ-plots clearly reveal that a truncated exponential model
does not fit any of the three data sets (a good fit corresponds to a 45° line).

• In comparison with the exponential case, the Pareto QQ-plot shows mild
improvement for the wind data, significant improvement for the liability data,
and nearly perfect fit for the Norwegian fire data.

Remark. Plotting of lognormal or Weibull QQ-plots, for example, reveals sig-
nificant improvements over the one-parameter Pareto model for the wind and
the liability data. These distributions, however, are two-parameter models (thus,
less parsimonious) and are not considered as competitors to the one-parame-
ter Pareto model. ¡

4. COMPARISONS AND CONCLUSIONS

In Section 4.1 we present summarizing tables for each data set, showing values
of the estimates of �, values of the KS, CvM, and AD statistics, and ranks of the
estimators based on these goodness-of-fit measures. In Section 4.2, conclusions
are drawn and recommendations are provided. Performances of all estimators
under consideration are compared by simultaneously examining their ranks
(for all three data sets), their UBP’s, and their variances.

Remarks. (i) Ranks to estimators are assigned as follows. The estimator with
the lowest value for a selected goodness-of-fit measure receives rank 1, the esti-
mator with the second lowest value (for the same measure) — receives rank 2,
etc. The idea of ranking estimators or models based on a certain criterion is
not new. It has been suggested and quite extensively dicussed by Klugman,
Panjer, and Willmot (1998), Section 2.9.2.

(ii) For situations when the number n
kd n of kernel evaluations needed for

computation of �̂GM becomes extremely large, we reduce the computational
burden by randomly choosing 107 kernel evaluations if n

kd n exceeds 107. Such
an approach maintains a high degree of numerical accuracy (up to 3 decimal
places) and renders the computational burden negligible. For instance, for the
Norwegian data (n = 142), it requires only 150 seconds to compute (simulta-
neously) all estimators used in this study on a Pentium II 400MHz laptop com-
puter. Further discussion on computational aspects of the GM estimators is
available in Brazauskas and Serfling (2000a). ¡

4.1. Summary of Pareto Fits

DISCUSSION OF TABLE 4.1

The fitted model is P(s = 1.5, �̂) with values of �̂ ranging from 0.605 (for �̂Q
opt,2)

to 0.791 (for �̂Q
opt,5). This range differs somewhat from the findings of Philbrick

(1985), where the MLE value of 0.976 (for grouped data) is reported and
compared to a typical parameter value of 1.0 for the property insurance line.
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Figure 1: Preliminary diagnostics for all three data sets.

The main reason for such a difference is the choice of the truncation point. In
Philbrick (1985), s = 2 is used. However, in view of our discussion in Section 3.4
and Example 1 in Hogg and Klugman (1984), p. 64, we believe that the choice
of 1.5 is more natural. Moreover, all three goodness-of-fit tests very strongly
support the appropriateness of the P(s = 1.5, �̂ML = 0.764) model with the
goodness-of-fit values .1071 (KS), .1106 (CvM), .7329 (AD), and corresponding
p-values: .51 (KS), .27 (CvM), .24 (AD). While the corresponding p-values for
the P(s = 2.0, �̂ML= 0.945) model (for the de-grouped data) are comparable for
the CvM and AD statistics, the p-value for the KS statistic is substantially
lower: .33 (KS), .30 (CvM), .23 (AD). Thus, based on this discussion, we choose
the model P(s = 1.5, �̂).

Table 4.1 suggests that, although the P(s = 1.5, �̂ML) model is accepted by all
three tests, additional improvements of the fit are possible if we use the unbiased
version MLU, which in turn can be even further improved by robust estima-
tors. For example, the estimators �̂T (with b1 = 0, b2 = .05), �̂GM (with k = 4,
k = 5, and k = 10), and �̂Q

* , all have uniformly smaller ranks than �̂MLU. ¡
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DISCUSSION OF TABLE 4.2

The fitted model is P(s = 25,000, �̂) with values of �̂ ranging from 1.082 (for
�̂GM with k = 3) to 1.172 (for �̂Q

opt,2). Philbrick (1985) reports the MLE value
of 1.108. This is slightly below the industry values of 1.245 (all classes lia-
bility; truncation point 25,000) and 1.159 (high severity liability; truncation
point 30,000), which are available in Reichle and Yonkunas (1985), Appendix E.
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TABLE 4.1

VALUES OF �̂, GOODNESS-OF-FIT STATISTICS, AND RANKS FOR THE WIND DATA.

Estimator �̂ KS rank CvM rank AD rank

MLU .745 .0980 6 .0911 12 .6484 12

Qopt,2 .605 .1320 14 .0956 13 .7939 13
Q*, k = 5 .731 .0911 2† .0792 10 .5999 10
Qopt,5 .791 .1198 13 .1445 14 .8881 14

T, b1 = 0, b2 = .05 .707 .0932 4 .0642 7 .5457 5
T, b1 = 0, b2 = .10 .677 .1031 8 .0562 2 .5335 2
T, b1 = 0, b2 = .15 .664 .1077 11 .0568 4 .5487 6
T, b1 = 0, b2 = .20 .667 .1066 10 .0564 3 .5441 4
T, b1 = 0, b2 = .25 .673 .1045 9 .0561 1 .5368 3

GM, k = 2 .653 .1118 12 .0594 6 .5720 8
GM, k = 3 .692 .0981 7 .0587 5 .5316 1
GM, k = 4 .714 .0911 2† .0679 8 .5576 7
GM, k = 5 .723 .0884 1 .0734 9 .5777 9
GM, k = 10 .744 .0975 5 .0901 11 .6445 11

TABLE 4.2

VALUES OF �̂, GOODNESS-OF-FIT STATISTICS, AND RANKS FOR THE LIABILITY DATA.

Estimator �̂ KS rank CvM rank AD rank

MLU 1.140 .0735 12 .0794 11 .6795 12

Qopt,2 1.172 .0784 14 .0944 14 .7843 14
Q*, k = 5 1.111 .0690 6 .0748 2 .6343 5
Qopt,5 1.161 .0767 13 .0881 13 .7420 13

T, b1 = 0, b2 = .05 1.098 .0670 4 .0757 4 .6302 1
T, b1 = 0, b2 = .10 1.093 .0662 2 .0766 8 .6314 3
T, b1 = 0, b2 = .15 1.110 .0689 5 .0748 2 .6336 4
T, b1 = 0, b2 = .20 1.125 .0712 8 .0759 5 .6500 8
T, b1 = 0, b2 = .25 1.127 .0715 9 .0762 6 .6532 9

GM, k = 2 1.133 .0724 10† .0775 9† .6641 10†

GM, k = 3 1.082 .0656 1 .0795 12 .6395 7
GM, k = 4 1.094 .0664 3 .0764 7 .6310 2
GM, k = 5 1.113 .0693 7 .0748 2 .6359 6
GM, k = 10 1.133 .0724 10† .0775 9† .6641 10†

https://doi.org/10.2143/AST.33.2.503698 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.2.503698


FAVORABLE ESTIMATORS FOR FITTING PARETO MODELS 377

TABLE 4.3

VALUES OF �̂, GOODNESS-OF-FIT STATISTICS, AND RANKS FOR THE NORWEGIAN DATA.

Estimator �̂ KS rank CvM rank AD rank

MLU 1.209 .0517 13 .0353 11† .3693 8

Qopt,2 1.234 .0470 3† .0351 9† .3717 10†

Q*, k = 5 1.232 .0473 5 .0348 8 .3698 9
Qopt,5 1.203 .0529 14 .0367 13 .3759 13

T, b1 = 0, b2 = .05 1.221 .0494 8 .0341 1 .3645 1†

T, b1 = 0, b2 = .10 1.229 .0479 6 .0345 5† .3674 7
T, b1 = 0, b2 = .15 1.234 .0470 3† .0351 9† .3717 10†

T, b1 = 0, b2 = .20 1.235 .0468 2 .0353 11† .3728 12
T, b1 = 0, b2 = .25 1.226 .0485 7 .0343 3† .3658 5

GM, k = 2 1.242 .0454 1 .0369 14 .3825 14
GM, k = 3 1.220 .0496 9 .0342 2 .3645 1†

GM, k = 4 1.217 .0502 10 .0343 3† .3649 3
GM, k = 5 1.215 .0506 11 .0345 5† .3655 4
GM, k = 10 1.214 .0508 12 .0346 7 .3659 6

In our case, the range of �̂ is in closer agreement with the industry values.
A minor discrepancy between Philbrick and our MLE’s is due to different data
de-grouping approaches.

The goodness-of-fit tests show strong evidence that the P(s = 25,000, �̂ML=
1.153) model is appropriate with the goodness-of-fit values (p-values): .0755 (.35)
for KS, .0843 (.42) for CvM, .7153 (.26) for AD. Nonetheless, the fit based on
the MLE is again uniformly improved by MLU, which is further improved by
all T and GM estimators and by �̂Q

* . ¡

DISCUSSION OF TABLE 4.3

The fitted model is P(s = 500,000, �̂) with values of �̂ ranging from 1.203 (for
�̂Q

opt,5) to 1.242 (for �̂GM with k = 2). The narrowness of the range points to a
very good fit between the data and Pareto model, which was initially suggested
above by the QQ-plot. Further, the three tests show extremely strong evidence
in support of the P(s = 500,000, �̂ML= 1.218) model with the goodness-of-fit
values (p-values): .0500 (.70) for KS, .0343 (.89) for CvM, .3647 (.71) for AD. There-
fore, it is not surprising that in this case the MLE fit is among the best, improved
upon by only the �̂GM (with k = 3) and �̂T (with b1 = 0, b2 = .05) fits. ¡

4.2. Comparisons, Conclusions, and Recommendations

DISCUSSION OF TABLE 4.4

“Robustness versus efficiency’’ comparisons show that GM-type estimators
dominate the competition. In particular, for a fixed variance (or UBP), any Q
or T-type estimator can be improved upon by a GM estimator with as good
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variance (UBP) and larger UBP (smaller variance). For example, �̂Q
opt,5 with

UBP = .019 and variance = 1.079 is improved upon by �̂GM(k = 5), with UBP
= .129 and variance = 1.061 and �̂GM(k = 10), with UBP = .067 and variance =
1.019. Similarly �̂T (b1 = 0, b2 = .15) with UBP = .150 and variance = 1.277 is
improved upon by �̂GM (k = 3), with UBP = .206 and variance = 1.141, and
�̂GM (k = 4), with UBP = .159 and variance = 1.088.

For the goodness-of-fit comparisons, if an estimator has at least 2 out of
3 ranks of corresponding statistics smaller than another estimator, then its
performance is considered better. For the wind data, for example, �̂T (b1 = 0,
b2 = .10) with ranks (8, 2, 2) is better than �̂T (b1 = 0, b2 = .05) with ranks (4,
7, 5) but worse than �̂GM (k = 3) with ranks (7, 5, 1). This approach suggests
that, for all data sets, �̂Q

* demonstrates the strongest performance among
Q-type estimators but is outperformed by the best T-type (�̂T with b1 = 0, b2 =
.05 and b1 = 0, b2 = .10) and by the best GM-type (�̂GM with k = 3 and k = 4)
estimators. ¡

Conclusions

Based on the comparisons in Table 4.4, the following conclusions emerge:

• The GM-type estimators offer the best trade-offs between robustness and effi-
ciency, which translates into an excellent performance in terms of goodness-
of-fit. The best fits are provided by the �̂GM (k = 3 and k = 4) estimators,
which offer moderate to high protection against contamination (UBP) and
low to moderate sacrifice in accuracy (variance).
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TABLE 4.4

COMPARISONS BASED ON RANKS, UBP, AND VARIANCE OF ESTIMATORS.

Wind Catastrophes OLT Liability Norwegian Claims UBP Variance
Estimator KS, CvM, AD KS, CvM, AD KS, CvM, AD (×a2/n)

MLU 6 12 12 12 11 12 13 11†† 8 0 1

Qopt,2 14 13 13 14 14 14 3† 9† 10† .203 1.541
Q*, k = 5 2† 10 10 6 2 5 5 8 9 .130 1.383
Qopt,5 13 14 14 13 13 13 14 13 13 .019 1.079

T, b1 = 0, b2 = .05 4 7 5 4 4 1 8 1 1† .050 1.089
T, b1 = 0, b2 = .10 8 2 2 2 8 3 6 5† 7 .100 1.180
T, b1 = 0, b2 = .15 11 4 6 5 2 4 3† 9† 10† .150 1.277
T, b1 = 0, b2 = .20 10 3 4 8 5 8 2 11† 12 .200 1.383
T, b1 = 0, b2 = .25 9 1 3 9 6 9 7 3† 5 .250 1.501

GM, k = 2 12 6 8 10† 9† 10† 1 14 14 .293 1.280
GM, k = 3 7 5 1 1 12 7 9 2 1† .206 1.141
GM, k = 4 2† 8 7 3 7 2 10 3† 3 .159 1.088
GM, k = 5 1 9 9 7 2 6 11 5† 4 .129 1.061
GM, k = 10 5 11 11 10† 9† 10† 12 7 6 .067 1.019
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• The T-type estimators are slightly less competitive in terms of “robustness
versus efficiency’’ comparisons. However, their goodness-of-fit performance
is as good as that of the GM-type estimators. The best fits are provided by
the �̂T (b1 = 0, b2 = .05 and b1 = 0, b2 = .10) estimators, which offer low to
moderate protection against contamination (UBP) and low to moderate sac-
rifice in accuracy (variance).

• The Q-type estimators are outperformed with respect to both criteria, “robust-
ness versus efficiency’’ and goodness-of-fit, by the T and GM-type estima-
tors and, thus, are less competitive.

• The nonrobust but most efficient MLU neither can improve nor be improved
by any other estimator with respect to the “robustness versus efficiency’’
criterion, because it has the best variance and the worst UBP. However, its
performance with respect to goodness-of-fit is consistently among the worst,
implying that for “robustness versus efficiency’’ comparisons the robustness
should be given a higher priority.

Practical Recommendations

When fitting Pareto models to loss data, the following steps are necessary:

1. If data are grouped or ties are present, de-group it using methods of Sec-
tion 3.4; otherwise, go to the next step.

2. Use diagnostic tools — histogram and QQ-plots — to visually determine
whether a Pareto model is appropriate.

3. Compute �̂ML and apply the KS, CvM, and AD statistics to formally test
if the Pareto model provides an adequate fit to the data. Note that tables
with the critical values of these statistics are only available when � is esti-
mated by MLE. (Tables are presented in D’Agostino and Stephens (1986),
pp. 135-136, and Durbin (1975), Table 3.)

4. Compute �̂ using the MLU and Q, T, and GM-type estimators. If the range
of �̂’s is narrow (as in the case of the Norwegian fire data), then the fit
is very good and even the MLE can be relied on. However, if the range is
relatively wide (as in the case of the wind data), then ranking of robust esti-
mators has to be used to refine the fit.

5. In situations when all three goodness-of-fit tests support the Pareto model,
the T-type estimators with 5%-10% trimming and the GM-type estimators
with k = 3 and k = 4 perform the best. Estimators with high UBP should be
applied if one of the tests rejects the Pareto model or if the QQ-plots are
not satisfactory, or if the range of �̂’s is very wide.

5. ACKNOWLEDGMENTS

The authors are very appreciative of constructive remarks provided by an
anonymous referee. These have led to many improvements in the paper. Also,

FAVORABLE ESTIMATORS FOR FITTING PARETO MODELS 379

https://doi.org/10.2143/AST.33.2.503698 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.2.503698


support of the first author by a grant from the Actuarial Education and Research
Fund and support of the second author by grants from the Casualty Actuarial
Society and Society of Actuaries, with administrative support from the Actu-
arial Education and Research Fund, and by NSF Grant DMS-0103698, are
gratefully acknowledged.

REFERENCES

ARNOLD, B.C. (1983). Pareto Distributions. International Cooperative Publishing House. Fairland,
Maryland.

BEIRLANT, J., TEUGELS, J.L. and VYNCKIER, P. (1996) Practical Analysis of Extreme Values. Leu-
ven University Press, Leuven, Belgium.

BRAZAUSKAS, V. and SERFLING, R. (2000a) Robust and efficient estimation of the tail index of
a single-parameter Pareto distribution. North American Actuarial Journal 4(4), 12-27.

BRAZAUSKAS, V. and SERFLING, R. (2000b) Robust estimation of tail parameters for two-para-
meter Pareto and exponential models via generalized quantile statistics. Extremes 3(3), 231-
249.

BRAZAUSKAS, V. and SERFLING, R. (2001) Small sample performance of robust estimators of tail
parameters for Pareto and exponential models. Journal of Statistical Computation and Simu-
lation 70(1), 1-19.

D’AGOSTINO, R.B. and STEPHENS, M.A. (1986) Goodness-of-Fit Techniques. Marcel Dekker, New
York.

DERRIG, R.A., OSTASZEWSKI, K.M. and REMPALA, G.A. (2000) Applications of resampling methods
in actuarial practice. Proceedings of the Casualty Actuarial Society LXXXVII, 322-364.

DURBIN, J. (1975) Kolmogorov-Smirnov tests when parameters are estimated with applications
to tests of exponentiality and tests on spacings. Biometrika 62, 5-22.

HOGG, R.V. and KLUGMAN, S.A. (1984). Loss Distributions. Wiley, New York.
KIMBER, A.C. (1983a) Trimming in gamma samples. Applied Statistics 32, 7-14.
KIMBER, A.C. (1983b) Comparison of some robust estimators of scale in gamma samples with

known shape. Journal of Statistical Computation and Simulation 18, 273-286.
KLUGMAN, S.A., PANJER, H.H. and WILLMOT, G.E. (1998) Loss Models: From Data to Decisions.

Wiley, New York.
KOUTROUVELIS, I.A. (1981) Large-sample quantile estimation in Pareto laws. Communications in

Statistics, Part A – Theory and Methods 10, 189-201.
PATRIK, G. (1980) Estimating casualty insurance loss amount distributions. Proceedings of the

Casualty Actuarial Society LXVII, 57-109.
PHILBRICK, S.W. (1985) A practical guide to the single parameter Pareto distribution. Proceedings

of the Casualty Actuarial Society LXXII, 44-84.
PHILBRICK, S.W. and JURSCHAK, J. (1981) Discussion of “Estimating casualty insurance loss

amount distributions.’’ Proceedings of the Casualty Actuarial Society LXVIII, 101-106.
QUANDT, R.E. (1966) Old and new methods of estimation and the Pareto distribution. Metrika

10, 55-82.
REICHLE, K.A. and YONKUNAS, J.P. (1985) Discussion of “A practical guide to the single para-

meter Pareto distribution.’’ Proceedings of the Casualty Actuarial Society LXXII, 85-123.
RYTGAARD, M. (1990) Estimation in the Pareto distribution. ASTIN Bulletin 20(2), 201-216.
SERFLING, R. (1984) Generalized L-, M- and R-statistics. Annals of Statistics 12, 76-86.
SERFLING, R. (2000) “Robust and nonparametric estimation via generalized L-statistics: theory,

applications, and perspectives,’’ In: Advances in Methodological and Applied Aspects of Proba-
bility and Statistics, Balakrishnan, N. (Ed.), pp. 197-217. Gordon & Breach.

380 VYTARAS BRAZAUSKAS AND ROBERT SERFLING

https://doi.org/10.2143/AST.33.2.503698 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.2.503698


APPENDIX

TABLE A.1

OLT BODILY INJURY LIABILITY CLAIMS (1976) DATA (× 1000 DOLLARS).

Loss Number Loss Number Loss Number
Amount of Losses Amount of Losses Amount of Losses

25-30 11 70-75 9 220-230 1
30-35 18 75-80 1 240-250 2
35-40 9 95-100 4 260-270 1
40-45 4 120-130 2 280-290 1
45-50 11 140-150 3 290-300 2
50-55 3 190-200 1 340-350 1
55-60 2 200-210 2 410-420 2

Source: Patrik (1980), Appendix F, Part 1.

TABLE A.2.

NORWEGIAN FIRE CLAIMS (1975) DATA (× 1000 NORWEGIAN KRONES).

500 552 600 650 798 948 1180 1479 2497 7371
500 557 605 672 800 957 1243 1485 2690 7772
500 558 610 674 800 1000 1248 1491 2760 7834
502 570 610 680 800 1002 1252 1515 2794 13000
515 572 613 700 826 1009 1280 1519 2886 13484
515 574 615 725 835 1013 1285 1587 2924 17237
528 579 620 728 862 1020 1291 1700 2953 52600
530 583 622 736 885 1024 1293 1708 3289
530 584 632 737 900 1033 1298 1820 3860
530 586 635 740 900 1038 1300 1822 4016
540 593 635 748 910 1041 1305 1848 4300
544 596 640 752 912 1104 1327 1906 4397
550 596 650 756 927 1108 1387 2110 4585
550 600 650 756 940 1137 1455 2251 4810
551 600 650 777 940 1143 1475 2362 6855

Source: Beirlant, Teugels, and Vynckier (1996), Appendix I.
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