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ON A FUNCTION ANALOGOUS TO logy(τ)

LARRY GOLDSTEIN* AND PILAR DE LA TORRE

1. Introduction

Let us denote by η{z) the classical ^-function of Dedekind defined by

φ) = e*iz/u Π (1 - e2ainz) , Im (z) > 0 .
w = l

If a = (a -jj e SL(2, Z), then the classical law of transformation of

log η(z) asserts that if σ(z) = (az + b)/(cz + d), then

log η(σ(z)) = logη(z) + ^ - (c = 0)

1 log(

where all logarithms are taken with respect to the principal branch and

= Σ
ί,O Σ ( W ) ( (

μ(moάc) \\ C 1) W C

and where

((x)) = a? — [a?] — j if a? is not an integer,

0 otherwise.

The sum s(d, c) is called a Dedekind sum, and appears in many number-
theoretic investigations.

In [1], we have introduced a generalization of the function η(z) as-
sociated to a totally real algebraic number field K. Our generalization
arose from a generalization of Kronecker's second limit formula. More-
over, we showed in [1] that a classical conjecture of Hecke concerning
class numbers of algebraic number field could be reduced to determining
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170 LARRY GOLDSTEIN AND PILAR DE LA TORRE

how the generalized ^-function transforms under the Hubert modular
group—that is, to find a generalization of formula (1). It is the purpose
of this paper to find such a generalization.

Throughout this paper, let K be a totally real algebraic number
field of degree n and let f, m, n be integral K-ideals, b = the (absolute)
different of K. Further, let Γf denote the group of all totally positive
Z-units = 1 (mod f). Finally, let u, v be elements of K having denomi-
nators dividing bf. Associated to the this data, we define the following
generalized ^-function on the product Hn of n complex upper half-planes
H:

log η(z u, v) = Λ(u)N(z) + Σ * β *" T r ( t > / ί ) Σ e»«t * ((/.+»>*> 9
βen \N(β)\ μem-ib-i
βφO ' ' ' (μ + u)β>0

where

7 11/2 p2πi Tr (ttα)

«6« \N(a)\2

z = izu . . . , zn) e Hn, N(z) ̂ z^ Zn, Tr (γz) = γ^z, + + fn)zn (γ e K),
and where γ > 0 denotes that γ e K is totally positive and Σ * denotes

a sum over a complete set of elements non-associated with respect to
Γf, dκ = the discriminant of 2£. The function Λ(%) should be regarded
as a generalized Bernoulli polynomial, since in case K = Q, Λ(u) is,
essentially, the Bernoulli polynomial B2(u).

In case u = v = 0, K = Q, the above function is, apart from a
constant factor, the function log 57(2). In case K = a real quadratic
field, u = 1; = 0, the above function was studied by Hecke [3], who com-
puted its transformation formula under the transformation zty-+— \\zt

(i = l,2). In case K = Q, u,v arbitrary, the above function is well-
known [6] in connection with Kronecker's second limit formula.

Let G = GL+(2,K) denote the set of all 2 x 2 matrices over K with
totally positive determinant and let G act on Hn via

~ \ a ^ 1 (ϊj~> * ' ' ' a ( n ) Z n S r ) > Z ~az = I ( i ) ^ ' ( i ) , , ( w ) ( Λ ) 1 > z = C î> »«n) » tf =

Let (P denote the ring of integers of K and let SL(2,0) denote the
subgroup of G consisting of those elements of G with integral coefficients and
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FUNCTION ANALOGOUS TO l o g η(τ) 171

determinant +1. Then SL(2,(9), with the above action is just the
Hubert modular group. Let

Γ(f) = {σ e SL(2, &) I a = (mod f), / =

where congruences are interpreted elementwise.
The main purpose of this paper is to compute log η(σz u, v) for

σeΓ(f). In case K = Q, our formula will generalize (1). Our proof
is modelled precisely on the proof of (1) given in [2]. In fact, in
so far as is possible, we have modelled our notation on the notation
used in that paper in order to facilitate easy comparison.

The formula which we derive in this paper has applications to our
theory of relative class number formulas, but in order to keep the
length of this paper reasonable, we will reserve presenting the applica-
tions for a subsequent paper.

In order to keep the details of our computations as simple as pos-
sible, we will make two technical assumptions throughout the paper:

ASSUMPTION 1: f and b are principal ideals.

ASSUMPTION 2: m = n = o.

Our derivation of the transformation law for log η(z u, v) can be
best formulated in terms of a general Mellin transform theorem which
we present in Section 2. We begin our study of the generalized ^-func-
tion in Section 3. Section 4 is devoted to the functional equations of
certain zeta functions which arise. Section 5 reduces the calculation of
the transformation law to the calculation of certain residues. Section
6 computes the residues and completes the derivation of the transforma-
tion law.

2. Mellin Transforms

Let V be a locally compact, abelian group under multiplication and
let v be a generic element of V. Let V* denote the Pontrjagin dual of
V and let v* be a typical element of V*. Further, let Γ be a discrete
subgroup of V. Let γ be a typical element of Γ. Our goal in this
section is to write down the Fourier inversion formula for the group
V/Γ and apply it to a special function on V/Γ.
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172 LARRY GOLDSTEIN AND PILAR DE LA TORRE

Let ΓL = {v* e 7* | v*(γ) = 1 for all γ e Γ}. Then by duality theory,
we have natural isomorphisms

Γ-1- « (V/Γ)* ,
Γ* « 7 * / ^ .

Let us fix a Haar measure dxv on V/JΓ and let dp* denote the Haar
measure on (V/Γ)* which is dual to dλv. We will make a specific choice
of dxv later. Let Sf(y/Γ) denote the space of Schwartz-Bruhat functions
on V/Γ. Then, if fe£f(V/Γ), let /* denote its Fourier transform:

f*(v*) = f f{v)v*{v)d,v (v* e (7/Γ)*) ,
J V/Γ

where we view v* as a character on V which is trivial on Γ. More-
over, we have the Fourier inversion formula

f(v) = ί /*(ι;*)t;*(i;)-1cZιv* O e 7/Γ) .
J (v/n*

Suppose that ψ: V -> Vo x VΊ is an isomorphism of locally compact
abelian groups such that ψ(Γ) c 7 0 χ {1}. Then let us identify V (resp.
Γ) with VQ x Vx (resp. ψ(Γ)) with respect to the isomorphism ψ. Then,

y/r «(vo/r) x yx,

so that Haar measures dχV0 on Vo/Γ and d^i on Fj can be chosen so
that dxv = dĵ o x djVj holds. If d{of and d^f are the respective dual
measures to dλvQ and dλvιy then we have

d{ϋ* = dit f x

Moreover,

(7/D* « (70/Γ)* X y? .

Therefore, the Fourier inversion formula for V/Γ may be written

f(v) = f (f

= f (f
J v* \J

( F o / n* ' ( 2 )

where (v0, Vi) and (v?,^*) are elements of F/Γ « (Fo/Γ) X V1 and (7/Γ)*
« (yo/Γ)* X Vf, respectively.
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Let us now apply formula (2) to a specific situation. Let n be a
positive integer and let V = Rl, where R+ = the group of positive real
numbers under multiplication. Further, let Γ be a discrete subgroup of
V. F o r v = O i , , vn) e V> s e t N(v) = vx — vn a n d

V1 = {v = (vx,vX9 -• ,v1)eV\v1eR+} .

Then V « y0 x y lβ In fact a natural way of realizing this isomorphism
is as follows: If v e V, then v may be written in the form

v = ψoMψM , ψoO) e y 0 , Ψι(v) e Vx,

where

. /Λ / ^ ^ 2 i;n \

Let us now restrict ourselves to Γ such that Γ c y0. Then formula
(2) shows that for feSf(V/Γ), we have

J Fx \J (Γo/D*

where the measures d&t and d^f are as chosen above. Let us make
the further assumption that Γ is free of rank n — 1. Then in this case,
it is easy to describe a suitable normalization for the measures: For
VQ/Γ is then compact and (Vo/Γ)* is discrete. Thus, for dλvQ, let us
choose the measure which gives Vo/Γ the measure 1. For dpf, let us
choose the measure which gives each point of (VQ/Γ)* the measure 1.
Then dxvf and dxvQ are dual to one another. In any case, y x « R + ,
so that yf « if + « if. Let us identify (v19 •• ,ί) 1)e7 1 with vx e R+ and
the character χt(w) = witn(w e if+) of yj with the real number ί. In
this way, we explicitly realize the isomorphisms Vx « if+, y? « if. With
respect to this identification, let us write f*(yf,t) instead of f*(vffχt).
Moreover, from the classical formulas for the Mellin transform, we see
that we may choose

d1v1 = —— , vx = (x, , x) , dx = Lebesgue measure on R,
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174 LARRY GOLDSTEIN AND PILAR DE LA TORRE

dyvf = — d t y v? = χt , dt = Lebesgue measure on R.
2π

Then (3) may be rewritten

f(v) = -1- Γ (ί /*(ι;0*, t)v*(
2π J -«> v (F0/r)*

= -^ Γ ίί / * w ' tMi
2π J - ~ v (vo/r)*

Since we assume that Γ is free of rank n — 1, (VΌ/-Π* is a discrete

group and ( 7 0 / D * ~ ^ " ' Let &, . ,χTO_! be a basis of (Vo/D*. Then

a typical character of F o / ^ is. of the form

Zm = χΐ1 χΛ-1 , w - (m1? . ,m n β l ) e Z^-1 .

Therefore, by the way in which we normalized our measures, we have

( Σ /(χw,t)χw(ΨoW))^Wdί, (4)
2π J - \

where

f*(Xm, t) = Γ (ί /(̂ )̂Zm ( O ^ o d ^ ) — (5
J 0 \J Vo/Γ J X

for any /

Let us derive from (4) and (5) the final formulas which will be of

use to us. Let g e Sf(V). Then, since Γ is discrete, the function

f(v) = Σ 9(i>r) = 9(vγ)dγ
rer J r

belongs to <S?(V/Γ). Applying (4) to f(y), we have

where > *) = Γ (f
Jo \J

= Γ (ί

= Γ (ί
Jo \Jv0

( Σ ^ χ j
Vo/r \rer / J x

(Σ
ro/r \rer
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FUNCTION ANALOGOUS TO log η(τ) 175

where dvQ is the Haar measure on Vo defined by dvQ = dxvQ x dγ. There-

dx
fore, if dv is the Haar measure, dv0 x — on V = Vo x V\, we have

a?

f ( 7 )

where χm is regarded as a character of Vo, trivial on Γ. Thus, regarding

as a character of V, we see that g(χm, ί) is just the value of the Fourier

transform of g (on V) at the character (χm, ί) of V.

Formulas (6) and (7) are the final formulas which will be of use

to us. These formulas were used in a special case by Hecke [3, p. 399],

although the general principle explained above was not clear. Note that

we could develop similar formulas for Γ of rank < n — 1, but these will

not be required in what follows.

Let us now introduce the class of Γ to which we apply (6) and (7).

Let K be a totally real algebraic number field of degree n and let f be

a if-modulus (not necessarily free of infinite primes). Let us map Kx

into V = Rl via the map

where xa\ •• , # ( n ) are the conjugates of x over Q. Let Γ f denote the

group of all ίC-units which are = 1 (mod f) and take for Γ the group

ΘCΓf). It is clear that Γ cz Vo since /\ consists of units; and Γ is free

of rank n — 1 by the Dirichlet unit theorem. Thus, Γ satisfies our

hypothesis for (6) and (7). Let us write (6) and (7) somewhat more ex-

plicitly (if less neatly) for this class of Γ.

By the Dirichlet unit theorem, there exist units el9 •• ,en_1 of K

such that

- ί 1
Γf = \ or I x <£l> x x <>„_!> ,

K±1>J

where <*> denotes the multiplicative group generated by xeK. Then

Γ =
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176 LARRY GOLDSTEIN AND PILAR DE LA TORRE

We may exhibit the characters χm(m e Z71'1) of Vo/Γ as follows: Define
the numbers e) (1 < j <ny 1 < k < n — 1) by the condition

JLJL λ
n n n
βι e2 βn

1 l o g \εϊv< log

If (ylf •• ,ί/w)e70 and χ e (Y0/Γ)*9 then χ is a character of Vo such that
χ is trivial on Γ (duality), so that there exist real numbers θu , θn

such that

y Un)) — ί/i

and

(re/1).

It is easy to see that these last two conditions imply that χ is of the
form

, % . 1 ) e Z H . Therefore, let us setfor m =

Then a typical character χm (meZ71'1) of

n

is of the form

( 8 )

Note that χm is just a grossencharacter of K defined modulo f (See [4].)
We now wish to use (8) to write the formulas (6) and (7) more ex-

dxplicitly. In order to do this, let us replace the measure dxvQ x —— on
x

Vo x Fj = V with a measure which is easier to calculate with. Let D
be a fundamental domain for Vo/Γ. Then dxv0 has been chosen so that

= 1 .

Moreover, if we set E — D x [1, e] c Vo x Vu then
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X

It is clear that — - — - is a Haar measure on V, so that by the

uniqueness of Haar measure, we have

0 ,
v1 vn x

for some C > 0. Moreover, it is clear from above that

J E Ί)-.

Let us evaluate C explicitly: Let us change variables in the integral by
setting w = (vλ vn)

1/n. Then it is easy to see that

— Γ
J l

dvn_λ

w

where

D' = |(v l f - , Vn.0 eRl-'lVj - exp g « i log|eiΛ| , 0 < x% < l} .

But then a simple calculation shows that

C = |Λf| ,

where

Thus i2f is just the regulator of the units ε19 εn_19 and we see that

J ^ . . . . i ^ = | β f | ^ o X ^ . (9)

Thus, by (6), (7) and (9) and the fact that χ_m = χ~\ we finally derive:

THEOREM 2-1: Let ge S?(V) and Γ = Θ(f f) /or some K-modulus f.

where
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178 LARRY GOLDSTEIN AND PILAR DE LA TORRE

ί) = i P i-1 I I ^/nV, ΛL ΛiΛw.f, ΛIΛ** " ^ I ^ «Γ ... Γ
Jo Jo

3. The Generalized -̂Function

Let

Γ(f) = {σ e SL(2, <P) | σ = J (mod f)} ,

where / = (Q A. Our main goal, which is finally achieved in Section

6, is to determine the law of transformation of log η(z u, v) under the
transformations of Γ(f). We will assume throughout that assumptions
1 and 2 hold. Let us suppose that f = fθ9 b = dΘ, Θ — the ring of in-
tegers of K. Then, since u,v have denominators dividing fb, we see
that fdu and fdv are Z-integers, h and k, respectively. Then we have

u JL V

 k

fd fd

d) e ^ ^ ^ e w ^ ^ treat the cases c — 0 and

c Φθ separately.

If c = 0, then σ£ = ε2^ + λ where ε2 is a totally positive unit of K

such that S Ξ I (mod f) and 2 Ξ O (mod f). An easy argument shows that

log φ2z u, v) = log 3̂ (̂  w, v) , (10)

log η(z + λ w, v) = log η{z ;u,v) + A(u)(N(z + X) — N(z))

= log 9(s w, v) + i4(w) Σ «ii ^^ ( i f c + l ) * * *an) ,

where the last sum is over all permutations {i19 — ,in} of {1, « ,w},

excluding the identity permutation. Equations (10) and (11) completely

settle the case c — 0.

Henceforth, let us assume that c Φ 0. Let us introduce a new vari-

able w e Cn by setting w = — i(c# + d)sgn(c), where sgn(c) = c/|c|. Then

Re (w) > 0 and

1 ^ * (12)
c |c| c \cw\

In terms of the variable w, we may write
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logφ; u,v) -

= Σ*
βeo-{0}

{Γ}

+ ^
c \c\

Σ
C C

= Σ*

= Σ*

Σ βxp (an Trf-A (13)

Σ=~f

Σ
p(modcf)

Σ exp ί-2πί Tr (-^-(βd - cA;))}G,,β(w) ,
modcf) I \ C f 0 /)

where

Σ . .. exp ( - 2 , Tr
\c\ fd

Let 0 be a typical signature character of if, i.e. a function

0:ZX-+{±1} of the form

Λ )
| a ? ( 1 ) | /

Then for a; e Kx, we have

o. = 0 o r l .3

Σ θ{x) = 2n if α; > 0
θ

0 otherwise,

where the summation ranges over all 2n signature characters of K.
Then from our calculations above, we see that

where

Gp,q,,(.w) = θ(fd)

GPtq(w) = 2-»

Σ

(14)

βΦO
{Γ c f }

= Σ

where = (o ?> and
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yj* v\pj \p*

j3=p(modcf) I AΓ(yS) I ^ g ( m

Let w — (w19 , wn), Wj > 0. We will apply Theorem 2-1 to the

function

gx(w) = gPtQtβ(w)N(w)x (x > 1) .

It is easy to see that the condition x > 1 guarantees that #! e S?(V).

Then Theorem 2-1 implies that

1 f" / \
N(W)X Σ 9v>dΛεW) = ( Σ ^i(Xm>OZm(^o(w)))^(w)"li^i (17)

where

1 m > Jo Jo X m X t^j % ? n

= i^.r1 Γ... Γflr,,,,/^, •,no ft / ^
Jo Jo i-i W ^ Wn

7 7

dwλ dwn

7—1 QJ1 Oil

where s = x + it and where we have used the fact that Σ oc^m) = 0.

Therefore, by inserting (16) in (18), we see that

(χ», *) = \R«\-ιθ{fd) Σ * ^ r Σ θ(μ)
β=p (mod cf) | iV(p) | /ίΞα(modcf)

Γ°° . . . f°° Γ f f g-2»r
Jo Jo L-i

Σ*

n Poo /7ΛII (Λ (X\

11 J e ^^

:2*)-»'Γ(β,χJ)
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ns,χJ=±Γ(s-aj(m)). (20)
.7 = 1

Formula (19) suggests that we introduce a new kind of zeta func-
tion as follows: Let χ be a character of K* which is trivial on Γr = Γro

for some red), r Φ 0. Further, let p e Θ. Then let us define the zeta
function

This Dirichlet series is well-defined since χ is trivial on Γr. Moreover,
the series converges absolutely and uniformly on compact subsets of the
half-plane R e ( s ) > l . Usually, it is too much to hope that ζ(s, χ;p,r)
has an analytic continuation and a functional equation. However, in
case χ(β) = λ(β)θ(β), where λ is a grossencharacter defined modulo (r) and
θ is a signature character of K, then ζ(s,χ;p,r) can be analytically
continued and has a functional equation involving gamma factors of
customary type (See Section 4). The functional equation to be proven
in the next section will involve the function

l,χ; p,r) ,

where χ = χmθ and Γ(s,χ) = Γ(s,χm). A simple calculation shows that

lftl

Since the value of r in the remainder of this paper will always be cf,
we will omit the value of r in ζ(s,χ;p,r) and Fp,q,x,Λs)> writing instead
C(s, χ P) and FPtQtX(8), respectively.

From equations (15) and (17), we see that for w eKl, x > 1,

gp%Qi,(ew)

_ 1 f"
2ττ J -«

Σ

In concluding this section, let us make a few remarks about formula
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(21). In case K = Q, n — 1, f = (1), there are precisely two signature
characters. Moreover, the only character χm is the trivial character.
Moreover, it is always possible to arrange things so that c > 0. (Take
- σ in place of σ), so that θ(c) = 1 for any signature character θ. The
zeta functions in this case are of the form

L\S, u, p9r) — 2_i
m=p(moάc) \m\S

meZ

where θ(m) = 1 or θ(m) = sgn (m). Moreover,

FP.Q,ΘΛS) = ( — ) 5^(S)C(S» ̂  »̂ c)C(s + l, ^ P, c),

m=j) (mod c) \7Yl\
Σ 0{n) exp (-2ττ

n=q (mod c) \

Moreover, formula (21) is just the Mellin inversion formula

These last three formulas should be compared with equations (6), (5)
and (8) of [2] to see how the present proof is a precise generalization
of the proof [2] for the 1-dimensional case.

4. Functional Equations

Let us now summarize the basic facts concerning zeta functions of
the type ζ(s,χ; p,r). Throughout this section, let χ = χmθ, where χm is a
grδssencharacter of K defined modulo (r) and θ is a signature character of K.

THEOREM 4.1. The zeta function ζ(s,χ;p,r) can be analytically
continued to a meromorphic function in the whole s-plane. The only
possible singularity is at s = 1, which occurs only when χ~l and p = 0
(modr). In case the pole is present, its residue is 2n~1e\N(r)N(d)1/2\~ι

9

where R is the regulator of K and e is the index of the group of all
totally positive K-units = 1 (mod r) in the group of all K-units. More-
over, ζ(s,χ;p,r) satisfies the functional equation

A-s'2Γ*(s,χX(s,χ;p,r)

-(1-^2Γ*(1 - s,χ) Σ e^^dχa-s,χ;p,r),
p(moάr)
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FUNCTION ANALOGOUS TO log η(τ) 183

where A = πn/\dκN(r)\, dκ = the discriminant of K, a = 2
ί l

,χ) - f]

Moreover, the only possible poles of the function ξ(s,χ;p,r) = A ~ s / 2 Γ * ( s , χ )

ζ(s,χ P, f) <we at the points s = 1, s = 0.

The proof of Theorem 4.1 parallels Hecke's proof for the functional

equation for zeta functions with grossencharacters [4] and will be given

in detail elsewhere.

Let us now use Theorem 4.1 to derive a functional equation for

FPtQa(s). Take the functional equation of Theorem 4.1 at s,q and s + 1,

p and multiply the two. We then derive

, χ ; q,r)ζ(s + l,χ; p,r)

• Σ exp kπi T r (aq + βp)}ζ(X -s,χ;a,r)ζ(-s,χ; β,r) .
α^dnodr) I \ rd /)

By using the duplication formula for the gamma function, we see that

Γ*(s, χ)Γ*(s + 1, χ) = πn/22n(1-s)2-aΓ(s, χ) Π (s - a^

Γ*(l - s, χ χ Π
. 7 = 1

Therefore, by an elementary computation, we deduce

COROLLARY 4.2.

V AXD /2τrί Tr / ^ +rί Tr
rd

Theorem 4.1 is a generalization of equation (4) of [2], whereas

Corollary 4.2 is a generalization of equation (7) of [21.

Implicit in our proof of Corollary 4.2 is the following useful re-

lationship between ξ(s,χ;p,r) and Fp,q,χ,r(s)-

PROPOSITION 4.3.

M ' * ' = |2V(r3)|* Π"-i(β-< — f ( s ' χ '
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5. Proof of the Transformation Law—First Step

Let us begin the proof of the transformation law for log η(z u, v)
using formula (21). Let us first note that although (21) was proven
only for w = (w19 , wn) e Rl, we may actually assume that w is any
complex number such that Re (w) > 0. For such w, let us define the
power w° (a e C) via the formula w" = ea log w, where log w is the principal
branch. Then wa is an analytic function in the region Re (w) > 0.
Using this definition of wa, we can define χm(w) and N(w)~s for any w
such that Re (w) > 0. By analytic continuation, the formula (21) remains
valid for w = (wu , wn) e Cn, Re (wj) > 0 (1 < j < ri).

Let us apply formula (21) with x = 3/2 and let us shift the line of
integration to Re(s) = —3/2, adding the residues of the poles of the
integrand at points having real parts between 3/2 and —3/2. Among
the possible poles are s = 0,1, — 1, as well as the poles of Γ(s,χ). The
validity of shifting the line of integration is easily checked using
straightforward estimates and the Phragmen-Lindelδf Theorem. The
result is

Γ/2+l

J-3/2-ΐ

Σ Z Σ
Ϊ = Z«« -3/2<Ee (s)<8/2

Therefore, by Corollary 4.2, we see that

JM>) Σ exp [iπi Tr (P q' ^ l K ά H l V cfd
/•-3/2+ί

J -3/2-ΐo

Σ ResFp,qa(s)N(w)-*
Ee (s)<3/2Σ

-3/2<Ee (s)<3/2

cfd

Res
| / C c f | X = Xmθ -3/2<Re (s)<3/2

Therefore, by this last equation and equations (13)-(15), we have

log η(z u, v) -
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nχJ r , Σ Σ
n[Γc : ΓCΛ 2>(modcf) <z(modcf)

' C f j=ft (mod f)

Σ
(d

Σ Σ Σ
(mod cf) ' (OO\
h (mod f) \A^)

X exp { 2« Tr

n. D . r „ „ Ί z_, z-. Zm(w) exp { 2 π ί Tr (^n |BcfI [Γ f : Γcf] ^V^cf) χ = χ m . I \ cfd

cfd

~J—-(qd — ck) I >

cfd Ίi
v v Λ/ M/?\ exp

-3/2<Re (s)<3/2

Let us evaluate the first triple sum on the right hand side of equa-

tion (22). Since (* d ) G Γ ( ί ) > w e h a v e a ~ d ~ 1(modV> b = c = °

(modf), ad — be = 1. In particular d and f are relatively prime and

ad = 1 (mod f). Next, note that

exp farf Tr (a + ek-qdp)\ = \N(cf)\
cf) I \ Cfd /)

Σ exp farf Tr (
P(modcf) I \ Cfd

if a + ck — qd = 0 (mod c/) ,

0 otherwise.

However, a + ck — qd = O (mod cf) if and only if q = a(a + ck) (mod cf),

since ad = 1 (mod cf). Therefore,

( f )
=h (mod f)

exp Izmir (Jl-)) Σ exp hπiTr (a + ck ~ qdp)\
I \CfdΠ 2>(modcf) I \ Cfd /)

J J

= \N(cf)\ exp kπί Tr / ^(« + ck) \\ i f α ( α + c Λ) = Λ ( m o d p f

0 otherwise.

However, since (/) = f, C Ξ O (mod f), d = 1 (mod f), we see that if

α(# + ck) = h (mod f) ,

then α Ξ fc (mod f), so that

Σ Σ
ίmodcf) α,iS(modcf)

(mod f)

Σ exp kπi Tr
( I

Σ
α,/3(modcf)
a = h (mod f)

C23")
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On the other hand, since α = l (mod f), we see that

fd fd fd H

Therefore, Tr (βak/fd) - Tr (βk/fd) e Z and (23) equals

\N(cf)\ Σ exp ί.2πi Tr (-L.(aa + cfc)))G,,.,,(w-1) . (24)
α,i3(modcf) I \ Cfd / J
α = Λ, (mod f) ^

Thus, by equation (22), we have

log 9(2; u, v) - Λ(U)N(-1L + Ά
\ c \c\J

?nrr> . p i
ί U f. i c f J

1
2 7 1 | J ? c f | [ Γ f : Γ c f ] P,ί (modβf)

q=h (mod f)

X exp {-2πi Tr (-^—(qd - cfcM Σ Res F p α χ(s)N(w)~
I V C / 3 / J -3/2<RΓ(S)<3/2 ' '

= log Λ*-+*!£L; u, v) - Λ(u)N(± + i j t
\c c / \c \c

Σ Σo , i D I Γ Γ F Γ T Σ

2»|/eef|[Γf:Γβf] f ί^V)

X exp (—2τri Tr (-^-(qd - ck))\ Σ> R e s ^ P β x(s)N(w)'s .
I \c/d / J -3/2<Ee (s)<3/2 ' 'Let us set

His) = * Σ Σ
2-|βe,|[Γ,:Λ,] ^ ^

X exp {-2πi Tr

Then we may summarize our results so far in

THEOREM 5.1. Let σ = ( j ^ e Γ(f). T/ien

(
 az— — u, v) = log η(z ;u,v) — A(y)\N(z) — Nt-

cz + d I I \

- 2 Res H(s)N(w)~s .
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In essence, we have accomplished the goal of the paper. All that

remains to be done is to compute the residues on the right hand side

and we will have derived the law of transformation of our generalized

37-function. Unfortunately, this last task is exceedingly messy and will

be the principal subject of the next section.

6. Proof of the Transformation Law—Second Step

Let us recall the function

ξ(s,χ;p,r) = A~s/2Γ*(s,χ)ζ(s,χ;p,r) ,

which is mentioned in Theorem 4.1. As we mentioned, this function is

analytic for all s, except possibly for s = 0,1. At s = 1, there is a

simple pole with residue — which occurs if and only if χ = χ0,

\N(r)\1/2

the trivial character where e(r) = [Γ: Γr]. At s = 0, there is a simple

pole with residue — 2n~1Re(r) which occurs if and only if χ = χ0 and

p = 0 (mod r).

Recall from Proposition 4.3 that for χ = χmθ, we have

F -'(s) - w i f c M i F * z : " ' r ) ί ( s + u x '• " r ) • <25)

Therefore, we see that Fp^iXir(s) has possible poles only at the points

s = 0, 1, - 1 and s = Sj(χ) (1 < j < ri), where Sj(χ) = aό{m) if χ = χmθ.

Thus, H(s)N(w)~s can have poles only at these points.

PROPOSITION 6.1. Res s = 1 H(s)N(w)~s = , J " Λfrθ x T ^ x .
\N(c)\ N(w)

Proof. Using the fact that ξ(s, χ p,r) is an entire function for

χ φ χ0, we see that FPtQtZtr(s) is analytic at s = 1 for χ =£ χ0. Therefore,

Res s = 1 H(s)N(w)~s

βc fI [Γ f :Γ c f ] ziΓ

X exp ί-2ττi Tr (-^—(qd - ck)\\ Ress=1FPi(liX(s)N(w)-s

cfd

(26)
# c f I [ Γ f : Γ c f ] P,QΆ

c τl L T cfj Q _ Λ ( m o d

X exp |-2jrf Tr
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However, by Theorem 4.1,

= Ress=1 ( ?T)V(g)»C(g,χ»; ?, c/)ζ(s + l,χ0; p,

Therefore,

y L ΐ c f J «=Λ (mod f)

exp {-2«i Tr (-^-(ίd - efc))}c(2, Xo P,X

In the last sum, let us write q = h + af, where a runs modulo c. Then

ml H(s)N(wys

P ( m

exp f-2πί TrΣ exp f 2 π ί Tr (

\-2iά Tr (^M_j}ζ(2, χ0 p, cf) .X e 2 ' ί T r '•« exp

Since p = 0(modc), e2ltiTr("3)> = 1. Let us set p = ac, where a runs

modulo f. Then a simple computation shows that

[Γ,: Γcf]ζ(2, χ0 α , / ) .ζ(2,

Therefore,

Res s,, H(s)N(w)->

|W0)|*|M
0

_ |2V0)|*|2Vl

Xo;

[c)|

[c)\

|iV(c)|-

v
/ 1

α (mod f)

V

fd

[2π)n a (mod f)

Since d = 1 (mod f), w = Λ//3. However, a direct computation shows

that
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i p1πi Tr (βu)

|iV(/3)f

Therefore, since \N(β)\ = \dκ\, we have

\N(c)\ N(w) '

and the proposition is proved.

PROPOSITION 6.2. Ress=_! H(s)N(w)~s = -—-—Λ(u)N(w).
\N(c)\

Proof. Similar to the proof of Proposition 6.1, except that the

functional equation of Proposition 4.2 is applied to the analogue of (26).

Let us now study the residue at s = 0. Let us write

Res s = 0 H(s)N(w)~s = Rλ + R2 , (27)

where

X exp |2πί Tr

Σ z(w) ΣΣ

X exp J2Λ Tr ί-E-^-qd + cΛ))} Resί.βif
I

1,iί,I(β)2V(w)-* .
cfd

PROPOSITION 6.3. R, = ε(u)ε(v) - RfJ^L log N(w), where ε(a) = 1 or
2</\dκ\

0 according as a is or is not in b"1.

Proof. Since FPiqao(s) has at most a pole of the first order at s — 0

(it equals (2-»/|N(c/3)|*)f(s,χ0; Q,r)ξ(s + l,χo;p9r)) we see that

exp \—2πi Tr

X Res s = 0 (f(β, χ0 9, c/)f(s + 1, χ0 p, cf)N(w)- ) .
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However, by Theorem 4.1,

e χ P \2πi T r (-^-(~ Qd + ck))]F I V cfd / JΣ e χ P \2πi T r (IN(cf)|* p(^cf) F I V cfd

x f(s + 1,χo P,c/) = ς(-s,χ0 - g d + cfc, c / ) .

Therefore, we have

s = 0 (f (S, χ0 q, cf)

•f(-*,Zo -ffd + ck, cf)N(w)~s) .

Since f ( s , χ 0 ; ^ ^ ) is regular at s = 0, except when m = 0(modr),

we see that the only terms of the sum which can be non-zero are those

for which q = 0 (mod cf) and q = cka (mod cf), since da = 1 (mod cf).

However, these two condition can hold for a q counted in the sum if

and only if h = 0 (mod f). However, since u = h/fd9 v = k/fd and c = 0

(mod f), it follows that in order for there to be a contribution to the

above sum, we must have u e ir1.

Assume, for the moment, that v & ίr 1 . Let us show that in this

case, the contribution to the above sum is 0. In this case, the terms

corresponding to q = 0 and q = cka (mod cf) are distinct and their sum

is

Res s = 0 ζ(s, χ0 0, cf)ξ(-s, χQ ck, cf)N{wYs

+ Res s=0 ξ(s, χQ a*kc, cf)ζ(-s, χ0 0, cf)N(w)~s . (*)

But t gίΓ1 implies that £(—s,χ0; ck, cf) and £(s, χ0 α*fcc, c/) are regular

at s = 0. Moreover, ?(s,χ;0, c/) and f(— s,χ;O, c/) have simple poles

at s = 0 with residues — 2n~xRe{c\) and 2n~1Re(c\), respectively. Thus,

the sum (*) equals

2*"1 Re (cf){f (0, χ0 αfcc, c/) - f (0, χ0 cfc, c/)}

which equals 0 since ad = 1 (mod cf), so that ack = ck (mod cf). Thus,

we see that we may assume that

ueb-1 , v e b"1 . (30)

Let us assume that (30) holds. Then clearly akc = 0 (mod cf), since

c = 0 (mod c) and k = 0 (mod f). Moreover fe = 0 (mod f). Thus, there is

a unique non-zero term in the above sum, corresponding to q = 0.

Therefore, since — ck = 0 (mod cf),
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Rl = o 2 n | P ur.r Λ\Λ ft R e S s =° { ξ ( s ' χ° ; °'

^ l ttcfl U f. i cfJ Itt^Γ

However, the Laurent expansion of f (s, χ0 0, c/) about s = 0 begins
ί(s, Zo 0, c/) = - 2"~X ^^ ( c f ) + A + JD(β) , A constant.

Therefore, ξ(s, χ0 0, cf)ξ(-s, χ0 0, cf) - g 8 2 ^ ) 2 is a regular func-

tion at s — 0, and therefore

hence the Proposition.
Since FPyQa(s)N(w)~s is regular at s = 0, except possibly when χTO =

χ0, we see that

2 |Λe f |[Γ f:Γe f]
exp ί2πi Tr f_^_(-gd + ck))

Σ*e,|[/VΛ,]|

X exp (2τri Tr ί-^—(—qd + c&)H
I \cfd /J

. R e s s = 0 ( N(w)~S ξ(s, θ q, cf)ξ(s + l,θ;p, cf))
\ sa /

1 v 2a~2nίa y;

. Res5=0 ( ^ y ' ?(g>β Q, Φξ(-β,θ;-qd + ck, cfή ,

where we have applied the functional equation of Theorem 4.1 (see
proof of the preceding Proposition).

Let us define the function

St(σ, s) = Sβ(σ, s|u, v,f) = Σ ξ(-s,θ;-qd + he, cf)ξ(s,θ q, cf) ,
q (mod cf)

q = h (mod f)

for σ = ί ̂  λ e G(f). Although this function is very complicated look-
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ing, it turns out to be a very natural function, closely related to the
theory of Dedekind sums in case K = Q. In case θ Φ θ0, the trivial
character, Sθ(σ,s) is an entire function of s, so that

N{W) s ς, , v

sa

: Γ e f ] | d x | * »*«o (a - 1 ) !, : Γ e f

1 Oa-2nAa a-l /n -\\

|Λβf I [ Γ f : Γ c f ] 1^1* eh (α - 1)! ^ V ^ /

Thus, finally we have

PROPOSITION 6.4. For each signature character θ and each j (0
j < a — 1, a — a(θ)), define Aj(θ) by

_ 1\ dJ

|Λβf I [ Γ f : Γ c f ] 1

Ress

+ Σ

In particular, the terms in the above sum which do not depend on w
are just

{This last sum is the generalization of the classical Dedekind sum to
our setting.)

Propositions 6.1 to 6.4 leave us only the task of computing the re-
sidues at the points Sj(χ) (l<j<n). This can be done generally.
However, for the sake of simplicity in calculations let us make the fol-
lowing assumption:

ASSUMPTION. Let m Φ (0, ., 0). Then the complex numbers ^ ( χ j ,

••->sn(Xm) are all distinct.
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This assumption will be automatic in case % = 1,2,3. In fact, we

conjecture that this assumption always holds.* Roughly, we suspect

this to be true because the numbers Si(χTO), ,sn(χTO) a r e essentially ele-

ments in one row of a matrix which is the inverse of a regulator

matrix. Therefore, one would suspect n — 1 of them to be algebraically

independent. However, this appears to be a difficult problem in trans-

cendental number theory. Throughout the rest of this paper, the above

assumption will be in effect.

By using reasoning similar to that used above, we can easily see

that for χ = χmφ χ0,

Ress=Sj(χ)H(s)N(w)-s = j Σ χm(w) Σ

X exp |-2jrf Tr M^-fod - c^>)) Ress=Sj(I)FPig,χS(s)N(wys .

Therefore, by using the definition of Fp>qtXβ(s) and the functional equa-

tion of Theorem 4.1, we have for χ = χm, m Φ (0, ,0),

exp < — 2πί Tr l^—(qd — ck))\'.
I V cfd ))

ξ(s, χθ g, c/)f (s + 1, χθ p, c/))

1
Res5 = s

where, consistent with our previous notation, we have set

Sχθ(σ, s) = q ( Σ j c f ) ξ(s, χθ q, cf)ζ(-s, χ-ιθ~ι -qd + ck, cf) .
q = h (mod f)

This conjecture is actually due to Hecke [4, p. 228-229].
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Since χ = χm, m Φ (0, , 0), we see that Sχθ(σ, s) is an entire function
of s. Moreover, our hypothesis above guarantees that the pole of the
function

ΠS-i(*-**(χ))β* v

at s = s/χ) is simple with residue

^ ' w > πs-. (.,<*>-*<*»"
Therefore, we finally have

PROPOSITION 6.5. For l<j<n9 set

Wj = \Wl9 9Wj_19

 3-—,

\ N(w)

Then for χ = χm, m Φ (0, , 0), we have

Ress=^(χ) H(s)N(w)~s = .

In order to state our final transformation formula for log η(z;u9v)9

let us introduce some constants suggested by Proposition 6.4. For 1 <
j < n9 set

ε(u)ε(v) Re{\)_+ Σ A a m (j = 1 }

Σ A..,.^ 0" > l)

Furthermore, let us set σ(z)j = wy. Then, using this notation, Proposi-
tion 6.1 to 6.5, together with Theorem 5.1, we can at last state the
main result of this paper:

MAIN THEOREM.. Let σ = (* h\e Γ(f), z e Hn. Then
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log η( a z + b ;u,v) = log v(z ;u,v) + Λ(U){N( a z + b ) - N(z)\
\ cz + d I I V cz + d ) s

- N(cz + d)
. N(cz + d)

- ΣCj[logN(sgn(c) cz + a)\
J=I \ \ i l l

- y~* ^ ^ BΛ(Ύ™}Ύ™((J(Z)Λ

- S(σ) .

7. Examples

Let us give a few illustrations of special cases of our main theorem.

EXAMPLE 1. K = Q.

Here w = 1, 72 = 1, 3 = 1, c^ = 1. Without loss of generality, let
us assume that / > 0, c > 0. All the assumptions made in our discus-
sion are valid in this case since all Q-ideals are principal and since there
are no non-trivial grossencharacters of conductor 1. There is only one
non-trivial signature character, namely

(x e Qx) .
,\x\

In this case,

where

log η(z u, v) = Λ(u)z + Σ - — — Σ

1 oo o2πiUT1

A(u) = —ί— Σ —
2πί m~~ \m\

= — 2πίB2(u) ,

where B2(u) denotes the second Bernoulli polynomial. In particular,

Λ(0) = —EL .
Ό

Also, for u = v = 0, log^O; u, v) = —2 \ogη(z), where Ύ](Z) is the classical
Dedekind ^-function.
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A simple computation shows that

d = ε(u)ε{v) .

Moreover

S(σ) = A0(θd = J?L Σ C(0, Θ1;-qd+ ck9 c/)ζ(O, θx q, cf)
Z q (mod cf)

q=h (mod f)

However, we showed [2, p. 297] that

Therefore,

Σ

s(modc)

In particular, if u = v = 0,

S(flp) = -2πίs(d, c) ,

and our main theorem is just the law of transformation (1). For

general u,v, our main theorem yields
logη(a z + h

Ί u, v) = logη(z;u,v)- e(u)ε(v) log ( cz + d )
\cz + d / \ i /

+ A(u)-^tA + 2πίS(u,v,σ)
c

where

S(u,v,a)= Σ
s (mode)

is a generalized Dedekind sum. This latter formula is due to Siegel
[6, p. 179] and Meyer [5, p. 102].

EXAMPLE 2. Let K = Q(Vdκ) be a real quadratic field of discrimi-
nant dκ and fundamental unit εκ. Then, b is a principal ideal and
further, assume that f is an arbitrary principal integral ideal. Then all
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assumptions made in the paper are valid. Let e be a generator for the

group of K-units = 1 (mod f). Note that

n

\1 logε(27
2 log ε 2 log ε

so that for meZ,

π i m2πίa1(m) = ^™L , 2πia2(m) = —— , mί(,lA2\ΠVJ — ,

log ε log ε
Λ/ (m II \ ηιπίm/lθg eηι-πim/lθg ε

Notice that for m Φ 0, axim) Φ a2(m), so that the assumption of Section

5 is valid.

In this example, there are four signature characters θ, namely

θ = θ^θ^θ^θi ,

where

θ0 = 1, Θ2(x) = sgn (N(x)) (x e K x) ,

θχ(x) = sgn (x), θί(x) = sgn (x1) {x e Kx) ,

where x >-* xf denotes the non-trivial conjugation map of K/Q. Im-

mediate computations show that

r _ ε(u)ε(y)e(\) log εκ

4e(cf)21 dκ I* log εκ L ds J4e(cf)21 dκ I* log εκ

Moreover, for ̂  Φ θ0,

Sθ(σ, 0) = Σ £(0, θ -qd + kc, c/)£(0, ί g, c/)
ή[ (mod cf)

g=Λ, (mod f)

By applying the functional equation of Theorem 4.1, and letting s—>0

from the left, we see that

πa/ύ β-o

Thus, we see that f (0, θ;p,r) is a generalization of the function (( )),

that is, essentially, the first Bernoulli polynomial, to a real quadratic
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field. Moreover, our above formula for S(σ) justifies calling S(σ) a
Dedekind sum, at least apart from the anomalous term involving

for which no conceptual explanation is available at this time. For-
tunately, this term does not contribute to the class number formulas in
this case.

Our transformation formula in this example reads

( az 4- b \ ( / CLZ 4- b \ Ί
^—- u9 v I = log jy(s UyV) + Λ(u){N( ^—— I — N(z)\

cz + d / I \cz + d / i

( - - N(cz + d)\
I N(cz + d) i

-Λ(u)
N(c) I N(cz + d)

-2πim/log ε

- Σ ' B2(χm)(sgc(c) czi + a ) - S(σ) ,
m=-oo \ I /

where z = (z19 z2). The special case of this formula in case ί a \ —

i s d u e t o H e c k e [3> P 4 0 3 ]
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