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On classical irregular q-difference equations

Julien Roques

Abstract

The primary aim of this paper is to (provide tools to) compute Galois groups of
classical irregular q-difference equations. We are particularly interested in quantizations
of certain differential equations that arise frequently in the mathematical and physical
literature, namely confluent generalized q-hypergeometric equations and q-Kloosterman
equations.

1. Introduction

Throughout this paper, q is a nonzero complex number such that |q|< 1. For all α ∈ C,
we set qα = eα log(q) where log(q) is a fixed logarithm of q. We denote by C(z)〈σq, σ−1

q 〉 the
noncommutative algebra of noncommutative Laurent polynomials with coefficients in C(z) such
that σqz = qzσq.

1.1 Motivation

Here are some examples of computations of q-difference Galois groups derived from the main
results of this paper.

The generalized q-hypergeometric operator Lq(a; b; λ) with parameters a= (a1, . . . , ar) ∈
(qR)r (r ∈ N), b= (b1, . . . , bs) ∈ (qR)s (s ∈ N) and λ ∈ C∗ is given by

Lq(a; b; λ) =
s∏
j=1

(
bj
q
σq − 1

)
− zλ

r∏
i=1

(aiσq − 1).

We assume that r 6= s (see [Roq11] for the case where r = s). By replacing z with 1/z if necessary,
we can assume that r > s. For all (i, j) ∈ {1, . . . , r} × {1, . . . , s}, we let αi, βj ∈ R be such that
ai = qαi and bj = qβj .

Theorem. Assume that βj − αi 6∈ Z for all (i, j) ∈ {1, . . . , r} × {1, . . . , s} (this condition is
empty if s= 0) and that the algebraic group generated by diag(e2πiα1 , . . . , e2πiαr) is connected.
Then the Galois group of Lq(a; b; λ) is GL(Cr).

Example. The Galois group of (q1/2σq − 1)s − z(σq − 1)r is GL(Cr).

The q-Kloosterman operator Klq(U, V ) associated to a pair (U, V ) of elements of C[X] such
that U(0) = 0 and V (0) 6= 0 is given by

Klq(U, V ) = U(σq) + V (z−1).
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On classical irregular q-difference equations

We let c1, . . . , cdeg U be the complex roots of Xdeg U (U(X−1) + V (0)) ∈ C[X] and, for all
i ∈ {1, . . . , deg U}, we denote by (ui, αi) the unique element of U× R such that ci = uiq

αi (U⊂ C
denotes the unit circle).

Theorem. Assume that deg U and deg V are relatively prime, that the algebraic group
generated by diag(u1, . . . , udeg U ) and diag(e2πiα1 , . . . , e2πiαdeg U ) is connected, and that there
exists z0 ∈ C∗ such that V (z0) = 0 and V (qkz0) 6= 0 for all k ∈ Z∗. Then the Galois group of
Klq(U, V ) is GL(Cdeg U ).

Example. For relatively prime integers m and n, the Galois group of (1− σq)n + (1− z−1)m − 1
is GL(Cn).

Proposition. Let us consider V ∈ q +XC[X]. Then, for any odd integer n> 2 coprime to
deg V , the Galois group of Klq((q1/2 −X)2(1−X)n−2 − q, V ) is GL(Cn).

In order to achieve these goals, we present our results in two parts.

Part I is devoted to the following problem: find simple and relevant characterizations of the
classical linear algebraic groups.

Part II is a Galoisian study of q-difference operators L ∈ C(z)〈σq, σ−1
q 〉 of rank n satisfying

one of the following properties (see § 4.2 for the notion of slope).

(H 1) At 0, L is isoclinic and its slope is of the form m/n with m ∈ Z∗ coprime to n.

(H 2) At 0, L has two slopes, 0 and µ. Denoting by r the multiplicity of µ, we have µ=m/r
for some m ∈ Z∗ coprime to r. The exponents attached to the slope 0 belong to qR.

For instance, the generalized q-hypergeometric operators with s > 0 considered above satisfy
(H 2), whereas the generalized q-hypergeometric operators with s= 0 and the q-Kloosterman
operators Klq(U, V ) with deg U coprime to deg V satisfy (H 1).

Our starting point originates from the work of Katz [Kat87]: we exploit the structure of the
local formal Galois groups. However, the q-difference and differential cases are rather different;
in particular, the ‘theta torus’ is ‘poorer’ than its differential analogue, Ramis’s exponential
torus. We make essential use of works by van der Put and Reversat [vdPR07], van der Put and
Singer [vdPS97] and Sauloy [Sau04]. In the theory of (irregular) linear differential equations,
another way of computing Galois groups was explored: the use of Ramis’s ‘wild fundamental
group’ (see [DM89, Mit96]). It would be interesting to compute q-difference Galois groups using
the q-analogue of the wild fundamental group introduced by Ramis and Sauloy in [RS07, RS09].
The crucial difference lies in the presence of a unipotent Stokes component (and hence in the
analytic properties of the slopes filtration).

In some cases, the classical equations studied in this paper can be seen as q-deformations of
certain classical differential equations (this is exploited by André in [And01]; see also [Sau00,
§§ 3–5]), namely the confluent generalized hypergeometric equations and the Kloosterman
equations. These differential equations were studied by Katz, with contributions from Gabber,
in [Kat87, Kat90], by Katz and Pink in [KP87], by Beukers et al. in [BBH88], by Duval and
Mitschi in [DM89] and by Mitschi in [Mit96].

The original interest of the author in the classical equations studied in the present paper
comes from the discrete Morales–Ramis theory developed in [CR08, CR11] for deriving the
nonintegrability of classical nonlinear q-difference equations, such as discrete Painlevé equations.
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1.2 Organization of the paper
Part I essentially provides ‘easily checkable’ characterizations of the classical linear algebraic
groups. In § 2 we give a new characterization relying on pairs of semisimple elements with special
spectra. In § 3 we give consequences of results established by Katz and Kostant. Part II considers
applications of these purely representation-theoretic results to the Galois theory of irregular
q-difference equations. In § 4 we present the elements of slopes theory and some useful Galoisian
results. In §§ 5 and 6 we show that the connected algebraic groups occurring as Galois groups
of irreducible equations that satisfy either (H 1) or (H 2) belong to a very short list of linear
algebraic groups. In § 7 we compute Galois groups of q-Kloosterman equations and of generalized
q-hypergeometric equations. In § 8 we give a ⊗-indecomposability criterion, which we apply to
the calculation of q-difference Galois groups. In § 9, combining several results of this paper, we
give additional computations of Galois groups.

Part I. Characterizations of the classical linear algebraic groups

2. A characterization of the classical linear algebraic groups

Let E be a C-vector space of finite dimension n> 3. Let us consider α and β in N such that
α> 1, β > 2 and n= α+ β.

Definition 1 (Property (P)). A pair f, g of semisimple elements of GL(E) satisfies
property (P) if:

– the list of eigenvalues of f is of the form (a repeated α times, b repeated β times) where
a, b ∈ C∗ are such that a 6=±b;

– the list of eigenvalues of g is of the form (c repeated α+ 1 times, d1, . . . , dβ−1) where
c, d1, . . . , dβ−1 are pairwise distinct nonzero complex numbers.

This section is devoted to the proof of the following result.

Theorem 2. Let G be a connected algebraic subgroup of GL(E) which acts irreducibly on E.
If G contains a pair of semisimple elements f, g satisfying (P), then the derived subgroup G′ of
G is SL(E), SO(E) or (if n= dim(E) is even) Sp(E). Furthermore, G′ ⊂G⊂ C∗G′.

Proposition 3. Let G be a connected semisimple algebraic subgroup of GL(E) which acts
irreducibly on E. If G contains a semisimple element f whose list of eigenvalues is of the form
(a repeated α times, b repeated β times) for some a, b ∈ C∗ such that a 6=±b, then its Lie algebra
g contains a semisimple element whose list of eigenvalues is (β repeated α times, −α repeated β
times).

Proof. Gabber’s theorem [Kat90, Theorem 1.0] applied to the Lie subalgebra g of End(E) and
the subgroup H of G generated by f ensures that, for any x, y in C such that αx+ βy = 0,
g contains a semisimple element whose list of eigenvalues is (x repeated α times, y repeated β
times). 2

Proposition 4. Let G be a connected semisimple algebraic subgroup of SL(E) which acts
irreducibly on E. If G contains a pair of semisimple elements f, g satisfying (P), then G is
simple (in the sense that its Lie algebra is simple).

Proof. Let ρ :G ↪→GL(E) be the standard representation of G, which is irreducible by
hypothesis. It comes from an irreducible representation ρ̃ : G̃�G ↪→GL(E) of the universal
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covering G̃ of G. We want to prove that G is simple, i.e. that its Lie algebra Lie(G) = Lie(G̃) = g

is simple.
Assume to the contrary that g is not simple. Then it splits into a direct sum g = g1 ⊕ g2 of

nontrivial semisimple Lie algebras g1 and g2 in such a way that the irreducible representation
Lie(ρ̃) : g ↪→ End(E) is (irreducible representation g1→ End(E1)) ⊗ (irreducible representation
g2→ End(E2)) with n1 = dim(E1)> 2 and n2 = dim(E2)> 2. Denoting by G̃1 and G̃2 the
connected and simply connected semisimple Lie groups with respective Lie algebras g1 and
g2 and integrating the above representations of g1 and g2 into representations ρ̃1 : G̃1→GL(E1)
and ρ̃2 : G̃2→GL(E2), we get that G̃ is G̃1 × G̃2 and ρ̃ is ρ̃1 ⊗ ρ̃2. So the list of eigenvalues of
any element of G= Im(ρ̃) is of the form {λiµj ; 16 i6 n1, 16 j 6 n2}.

Since f belongs to G, its list of eigenvalues (a repeated α times, b repeated β times) is of the
form (λiµj ; 16 i6 n1, 16 j 6 n2).

Note that either card{λi | 16 i6 n1}= 1 or card{µj | 16 j 6 n2}= 1. Otherwise, there would
exist t, u ∈ {λi | 16 i6 n1} and v, w ∈ {µj | 16 j 6 n2} such that t 6= u and v 6= w. The sublist
(tv, tw, uv, uw) of (λiµj ; 16 i6 n1, 16 j 6 n2) would be made up of at least three distinct
numbers (otherwise, since {tv, uw} ∩ {tw, uv}= ∅, we would have tv = uw and tw = uv so
that v/w = (tv)/(tw) = (uw)/(uv) = w/v and hence v =−w and t=−u; therefore the inclusion
{tv,−tv}= {tv, tw, uv, uw} ⊂ {λiµj | 16 i6 n1, 16 j 6 n2}= {a, b} would be an equality, and
so a=−b, which is a contradiction). This contradicts the fact that f has two eigenvalues.

Up to relabeling, we can assume that card{λi | 16 i6 n1}= 1 and card{µj | 16 j 6 n2}= 2.
Hence α and β are nonzero integral multiples of n1; in particular, n1 6 α and n1 6 β.

Since g belongs to G, its list of eigenvalues (c repeated α+ 1 times, d1, . . . , dβ−1) is of the
form (λ′iµ

′
j ; 16 i6 n1, 16 j 6 n2). So there exist α+ 1 distinct indices (i1, j1), . . . , (iα+1, jα+1)

in {1, . . . , n1} × {1, . . . , n2} such that c= λ′i1µ
′
j1

= · · ·= λ′iα+1
µ′jα+1

. Since n1 < α+ 1, we get
that there exist 16 k 6= k′ 6 α+ 1 such that ik = ik′ . Hence jk 6= jk′ and λ′ikµ

′
jk

= λ′ik′µ
′
jk′

, so
µ′jk = µ′jk′ . Therefore, for all 16 i6 n1, λ′iµ

′
jk

= λ′iµ
′
jk′

and so λ′iµ
′
jk

= c (because c is the unique
eigenvalue of g with multiplicity greater than 1). Thus, λ′1 = · · ·= λ′n1

. So any element of
(λ′iµ

′
j ; 16 i6 n1, 16 j 6 n2) occurs at least n1 > 1 times. But this is a contradiction (since

g has at least one eigenvalue with multiplicity 1), so g is simple. 2

We have proved that any connected semisimple algebraic subgroup of GL(E) that acts
irreducibly on E and which contains a pair of semisimple elements f, g satisfying (P) is simple
and that its Lie algebra contains a morphism with exactly two eigenvalues. This restricts
the possibilities for G by virtue of the following result of Serre. For the notion of minuscule
representations, we refer to Bourbaki [Bou75].

Theorem 5 (Serre [Ser79, § 3]). If a simple Lie subalgebra g of End(E) which acts irreducibly
on E contains a morphism with exactly two eigenvalues, then g is a classical Lie algebra
(Am, Bm, Cm or Dm) and its weights in E are minuscule.

It is proved in [Bou75, ch. 8, § 7.3] that the minuscule representations of classical Lie algebras
are

Am, m> 1; ω1, . . . , ωm

Bm, m> 3; ωm
Cm, m> 2; ω1

Dm, m> 4; ω1, ωm−1, ωm.
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Remark 1. This list is slightly different from the one given in [Bou75] because (we are only
interested in classical Lie algebras and) we have taken into consideration accidental isomorphisms.

The corresponding representations of connected Lie groups are conjugated to a factor of one
of the following representations:

SLm+1(C), m> 1; std, Λ2(std) . . . , Λm(std)
Spin2m+1(C), m> 3; spin representation

Sp2m(C), m> 2; std
Spin2m(C), m> 4; half-spin representations or ‘std representation of SO2m(C)’.

For any subgroup G of GL(E), we denote by std the standard representation of G, i.e. the
inclusion G ↪→GL(E).

In what follows, we shall prove that among the above representations, the only ones whose
image contains a pair of semisimple elements satisfying (P) are SLm+1(C) in std or in Λm(std),
Sp2m(C) in std, and Spin2m(C) in the standard representation of SO2m(C).

Proposition 6. For 1< k <m (so m> 3), the image of SLm+1(C) in Λk(std) does not contain
a pair of semisimple elements satisfying (P).

Proof. By duality, i.e. the fact that Λk(std)∼= (Λm+1−k(std))∗, it is sufficient to consider the case
where 1< k 6 (m+ 1)/2.

Assume to the contrary that the image of SLm+1(C) in Λk(std) contains a pair of semisimple
elements f, g satisfying (P).

Then, the list of eigenvalues (a repeated α times, b repeated β times) of f is of the form

(ui1,...,ik = ui1 · · · uik ; 16 i1 < i2 < · · ·< ik 6m+ 1).

We have card{ui | 16 i6m+ 1}> 2 because a 6= b. We claim that card{ui | 16 i6
m+ 1}= 2. Assume to the contrary that card{ui | 16 i6m+ 1}> 2. Up to renumbering, we can
assume that u1, u2 and u3 are pairwise distinct. Then u3,...,k+2, u2,4,...,k+2 and u1,4,...,k+2 (note
that k + 26 (m+ 1)/2 + 26m+ 1 because m> 3) would be pairwise distinct, and therefore
card{ui1,...,ik | 16 i1 < i2 < · · ·< ik 6m+ 1}> 3: this is a contradiction.

So, up to renumbering, we can assume that there exists i ∈ {1, . . . , m} such that u :=
u1 = · · ·= ui 6= ui+1 = · · ·= um+1 =: v.

We claim that i= 1 or i=m. Indeed, assume to the contrary that 26 i6m− 1 (recall that
m> 3) and denote by l the smallest nonnegative integer such that i6 l + k (so l = 0 if i6 k
and l = i− k if i > k). Then ul+1,...,l+k, ul+2,...,l+k+1 and ul+3,...,l+k+2 would be pairwise distinct
(indeed, there exists t ∈ C∗ such that ul+1,...,l+k = u2t, ul+2,...,l+k+1 = uvt and ul+3,...,l+k+2 = v2t,
and these three numbers are pairwise distinct because u 6=±v), so card{ui1,...,ik | 16 i1 <
i2 < · · ·< ik 6m+ 1}> 3: this is a contradiction.

Consequently, we have that either u1 6= u2 = · · ·= um+1 or u1 = · · ·= um 6= um+1, so we have
either (α, β) =

((
m
k−1

)
,
(
m
k

))
or (α, β) =

((
m
k

)
,
(
m
k−1

))
. In any case, we have α>min

{(
m
k−1

)
,
(
m
k

)}
=(

m
k−1

)
(the last equality holds because k 6 (m+ 1)/2).

On the other hand, the list of eigenvalues (c repeated α+ 1 times, d1, . . . , dβ−1) of g is of
the form

(vi1,...,ik = vi1 · · · vik ; 16 i1 < i2 < · · ·< ik 6m+ 1).
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This list is the concatenation of the
(
m
k−1

)
lists of the form

(vi1,...,ik−1,j = vi1 · · · vik−1
vj ; ik−1 < j 6m+ 1)

indexed by 16 i1 < i2 < · · ·< ik−1 6m.
Since α+ 1>

(
m
k−1

)
, we get that there exist 16 i1 < i2 < · · ·< ik−1 6m and ik−1 < j, j′ 6

m+ 1 with j 6= j′ such that c= vi1,...,ik−1,j = vi1,...,ik−1,j′ . So vj = vj′ . Up to renumbering, we can
assume that v1 = v2.

For all 36 i2 < · · ·< ik 6m+ 1, we obviously have v1vi2 · · · vik = v2vi2 · · · vik . Since c is the
only eigenvalue of g with multiplicity greater than 1, we necessary have, for all 36 i2 < · · ·<
ik 6m+ 1, c= v1vi2 · · · vik . Therefore, v3 = · · ·= vm+1.

If k > 2, then it is clear that any element of the list (vi1,...,ik ; 16 i1 < i2 < · · ·< ik 6m+ 1)
occurs with multiplicity at least 2: this is a contradiction.

If k = 2, then any element of the list (vi1,i2 ; 16 i1 < i2 6m+ 1) occurs with multiplicity at
least 2 except, possibly, the term corresponding to i1 = 1 and i2 = 2. In particular, c= v1v3 =
v3v4 = v2

3 and so v1 = v3, giving v1 = · · ·= vm+1 and hence card{vi1,...,ik | 16 i1 < i2 < · · ·< ik 6
m+ 1}= 1: this is a contradiction. 2

Proposition 7. The image of Spin2m(C) with m> 4 in any of its 1/2-spin representations does
not contain a pair of semisimple elements satisfying (P).

Proof. Assume to the contrary that the image G of Spin2m(C) in one of its 1/2-spin
representations contains a pair of semisimple elements f, g satisfying (P).

Let us first treat the case of the 1/2-spin representation ρ− whose weights have an odd
number of minus signs.

Proposition 3 ensures that Lie(G) = g contains an element u whose list of eigenvalues is
Eu = (β repeated α times, −α repeated β times). There exist λ1, . . . , λm in C such that

Eu = (ε1λ1 + · · ·+ εmλm ; (ε1, . . . , εm) ∈ {−1, 1}m such that ε1 · · · εm =−1).

Since (λ1 + · · ·+ λm − 2λ1, λ1 + · · ·+ λm − 2λ2, . . . , λ1 + · · ·+ λm − 2λm) is a sublist of
Eu, we get that card{λi | 16 i6m}6 2.

Assume that card{λi | 16 i6m}= 1, i.e. that λ := λ1 = · · ·= λm. Note that λ 6= 0. If m> 5,
then

(λ1 + · · ·+ λm − 2λ1, λ1 + · · ·+ λm − 2λ1 − 2λ2 − 2λ3,

λ1 + · · ·+ λm − 2λ1 − 2λ2 − 2λ3 − 2λ4 − 2λ5)
= ((m− 2)λ, (m− 6)λ, (m− 10)λ)

is a sublist of Eu made up of three distinct numbers, which is a contradiction. If m= 4, then Eu
is (2λ repeated 4 times, −2λ repeated 4 times). In particular, α= β = 2m−2.

Assume that card{λi | 16 i6m}= 2, i.e. that λ := λ1 = · · ·= λi and λi+1 = · · ·= λm =: µ
for some 16 i < m and some distinct complex numbers λ and µ. Since m> 4, up to relabeling
we can assume that i> 2. Then

(λ1 + · · ·+ λm − 2λ1, λ1 + · · ·+ λm − 2λm, λ1 + · · ·+ λm − 2λ1 − 2λ2 − 2λm)
= (λ1 + · · ·+ λm − 2λ, λ1 + · · ·+ λm − 2µ, λ1 + · · ·+ λm − 2(2λ+ µ))

is a sublist of Eu. Since λ 6= µ, we have λ1 + · · ·+ λm − 2λ 6= λ1 + · · ·+ λm − 2µ; so, since
Eu is composed of two elements, λ1 + · · ·+ λm − 2(2λ+ µ) is equal to either λ1 + · · ·+ λm − 2λ
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or λ1 + · · ·+ λm − 2µ, that is, λ= 0 or µ=−λ. If λ= 0 and i < m− 1, then

(λ1 + · · ·+ λm − 2λ1, λ1 + · · ·+ λm − 2λ1 − 2λ2 − 2λm, λ1 + · · ·+ λm − 2λ1 − 2λm−1 − 2λm)
= ((m− i)µ, (m− i− 2)µ, (m− i− 4)µ)

is a sublist of Eu made up of three pairwise distinct complex numbers (because µ 6= λ= 0); but
this is impossible. If λ= 0 and i=m− 1, then Eu has the form (µ repeated 2m−2 times, −µ
repeated 2m−2 times) and hence α= β = 2m−2. If µ=−λ and i> 3, then

(λ1 + · · ·+ λm − 2λ1, λ1 + · · ·+ λm − 2λ1 − 2λ2 − 2λ3, λ1 + · · ·+ λm − 2λm)
= (λ1 + · · ·+ λm − 2λ, λ1 + · · ·+ λm − 6λ, λ1 + · · ·+ λm + 2λ)

is a sublist of Eu made up of three pairwise distinct complex numbers, which is impossible.
Similarly, the case where λ=−µ and m− i> 3 is impossible. So, since m> 4, the only possibility
that is compatible with λ=−µ is m= 4 and i= 2, in which case Eu is of the form (2λ repeated
4 times, −2λ repeated 4 times); thus, in particular, α= β = 2m−2.

Therefore, in any possible case, we have α= β = 2m−2.
On the other hand, since g belongs to G, its list of eigenvalues Eg = (c repeated α+ 1 times,

d1, . . . , dβ−1) has the form

Eg = (µε11 · · · µ
εm
m ; (ε1, . . . , εn) ∈ {−1, 1}m such that ε1 · · · εm =−1).

This list is the concatenation of the 2m−2 lists of the form( ∏
i∈{1,...,m}\{i1,...,ip−1,ip}

µi ·
∏

i∈{i1,...,ip−1,ip}

µ−1
i ; ip−1 < ip 6m

)
indexed by 16 i1 < · · ·< ip−1 6m− 1 with 16 p6m an odd number. Since α+ 1> 2m−2, we
see that there exist 16 i1 < · · ·< ip−1 6m− 1 and ip−1 < j, j′ 6m with j 6= j′ such that

c=
∏

i∈{1,...,m}\{i1,...,ip−1,j}

µi ·
∏

i∈{i1,...,ip−1,j}

µ−1
i =

∏
i∈{1,...,m}\{i1,...,ip−1,j′}

µi ·
∏

i∈{i1,...,ip−1,j′}

µ−1
i

and so µ2
j = µ2

j′ , i.e. µj =±µj′ . Up to renumbering, we can assume that µ1 =±µ2. So, for all
36 k, l 6m with k 6= l (recall that m> 4), we have

µ1µ
−1
2 µ−1

k µ−1
l

∏
i∈{1,...,m}\{1,2,k,l}

µi = µ−1
1 µ2µ

−1
k µ−1

l

∏
i∈{1,...,m}\{1,2,k,l}

µi.

Thus µ1µ
−1
2 µ−1

k µ−1
l

∏
i∈{1,...,m}\{1,2,k,l} µi occurs with multiplicity greater than 1 in Eg, and hence

c= µ1µ
−1
2 µ−1

k µ−1
l

∏
i∈{1,...,m}\{1,2,k,l}

µi.

Similarly, for all 36 k, l 6m with k 6= l,

c= µ1µ
−1
2 µkµl

∏
i∈{1,...,m}\{1,2,k,l}

µi.

So, for all 36 k, l 6m with k 6= l, we have µ2
kµ

2
l = 1. If m> 5, then for all 36 k, l 6m there exists

36 k′ 6m such that k′ 6= k, l; so µ2
k/µ

2
l = (µ2

kµ
2
k′)/(µ

2
l µ

2
k′) = 1/1 = 1, i.e. µ2

k = µ2
l . Therefore, we

get µ2
3 = · · ·= µ2

m =±1. This implies that any element of

Eg = (µε11 · · · µ
εm
m ; (ε1, . . . , εn) ∈ {−1, 1}m such that ε1 · · · εm =−1)
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has multiplicity at least 2 because µε11 · · · µεmm = µε11 · · · µ
εm−2

m−2 µ
−εm−1

m−1 µ−εmm ; this is a contradiction.
If m= 4, then it is easily seen that Eg is of the form (ν1, ν

−1
1 , . . . , ν2m−2 , ν−1

2m−2) (this is more
generally true if m is even). If m= 4 and c−1 = c, then α+ 1 would be an even number
(because if c ∈ {νi, ν−1

i }, then {νi, ν−1
i }= {c} and so the number α+ 1 of occurrences of c in

Eg = (ν1, ν
−1
1 , . . . , ν2m−2 , ν−1

2m−2) must be even); so α would be an odd number and hence would
not be an integral power of 2, which is a contradiction. If m= 4 and c−1 6= c, then the fact that
c occurs with multiplicity α+ 1 in Eg = (ν1, ν

−1
1 , . . . , ν2m−2 , ν−1

2m−2) implies that c−1 occurs with
multiplicity α+ 1> 1 in Eg, so c= c−1 (because c is the unique eigenvalue of g with multiplicity
greater than 1); this is again a contradiction.

Let us now treat the case of the 1/2-spin representation ρ+ whose weights have an even
number of minus signs.

Since ρ+ is dual to ρ− when m is odd, it is sufficient to consider the case where m is even.
As mentioned above, the fact that m is even implies that the list Ef = (a repeated α times,
b repeated β times) of eigenvalues of f is of the form Ef = (ν1, ν

−1
1 , . . . , ν2m−2 , ν−1

2m−2). We
claim that α= β = 2m−2. Indeed, assume first that a= a−1, i.e. that a=±1. This implies that
b−1 6= b and b−1 6= a, because b 6=±a=±1. So b−1 does not belong to Ef = (a repeated α times,
b repeated β times), and hence b itself does not belong to Ef = (ν1, ν

−1
1 , . . . , ν2m−2 , ν−1

2m−2),
which is a contradiction. A similar argument shows that b 6= b−1. Therefore a 6= a−1 and
b 6= b−1. Since b belongs to Ef = (ν1, ν

−1
1 , . . . , ν2m−2 , ν−1

2m−2), b−1 belongs to Ef . Since b−1 6= b,
the only possibility is that a= b−1, and hence the number of occurrences of a and of b in
Ef = (ν1, ν

−1
1 , . . . , ν2m−2 , ν−1

2m−2) are the same. Thus α= β = 2m−2. Now, the same argument as
for the m= 4 case treated above allows us to conclude the proof. 2

Proposition 8. The image of Spin2m+1(C) in its spin representation does not contain a pair
of semisimple elements satisfying (P).

Proof. Assume that the image G of Spin2m+1(C) in its spin representation contains a pair of
semisimple elements f, g satisfying (P).

Proposition 3 ensures that Lie(G) = g contains an element u whose list of eigenvalues is
Eu = (β repeated α times, −α repeated β times). So there exist λ1, . . . , λm in C such that

Eu = (ε1λ1 + · · ·+ εmλm ; (ε1, . . . , εm) ∈ {−1, 1}m).

Since (λ1 + · · ·+ λm − 2λ1, λ1 + · · ·+ λm − 2λ2, . . . , λ1 + · · ·+ λm − 2λm) is a sublist of Eu,
we get that card{λi | 16 i6m}6 2.

Assume that card{λi | 16 i6m}= 1, i.e. that λ := λ1 = · · ·= λm. We have λ 6= 0. Then

(λ1 + · · ·+ λm, λ1 + · · ·+ λm − 2λ1, λ1 + · · ·+ λm − 2λ1 − 2λ2, . . . ,

λ1 + · · ·+ λm − 2λ1 − · · · − 2λm)
= ((m− 2j)λ ; 06 j 6m)

is a sublist of Eu made of m+ 1> 2 mutually distinct numbers, and this is a contradiction.
Assume that card{λi | 16 i6m}= 2, i.e. that λ := λ1 = · · ·= λi and λi+1 = · · ·= λm =: µ

for some 16 i < m and some distinct complex numbers λ and µ. Up to renumbering, we can
assume that i> 2. Using the fact that (±λ± λ+ λ3 + · · ·+ λm) is a sublist of Eu, we see that
λ= 0. Moreover, i=m− 1, because otherwise (λ1 + · · ·+ λm−2 ± µ± µ) would be a sublist of
Eu made up of four distinct elements (as µ 6= λ= 0), which is impossible. So Eu has the form
(µ repeated 2m−1 times, −µ repeated 2m−1 times), hence α= β = 2m−1.
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On the other hand, since g belongs to G, its list of eigenvalues Eg = (c repeated α+ 1
times, d1, . . . , dβ−1) is of the form Eg = (µε11 · · · µεmm ; (ε1, . . . , εn) ∈ {−1, 1}m). This list is the
concatenation of the 2m−1 lists( ∏

i∈{1,...,m}\{i1,...,ip−1,ip}

µi ·
∏

i∈{i1,...,ip−1,ip}

µ−1
i ; ip−1 < ip 6m

)
indexed by 16 i1 < · · ·< ip−1 6m− 1 with 06 p6m. Since α+ 1> 2m−1, we see that there
exist 16 i1 < · · ·< ip−1 6m− 1 and ip−1 < j, j′ 6m with j 6= j′ such that∏

i∈{1,...,m}\{i1,...,ip−1,j}

µi ·
∏

i∈{i1,...,ip−1,j}

µ−1
i =

∏
i∈{1,...,m}\{i1,...,ip−1,j′}

µi ·
∏

i∈{i1,...,ip−1,j′}

µ−1
i

and so µ2
j = µ2

j′ . Up to renumbering, we can assume that µ2
1 = µ2

2. So, for all 36 k 6m, we have

µ1µ
−1
2 µ−1

k

∏
i∈{1,...,m}\{1,2,k}

µi = µ−1
1 µ2µ

−1
k

∏
i∈{1,...,m}\{1,2,k}

µi.

Therefore µ1µ
−1
2 µ−1

k

∏
i∈{1,...,m}\{1,2,k} µi occurs with multiplicity greater than 1 in Eg, and hence

c= µ1µ
−1
2 µ−1

k

∏
i∈{1,...,m}\{1,2,k}

µi.

Similarly, we have, for all 36 k 6m,

c= µ1µ
−1
2

∏
i∈{1,...,m}\{1,2}

µi.

Therefore, for all 36 k 6m, µ2
k = 1, i.e. µk =±1. This clearly implies that any element

of Eg = (µε11 · · · µεmm ; (ε1, . . . , εn) ∈ {−1, 1}m) occurs with multiplicity at least 2, which is a
contradiction. 2

Proof of Theorem 2. Since G acts irreducibly on E, we have G= Z(G)◦G′ where Z(G)◦ denotes
the connected center of G and G′ the derived subgroup of G. Moreover, Z(G)◦ is included in the
scalars, so G′ ⊂G⊂ C∗G′ and G′ is a connected semisimple algebraic subgroup of SL(E) which
acts irreducibly on E. Let f, g be a pair of semisimple elements of G satisfying (P). Then there
exist tf , tg ∈ C∗ such that f ′ = tff and g′ = tgg belong to G′. It is clear that f ′, g′ is a pair of
semisimple elements of G′ satisfying (P). Proposition 4 ensures that G′ is simple. Proposition 3
and Theorem 5 ensure that G′ is classical and that, as a representation of G′, E is minuscule. In
view of the classification of minuscule representations given after Theorem 5, the result follows
from Propositions 6, 7 and 8. 2

3. Additional results

We let E be a C-vector space of finite dimension n> 2.

Theorem 9. Let G be a connected algebraic subgroup of GL(E). Assume that G contains a
semisimple element u having n distinct eigenvalues and an element v which permutes cyclically
the n eigenspaces of u. Then the derived subgroup G′ of G is either the image of

∏l
i=1 SL(Cni) in⊗l

i=1 std for some l ∈ N∗ and some pairwise coprime numbers n1, n2, . . . , nl > 1 or the image of

Sp(Cn1)×
∏l
i=2 SL(Cni) in

⊗l
i=1 std for some l ∈ N∗ and some pairwise coprime numbers n1 > 4

even and n2, . . . , nl > 1. Moreover, G′ ⊂G⊂ C∗G′.
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Proof. The fact that G contains a semisimple element u having n distinct eigenvalues and an
element v which permutes cyclically the corresponding eigenspaces implies thatG acts irreducibly
on E. So G′ ⊂G⊂ C∗G′ and G′ is a connected semisimple algebraic subgroup of SL(E) which
acts irreducibly on E (see the beginning of the proof of Theorem 2 for details) and contains an
element u′ (= ξu for some ξ ∈ C∗) with n distinct eigenvalues and an element v′ (= ζv for some
ζ ∈ C∗) that permutes cyclically the corresponding eigenspaces.

By virtue of [Kat87, Corollary 3.2.8], to conclude the proof it suffices to find a maximal torus
T in G′ and an element w in the normalizer N(T ) of T such that, as a representation of T , E is
the direct sum of n distinct characters which are cyclically permuted by the conjugation action
of w. But since u′ is a semisimple element of G′, it is contained in a maximal torus T of G′. By
commutativity, this maximal torus leaves invariant the n eigenspaces of u′. It is now clear that
T and w = v′ ∈N(T ) have the required properties. 2

Theorem 10. Let G be a connected algebraic subgroup of GL(E) which acts irreducibly on
E. If G contains a semisimple element f whose list of eigenvalues is of the form (a, b repeated
n− 1 times) for some a, b ∈ C∗ such that a 6=±b, then the derived subgroup G′ of G is SL(E).
Furthermore, G′ ⊂G⊂ C∗G′.

Proof. Since G acts irreducibly on E, G′ ⊂G⊂ C∗G′ and G′ is a connected semisimple algebraic
subgroup of SL(E) which acts irreducibly on E (see the beginning of the proof of Theorem 2
for details) and contains f ′ = tf for some t ∈ C∗. Proposition 3 ensures that the semisimple Lie
algebra g′ of G′ contains a semisimple morphism whose list of eigenvalues is (n− 1, −1 repeated
n− 1 times). Since G′ acts irreducibly on E, so does g′. Kostant’s characterization of sl(E) given
in [Kos58] then ensures that g′ = sl(E) and hence that G′ = SL(E). 2

Part II. Applications to q-difference Galois theory

4. Review of useful facts and results

4.1 q-difference modules and systems

Let (K, σ) be a difference field and let D(K,σ) be the noncommutative algebra K〈σ, σ−1〉 of
noncommutative Laurent polynomials with coefficients in K satisfying the relation σa= σ(a)σ
for any a ∈K. The full subcategory of the category of D(K,σ)-modules whose objects are the
D(K,σ)-modules of finite length is denoted by E(K,σ). It is a Kσ-linear abelian tensor category,
where Kσ = {a ∈K | σ(a) = a} is the subfield of constants of (K, σ).

It will sometimes be convenient to choose specific bases. We introduce the category E ′(K,σ),
which is tensor-equivalent to E(K,σ), described as follows: its objects are difference systems
(σY =AY ) where A ∈GLn(K), and its morphisms from (σY =AY ), A ∈GLn(K), to (σY =
BY ), B ∈GLm(K), are the matrices F ∈Mm,n(K) such that BF = σ(F )A.

We refer to [vdPS97, Chapter 1, especially § 1.4] or to [Sau04, § 1.1] for details. In particular,
the tensor product, denoted by ⊗, and the dual, denoted by ·∨, are defined there.

We denote by C{z} the local ring of germs of analytic functions at 0 and by C({z}) its field
of fractions; we denote by C[[z]] the local ring of formal series in z and by C((z)) its field of
fractions.

For K = C(z), C({z}) or C((z)), we denote by σq the automorphism of K defined by
σq(a(z)) = a(qz). Then (K, σq) is a difference field with field of constants C.
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For any N ∈ N∗, we set qN = q1/N and denote by [N ] : C∗→ C∗ the étale morphism z 7→
zN and by [N ]∗ : E(C((z)),σq)→E(C((zN )),σqN ) the corresponding ramification functor (explicitly
defined in [DiV02, § 1.4], for instance).

4.2 Slopes

Our main reference for slopes theory is [Sau04], where it is assumed that |q|> 1 (in opposition
to our hypothesis of |q|< 1). The slopes defined in this paper are thus the opposite of those
defined in [Sau04]; but since we use only the formal part of [Sau04], this has no impact on what
follows.

The Newton polygon N (L) of L=
∑

i aiσ
i
q ∈ D(C((z)),σq) is the convex hull in R2 of {(i, j) |

i ∈ Z and j > vz(ai)} where vz denotes the z-adic valuation on C((z)). This polygon is made up
of two vertical half-lines and k vectors (r1, d1), . . . , (rk, dk) ∈ N∗ × Z having pairwise distinct
slopes, called the slopes of L. For any i ∈ {1, . . . , k}, ri is called the multiplicity of the slope
di/ri.

Let M be an object of E(C((z)),σq). The cyclic vector lemma [DiV02, Lemma 1.3.1] ensures that
there exists L ∈ D(C((z)),σq) such that M ∼=D(C((z)),σq)/D(C((z)),σq)L. One can define the slopes of
M to be the slopes of L and the multiplicity of a slope λ of M to be the multiplicity of λ as a
slope of L. This definition is independent of the chosen L (see [Sau04, Théorème et définition
2.2.5]). An object M of E(C((z)),σq) is pure isoclinic if it has a unique slope.

For instance, for a ∈ C((z))×, the Newton polygon of M =D(C((z)),σq)/D(C((z)),σq)(σq − a) is
the convex subset of R2 delimited by the vertical half-lines {0} × R+ and {1} × [vz(a),+∞[
together with the segment from (0, 0) to (1, vz(a)). So M is pure isoclinic with slope vz(a). To
give another example, M =D(C((z)),σq)/D(C((z)),σq)(qzσ

2
q − (1 + z)σq + 1) has two slopes, namely

0 and 1, both with multiplicity 1.

4.3 Galois groups

Let E be a tannakian category over C, and let ω be a C-fiber functor on E . For any object M
of E , we let 〈M〉 denote the tannakian category generated by M in E and let Gal(M, ω) denote
the complex linear algebraic group Aut⊗(ω|〈M〉). The choice of a specific fiber functor is of no
consequence: since C is algebraically closed, any two C-fiber functors on E are isomorphic. For
the theory of tannakian categories, we refer to Deligne and Milne’s paper [DM81].

4.3.1 Connectedness. Let M be an object of E(C(z),σq).
The categories E(C((z)),σq) and E(C(z),σq) are neutral tannakian over C (see [vdPS97, § 1.4]). Let

ω̂ be a C-fiber functor on E(C((z)),σq). The formalization functor ·̂ : E(C(z),σq)→E(C((z)),σq) being
an exact and faithful ⊗-functor, ω = ω̂ ◦ ·̂ is a C-fiber functor on E(C(z),σq).

The following result is [vdPS97, Proposition 12.2] (compare with Gabber’s result [Kat87,
Proposition 1.2.5]).

Proposition 11. The natural closed immersion Gal(M̂, ω̂) ↪→Gal(M, ω) of the local formal

Galois group Gal(M̂, ω̂) of M at 0 into the Galois group Gal(M, ω) of M induces a surjective

morphism Gal(M̂, ω̂)/Gal(M̂, ω̂)◦�Gal(M, ω)/Gal(M, ω)◦.

Corollary 12. If Gal(M̂, ω̂) is connected, then Gal(M, ω) is connected.

We give an additional corollary for later use.
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Corollary 13. Assume that M satisfies (H 1) and is regular singular at ∞ with exponents in
{c ∈ C∗ | cn′ ∈ qZ} for some n′ ∈ Z∗ coprime to the rank n of M . Then Gal(M, ω) is connected.

Proof. We set G= Gal(M, ω) and denote by G0 and G∞ the local formal Galois groups of
M at 0 and ∞, respectively. Proposition 16 below and [vdPR07, Example 5.6 in § 5.2] ensure
that G0/G

◦
0
∼= (Z/n2Z). Proposition 11 implies that the order of any element of G/G◦ divides n2.

Moreover, using [vdPS97, ch. 12] or [Sau03, § 2.2], we see that the order of any element of G∞/G◦∞
divides n′. Proposition 11 ensures that the same property holds for the elements of G/G◦.
Therefore, G/G◦ is trivial. 2

4.3.2 Lie-irreducibility.

Definition 14. We say that a list c1, . . . , cn of nonzero complex numbers is q-Kummer induced
if there exist a divisor d> 2 of n and a permutation ν of {1, . . . , n} such that, for all
i ∈ {1, . . . , n}, ci = q1/dcν(i) mod qZ.

Proposition 15. If M is an irreducible object of E(C(z),σq) which is of rank n and regular

singular at∞ with non-q-Kummer-induced exponents c1, . . . , cn ∈ qR, then M is Lie-irreducible,
i.e. the action of Gal(M, ω)◦ on ω(M) is irreducible.

Proof. For all i ∈ {1, . . . , n}, let γi ∈ R be such that ci = qγi . It follows from [vdPS97, ch. 12]
or [Sau03, § 2.2] that the local formal Galois group of M at ∞ is generated, as an algebraic
group, by its neutral component and by a semisimple morphism f with list of eigenvalues
e2πiγ1 , . . . , e2πiγn . Proposition 11 implies that G= Gal(M, ω) is generated, as an algebraic group,
by G◦ and f . So, since the action of G on ω(M) is irreducible, its restriction to the abstract
group H generated by G◦ and f is still irreducible. Assume that M is not Lie-irreducible and
let V 6= {0}, ω(M) be a minimal invariant subspace of ω(M) for the action of G◦. For all k ∈ Z,
fkV is an invariant subspace of ω(M) for the action of G◦, because G◦ is a normal subgroup
of G. Therefore

∑
k∈Z f

kV is an invariant subspace of ω(M) for the action of H and hence
ω(M) =

∑
k∈Z f

kV . Let d be the smallest integer greater than 1 such that ω(M) =
∑d−1

k=0 f
kV . It

is easily seen that ω(M) =
⊕d−1

k=0 f
kV . This implies that f and e2πi/df are conjugate. Considering

the eigenvalues of f , we see that there exists a permutation ν of {1, . . . , n} such that, for all
i ∈ {1, . . . , n}, e2πiγi = e2πi/de2πiγν(i) , i.e. ci = q1/dcν(i) mod qZ. Since n= d dim V , d divides n. 2

5. Main theorem in the one-slope case

Proposition 16 (Reformulation of (H 1)). Let M̂ be an object of E(C((z)),σq) of rank n> 2.
The following properties are equivalent:

(a) M̂ is irreducible (i.e. simple);

(b) M̂ ∼= M̂q(n, m, a) :=D(C((z)),σq)/D(C((z)),σq)(σ
n
q − q

mn(n−1)/2
n azm) for some m ∈ Z∗ coprime

to n and some a ∈ C∗;
(c) M̂ satisfies (H 1).

Proof. The equivalence (a)⇔ (b) is [vdPR07, Proposition 1.3], and (b)⇒ (c) is obvious. It
remains to prove (c)⇒ (a). Assume that M̂ satisfies (H 1). Let M̂ ′ be a nonzero subobject
of M̂ . Then M̂ ′ is pure isoclinic with slope µ (see [Sau04, Théorème 2.3.1]). In order to prove
that M̂ = M̂ ′, it is sufficient to prove that the rank n′ of M̂ ′ is greater than or equal to n.
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This is indeed the case as n′µ has to be a relative integer (immediate from the definition of the
slopes of M̂ ′). 2

Lemma 17. If M1, . . . , Ml are objects of E(C(z),σq) of rank greater than 1 such that M =
M1 ⊗ · · · ⊗Ml satisfies (H 1), then M1, . . . , Ml satisfy (H 1).

Proof. Let n, n1, . . . , nl be the respective ranks of M,M1, . . . , Ml. Note that n= n1 · · · nl. Since
M =M1 ⊗ · · · ⊗Ml is pure isoclinic at 0 with slope µ=m/n, M1, . . . , Ml are pure isoclinic at
0 with respective slopes µ1, . . . , µl such that µ= µ1 + · · ·+ µl (see [Sau04, Théorème 2.3.1]).
For any i ∈ {1, . . . , l}, µi has the form mi/ni for some mi ∈ Z. The equalities m/n= µ=
µ1 + · · ·+ µl =m1/n1 + · · ·+ml/nl and n= n1 · · · nl, together with the fact that m is coprime
to n, imply that for any i ∈ {1, . . . , l}, mi is coprime to ni. 2

Lemma 18. Let M be an object of E(C(z),σq) which is of rank n and satisfies (H 1). Assume that
M ∼=M1 ⊗M2 for some objects M1 and M2 of E(C(z),σq) with respective ranks n1 > 1 and n2. If
M∨1
∼= U1 ⊗M1 for some rank-one object U1 of E(C(z),σq), then n1 = 2.

Proof. We have M∨ ∼=M∨1 ⊗M∨2 ∼= U1 ⊗M1 ⊗M∨2 . Lemma 17 ensures that both M1 and M2

satisfy (H 1). Denoting by µ1, µ2 and ν the respective slopes of M1, M2 and U1 at 0, we get that
the unique slope −µ1 − µ2 of M∨ at 0 is equal to the unique slope ν + µ1 − µ2 of U1 ⊗M1 ⊗M∨2
at 0. So 2µ1 =−ν ∈ Z (because U1 has rank one). Since M1 satisfies (H 1), we get n1 = 2. 2

This following result was (essentially) proved by van der Put and Singer in [vdPS97, § 1.2].
Following the referees’ suggestion, we shall give a sketch of the proof here.

Proposition 19. If (σqY =AY ) is an object of E ′(C(z),σq)
which is of rank n and has a connected

Galois group G, then there exists an object (σqY =BY ) of E ′(C(z),σq)
isomorphic to (σqY =AY )

such that B belongs to G(C(z)).

Proof. We keep, and specialize to our situation, the notation of [vdPS97, § 1.2]: let k = C(z),
φ= σq and C = C. The Galois group G can be seen as the group of k-automorphisms which
commute with φ of some Picard–Vessiot ring R over k of (σqY =AY ). We consider the algebraic
group Gk =G⊗C k in GLn;k. Also, we consider the reduced algebraic subset Z of GLn;k

corresponding to R. From [vdPS97, Theorem 1.13] it follows that Z/k has a natural structure of
G-torsor: the morphism Z ×k Gk→Gk ×k Gk given by (z, g) 7→ (zg, g) is an isomorphism. But
k = C(z) is a C1-field and G is connected, so [vdPS97, Corollary 1.18] and the discussion following
it ensure that Z/k is a trivial G-torsor. Therefore Z(k) is nonempty, and for U ∈ Z(k) we have
Z(k) = UG(k). We now use the τ -invariance of Z (the map τ is defined at the beginning of
[vdPS97, § 1.2] and the τ -invariance property is [vdPS97, Lemma 1.10]): since τZ(k) = Z(k),
we have τ(UG(k)) = UG(k), i.e. A−1φ(U)G(k) = UG(k) (where we have used the fact that
τ(UG(k)) =A−1φ(U)φG(k) =A−1φ(U)G(k)). Hence φ(U)−1AU ∈G(k). 2

Theorem 20 (Main theorem in the one-slope case). Let M be an object of E(C(z),σq) which is
of rank n, has a connected Galois group and satisfies (H 1). Then Gal(M, ω) is the image of∏l
i=1 GL(Cni) in

⊗l
i=1 std for some l ∈ N∗ and some pairwise coprime numbers n1, . . . , nl > 1

such that n= n1 · · · nl.

Proof. We set G= Gal(M, ω). Proposition 16 and [vdPR07, Example 5.6 in § 5.2] show that
the hypotheses of Theorem 9 are satisfied by G and hence that the derived subgroup G′
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of G is either the image of
∏l
i=1 SL(Cni) in

⊗l
i=1 std for some l ∈ N∗ and some pairwise

coprime numbers n1, n2, . . . , nl > 1 or the image of Sp(Cn1)×
∏l
i=2 SL(Cni) in

⊗l
i=1 std for

some l ∈ N∗ and some pairwise coprime numbers n1 > 4 even and n2, . . . , nl > 1 and that
G′ ⊂G⊂ C∗G′. Since det(M) is a rank-one irregular object of E(C(z),σq), its Galois group is
C∗, so G= C∗G′. Therefore, G is either the image of

∏l
i=1 GL(Cni) in

⊗l
i=1 std or the image

of C∗ Sp(Cn1)×
∏l
i=2 GL(Cni) in

⊗l
i=1 std. It remains to exclude the second case. Assume

to the contrary that G is C∗ Sp(Cn1)×
∏l
i=2 GL(Cni) in

⊗l
i=1 std. Using Proposition 19, we

would get M ∼=M1 ⊗ · · · ⊗Ml for some objects M1, . . . , Ml of E(C(z),σq), where M1 is such that
M∨1
∼= U1 ⊗M1 for some rank-one object U1 of E(C(z),σq). Lemma 18 would then imply that

n1 = 2. This is a contradiction. 2

Definition 21. An object M of E(C(z),σq) is ⊗-decomposable if there exist two objects M1 and
M2 of E(C(z),σq) of rank at least 2 such that M ∼=M1 ⊗M2.

Corollary 22. Let M be an object of E(C(z),σq) which is of rank n, has a connected Galois
group and satisfies (H 1). If M is ⊗-indecomposable, then Gal(M, ω) is GL(ω(M)).

Proof. This is a direct consequence of Theorem 20 and Proposition 19. 2

6. Main theorem in the two-slopes case

Lemma 23. Let M be an object of E(C(z),σq) of rank n> 3 satisfying (H 2). Then Gal(M, ω) is
neither a subgroup of C∗SO(ω(M)) nor a subgroup of C∗Sp(ω(M)) (for some bilinear forms).

Proof. Let H be either SO(ω(M)) or Sp(ω(M)) and set G= C∗H. Assume that Gal(M, ω) is
a subgroup of G. Let ρ be the representation of Gal(M, ω) corresponding to M by tannakian
duality. Let χ be the character of G defined, for any t ∈ C∗ and any A ∈H, by χ(tA) = t2. The
dual ρ∨ of ρ is conjugated to ρ⊗ (χ−1 ◦ ρ). Therefore, there exists a rank-one object U of 〈M〉
such that M∨ ∼= U ⊗M . But at 0 (see [Sau04, Théorème 2.3.1]), M∨ has two slopes, namely 0
with multiplicity n− r and −µ with multiplicity r, while U ⊗M has two slopes, namely ν with
multiplicity n− r and µ+ ν with multiplicity r where ν ∈ Z denotes the unique slope of U . The
only possibility is µ= 0, which gives a contradiction. 2

Theorem 24 (Main theorem in the two-slopes case). Let M be an irreducible object of
E(C(z),σq) which is of rank n, has a connected Galois group and satisfies (H 2). Then Gal(M, ω) =
GL(ω(M)).

Proof. The formal slopes decomposition [Sau04, Théorème 3.1.7] ensures that M̂ ∼= M̂0 ⊕ M̂µ,
where M̂0 is a regular singular object of E(C((z)),σq) with exponents in qR and M̂µ is a pure isoclinic
object of E(C((z)),σq) of slope µ and rank r. Proposition 16 ensures that M̂µ

∼= M̂q(r, m, a) for some
a ∈ C∗, so M̂ ∼= M̂0 ⊕ M̂q(r, m, a). Thus Gal(M, ω) contains, with respect to a suitable basis,
In−r ⊕ C∗Ir and In−r ⊕ diag(1, ζ, . . . , ζr−1) where ζ is a primitive rth root of 1 (a consequence
of applying [vdPR07, § 5] or [RS07, § 3.2] to [r]∗M̂ ∼= [r]∗M̂0

⊕
cr=a M̂qr(1, 0, c)⊗ M̂qr(1, m, 1)).

If r > 2, Theorem 2 implies that G⊂Gal(M, ω)⊂ C∗G with G= SL(ω(M)), SO(ω(M)) or
Sp(ω(M)). Note that the Galois group of det(M) is C∗ because det(M) is irregular of rank one,
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so Gal(M, ω) is C∗G. Lemma 23 leads to the conclusion. If r = 1, the result follows from
Theorem 10. 2

7. Some computations of Galois groups

7.1 Generalized q-hypergeometric equations with two slopes
We keep the notation of § 1 (and the hypothesis that r > s) for the generalized q-hypergeometric
operator with parameters a= (a1, . . . , ar) ∈ (qR)r, b= (b1, . . . , bs) ∈ (qR)s and λ ∈ C∗, and we
set

Hq(a; b; λ) =D(C(z),σq)/D(C(z),σq)Lq(a; b; λ).

If s > 0, then Hq(a; b; λ) satisfies (H 2) (its slopes at 0 are 0 with multiplicity s and 1/(r − s)
with multiplicity r − s). Theorem 24 leads to the following.

Theorem 25. The general linear group GL(Cr) is the unique connected algebraic group
occurring as the Galois group of some irreducible generalized q-hypergeometric module
Hq(a; b; λ) with parameters a= (a1, . . . , ar) ∈ (qR)r and b= (b1, . . . , bs) ∈ (qR)s with r > s > 0.

We now turn to explicit computations of q-hypergeometric Galois groups. For all i ∈
{1, . . . , r}, we denote by αi the unique element of R such that ai = qαi .

Theorem 26. Assume that s > 0, that βj − αi 6∈ Z for all (i, j) ∈ {1, . . . , r} × {1, . . . , s},
and that the algebraic group generated by diag(e2πiα1 , . . . , e2πiαr) is connected. Then
Gal(Hq(a; b; λ), ω) = GL(Cr).

Proof. Since, for all (i, j) ∈ {1, . . . , r} × {1, . . . , s}, βj − αi 6∈ Z, we have that Hq(a; b; λ) is
irreducible (using the same arguments as in [Roq11, § 5.1]). Moreover, Hq(a; b; λ) is regular
singular at ∞ with exponents a1, . . . , ar. It follows easily from [vdPS97, ch. 12] or [Sau03, § 2.2]
that if the algebraic group generated by diag(e2πiα1 , . . . , e2πiαr) is connected, then the local
formal Galois group of Hq(a; b; λ) at ∞ is connected; hence, by virtue of (the variant at ∞ of)
Corollary 12, Gal(Hq(a; b; λ), ω) is connected. Theorem 25 leads to the desired result. 2

For instance, the algebraic group generated by diag(e2πiα1 , . . . , e2πiαr) is connected if
a ∈

(
qZ)r or if α1, . . . , αr are Z-linearly independent.

7.2 q-Kloosterman equations
We retain the notation of § 1 for the q-Kloosterman operators and set

Klq(U, V ) =D(C(z),σq)/D(C(z),σq) Klq(U, V ).

Note that Klq(U, V ) is pure isoclinic at 0 with slope deg V/deg U . In particular, if deg U is
coprime to deg V , then Klq(U, V ) satisfies (H 1). Theorem 20 and Corollary 22 lead to the
following result.

Theorem 27. Let G be a connected algebraic group occurring as the Galois group of some
q-Kloosterman module Klq(U, V ) such that deg U is coprime to deg V . Then G is the image of∏l
i=1 GL(Cni) in

⊗l
i=1 std for some l ∈ N∗ and some pairwise coprime numbers n1, . . . , nl > 1

such that deg U = n1 · · · nl. If, moreover, Klq(U, V ) is ⊗-indecomposable, then G is GL(Cdeg U ).

We denote by c1, . . . , cdeg U the roots of Xu(U(X−1) + V (0)) ∈ C[X]. For all i ∈
{1, . . . , deg U}, we denote by (ui, αi) the unique element of U× R such that ci = uiq

αi .
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Theorem 28. If deg U is coprime to deg V and if the algebraic group generated by
diag(u1, . . . , udeg U ) and diag(e2πiα1 , . . . , e2πiαdeg U ) is connected, then Gal(Klq(U, V ), ω) is the

image of
∏l
i=1 GL(Cni) in

⊗l
i=1 std for some l ∈ N∗ and some pairwise coprime numbers

n1, . . . , nl > 1 such that deg U = n1 · · · nl. If, moreover, Klq(U, V ) is ⊗-indecomposable, then
Gal(Klq(U, V ), ω) is GL(Cdeg U ).

Proof. Note that Klq(U, V ) is regular singular at ∞ with exponents c1, . . . , cdeg U . It follows
easily from [vdPS97, ch. 12] or [Sau03, § 2.2] that if the algebraic group generated by
diag(u1, . . . , udeg U ) and diag(e2πiα1 , . . . , e2πiαdeg U ) is connected, then the local formal Galois
group of Klq(U, V ) at∞ is connected and hence, by virtue of (the variant at∞ of) Corollary 12,
Gal(Klq(U, V ), ω) is connected. Theorem 27 leads to the desired result. 2

Note that a q-Kloosterman module Klq(U, V ) with deg U coprime to deg V is not necessarily
⊗-indecomposable. For instance,

Klq(X6,−(1 + q−4X)(1 + q−3X)(1 + q−2X)(1 +X)2)
∼=Klq(X2,−(1 +X))⊗Klq(X3,−(1 +X)).

8. A ⊗-indecomposability criterion and application to q-Kloosterman operators
(including Hq(a; ∅; λ))

8.1 A ⊗-indecomposability criterion
Slopes theory leads to a simple proof of the ⊗-indecomposability of the Kloosterman differential
modules with bidegree (u, v) such that u is coprime to v; see [Kat87]. In contrast, we gave at
the end of § 7.2 an example of ⊗-decomposable q-Kloosterman module Klq(U, V ) with deg U
coprime to deg V . In this section, we propose an obstruction to ⊗-decomposability (Theorem 31
below) coming from residues at points in C∗ of intrinsic Birkhoff matrices. In [Roq11], we
used related ideas to obtain an analogue of the usual notion of monodromy for the generalized
q-hypergeometric equations.

We first work with q-difference systems.

Definition 29 (Property (Hq)). We say that an object (σqY =AY ) of E ′(C(z),σq)
of rank n

satisfies the condition (Hq) if:

(1) there exists z0 ∈ C∗ such that A is analytic at any point of qZz0, A(z0) has rank n− 1 and,
for all k ∈ Z∗, A(qkz0) ∈GLn(C);

(2) (σqY =AY ) is pure isoclinic at both 0 and ∞.

Lemma 30. Let (σqY =AY ) be an object of E ′(C(z),σq)
of rank n. If (σqY =AY ) is pure isoclinic

at 0 and ∞ with integral slopes denoted, respectively, by µ0 and µ∞, then:

(i) there exist A(0) ∈GLn(C) and F (0) ∈GLn(C({z})) such that F (0) is an isomorphism in
E ′(C((z)),σq)

from (σqY = zµ0A(0)Y ) to (σqY =AY ). Similarly, there exist A(∞) ∈GLn(C)

and F (∞) ∈GLn(C({z−1})) such that F (∞) is an isomorphism in E ′(C((z−1)),σqr )
from (σqY =

zµ∞A(∞)Y ) to (σqY =AY ).

If, moreover, (σqY =AY ) satisfies (Hq), then:

(ii) for any A(0), F (0), A(∞) and F (∞) satisfying the conditions of (i), we have, for z near z0,
(F (0))−1F (∞)(z) =H mod (z − z0)Mn(C{z − z0}) for some H ∈Mn(C) with rank n− 1.
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Proof. For (i), we refer to [RS07, § 2.2] and the references therein. We now prove that (ii) holds.
Since F (0) is an isomorphism from (σqY = zµ0A(0)Y ) to (σqY =AY ), we have, for z near 0,
F (0)(qz)zµ0A(0) =A(z)F (0)(z). Similarly, for z near∞, F (∞)(qz)zµ∞A(∞) =A(z)F (∞)(z). These
equations, together with the fact that F (0) ∈GLn(C({z})) and F (∞) ∈GLn(C({z−1})), show
that F (0) and F (∞) can be extended meromorphically to C and C∗, respectively, and that for all
m ∈ N∗ we have, over C∗,

(F (0))−1F (∞)(z) = z−mµ0q−(m(m−1)/2)µ0(A(0))−m(F (0))−1(qmz)A(qm−1z) · · ·A(z)
· A(q−1z) · · ·A(q−mz)F (∞)(q−mz)(A(∞))−mz−mµ∞q(m(m+1)/2)µ∞ .

Now the result follows easily from the facts that (F (0))−1 ∈GLn(C({z})), F (∞) ∈GLn(C
({z−1})),A(z) =A(z0) mod (z − z0)Mn(C{z − z0}) and, for any k ∈ Z∗, A(qkz) ∈GLn(C) +
(z − z0)Mn(C{z − z0}). 2

Theorem 31 (⊗-indecomposability criterion for systems). Let (σqY =AY ) be an object of
E ′(C(z),σq)

which satisfies (Hq). Then (σqY =AY ) is ⊗-indecomposable.

Proof. Assume to the contrary that (σqY =AY ) is ⊗-decomposable. Then there exist A1 ∈GLn1

(C(z)) and A2 ∈GLn2(C(z)) (n1, n2 > 1) such that (σqY =AY )∼= (σqY =A1Y )⊗ (σqY =A2Y ).
For further use, we denote by R ∈GLn(C(z)) an isomorphism from (σqY =A1Y )⊗ (σqY =
A2Y ) to (σqY =AY ). Since (σqY =AY )∼= (σqY =A1Y )⊗ (σqY =A2Y ) is pure isoclinic, both
(σqY =A1Y ) and (σqY =A2Y ) are pure isoclinic (see [Sau04, Théorème 2.3.1]). Let N ∈ N∗
be such that [N ]∗(σqY =A1Y )∼= (σqY = [N ]∗A1Y ), [N ]∗(σqY =A2Y )∼= (σqY = [N ]∗A1Y ) and
[N ]∗(σqY =AY )∼= (σqY = [N ]∗A1Y )⊗ (σqY = [N ]∗A2Y ) are all pure isoclinic with integral
slopes. Lemma 30 ensures that there are µ1;0, µ1;∞, µ2;0, µ1;∞ ∈ Z such that there exist:

• A(0)
1 ∈GLn1(C) and F (0)

1 ∈GLn1(C({zN})) such that F (0)
1 is an isomorphism from σqNY =

z
µ1;0

N A
(0)
1 Y to σqNY = [N ]∗A1Y ;

• A(∞)
1 ∈GLn1(C) and F

(∞)
1 ∈GLn1(C({z−1

N })) such that F
(∞)
1 is an isomorphism from

σqNY = z
µ1;∞
N A

(∞)
1 Y to σqNY = [N ]∗A1Y ;

• A(0)
2 ∈GLn2(C) and F (0)

2 ∈GLn2(C({zN})) such that F (0)
2 is an isomorphism from σqNY =

z
µ2;0

N A
(0)
2 Y to σqNY = [N ]∗A2Y ;

• A(∞)
2 ∈GLn2(C) and F

(∞)
2 ∈GLn2(C({z−1

N })) such that F
(∞)
2 is an isomorphism from

σqNY = z
µ2;∞
N A

(∞)
2 Y to σqNY = [N ]∗A2Y .

So F (0) = ([N ]∗R)(F (0)
1 ⊗ F (0)

2 ) ∈GLn(C({zN})) is an isomorphism from (σqNY = z
µ1;0

N A
(0)
1 Y )⊗

(σqNY = z
µ2;0

N A
(0)
2 Y ) to (σqNY = [N ]∗AY ) and F (∞) = ([N ]∗R)(F (∞)

1 ⊗ F (∞)
2 ) ∈GLn(C({z−1

N }))
is an isomorphism from (σqNY = z

µ1;∞
N A

(∞)
1 Y )⊗ (σqNY = z

µ2;∞
N A

(∞)
2 Y ) to (σqNY = [N ]∗AY ). It

is easily seen that (σqNY = [N ]∗AY ) satisfies (HqN ). So Lemma 30 ensures that, near some
z0 ∈ C∗, (F (0))−1F (∞)(zN ) =H mod (zN − z0)Mn(C{zN − z0}) for some H ∈Mn(C) with rank
n− 1. Since (F (0))−1F (∞) = (F (0)

1 )−1F
(∞)
1 ⊗ (F (0)

2 )−1F
(∞)
2 , H has the form H1 ⊗H2 for some

H1 ∈Mn1(C) and H2 ∈Mn2(C). Therefore the rank of H is the product of the ranks of H1

and H2. This implies that either n1 = 1 or n2 = 1, which is a contradiction. 2
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Let us now switch to operators. Recall that the q-difference system (σqY =AY ) associated
to L=

∑n
k=0 an−kσ

k
q ∈ D(C(z),σq) with a0an 6= 0 is given by:

A=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

−an
a0

−an−1

a0
−an−2

a0
· · · −a2

a0
−a1

a0


∈GLn(C(z)).

Theorem 32 (⊗-indecomposability criterion for operators). Assume that L=
∑n

k=0 an−kσ
k
q ∈

D(C(z),σq) with a0an 6= 0 is such that:

(1) there exists z0 ∈ C∗ such that an/a0, . . . , a1/a0 are analytic at any point of qZz0,
an/a0(z0) = 0 and, for all k ∈ Z∗, an/a0(qkz0) 6= 0;

(2) L is pure isoclinic at both 0 and ∞.

Then L is ⊗-indecomposable.

Proof. Since L is ⊗-indecomposable if and only if the associated q-difference system (σqY =AY )
is ⊗-indecomposable, the result is an immediate consequence of Theorem 31. 2

8.2 Application to q-Kloosterman operators (including Hq(a; ∅; λ))
We keep the notation of § 7.2.

Theorem 33. The general linear group GL(Cdeg U ) is the unique connected algebraic group
occurring as the Galois group of some q-Kloosterman module Klq(U, V ) such that deg U is
coprime to deg V and such that there exists z0 ∈ C∗ satisfying V (z0) = 0 and, for all k ∈ Z∗,
V (qkz0) 6= 0.

Proof. This is an immediate consequence of Theorems 32 and 27. 2

Corollary 34. The general linear group GL(Cr) is the unique connected algebraic group
occurring as the Galois group of some confluent generalized q-hypergeometric moduleHq(a; ∅; λ).

Proof. This is a special case of Theorem 33, since Lq(a; ∅; λ) = z Klq(−λ
∏r
i=1(aiX − 1) +

(−1)rλ,−(−1)rλ+X). 2

In the following result, c1, . . . , cdeg U denote the complex roots of Xdeg U (U(X−1) + V (0)) ∈
C[X] and, for all i ∈ {1, . . . , deg U}, (ui, αi) denotes the unique element of U× R such that
ci = uiq

αi .

Theorem 35. Assume that deg U is coprime to deg V , that the algebraic group generated by
diag(u1, . . . , udeg U ) and diag(e2πiα1 , . . . , e2πiαdeg U ) is connected, and that there exists z0 ∈ C∗
such that V (z0) = 0 and, for all k ∈ Z∗, V (qkz0) 6= 0. Then, Gal(Klq(U, V ), ω) is GL(Cdeg U ).

Proof. This is an immediate consequence of Theorems 32 and 28. 2

In the following result, for all i ∈ {1, . . . , r}, (ui, αi) denotes the unique element of U× R
such that ai = uiq

αi .
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Theorem 36. If the algebraic group generated by diag(u1, . . . , un) and diag(e2πiα1 , . . . , e2πiαr)
is connected, then Gal(Hq(a; ∅; λ), ω) is GL(Cr).

Proof. This is a special case of Theorem 35, since Lq(a; ∅; λ) = z Klq(−λ
∏r
i=1(aiX − 1) +

(−1)rλ,−(−1)rλ+X). 2

8.3 Equations satisfying (H 1) with Galois group
⊗l

i=1 GL(Cni)
Theorem 37. For any l ∈ N∗, given any pairwise coprime numbers n1, . . . , nl > 1, the image
of
∏l
i=1 GL(Cni) in

⊗l
i=1 std occurs as the Galois group of some object of E(C(z),σq) which is of

rank n= n1 · · · nl and satisfies (H 1).

Proof. Theorem 36 ensures that, for any i ∈ {1, . . . , l}, there exists an object Mi of E(C(z),σq)

of rank ni which satisfies (H 1) and whose Galois group is GL(Cni). It is easily seen that⊗l
i=1 Mi satisfies (H 1). For any i ∈ {1, . . . , l}, let ρi be the representation of Gal(

⊕l
i=1 Mi, ω)

corresponding to Mi by tannakian duality. Then, for any i ∈ {1, . . . , l}, the image of ρi
is GL(Cni) and

⊕l
i=1 ρi is a faithful representation (because it is the representation of

Gal(
⊕l

i=1 Mi, ω) corresponding to
⊕l

i=1 Mi itself). So the image of
⊗l

i=1 ρi coincides with the
image of

∏l
i=1 GL(Cni) in

⊗l
i=1 std, by virtue of the Goursat–Kolchin–Ribet theorem [Kat90,

Proposition 1.8.2]. 2

9. More computations

9.1 Non-q-Kummer-induced equations in the two-slopes case
Theorem 38. Let M be an irreducible object of E(C(z),σq) which is of rank n and satisfies (H 2)
with r coprime to n. Assume that M is regular singular at ∞ with exponents c1, . . . , cn ∈ qR. If
the list c1, . . . , cn is not q-Kummer induced, then Gal(M, ω) = GL(ω(M)).

Proof. We let G= Gal(M, ω). Proposition 15 ensures that G◦, and hence its Lie algebra g, acts
irreducibly on ω(M). Moreover, the proof of Theorem 24 shows that G◦ contains, with respect
to some basis, In−r ⊕ C∗Ir. So g contains, with respect to some basis, 0n−r ⊕ CIr and hence
contains an element having two eigenvalues with relatively prime multiplicities. According to
Serre [Ser67, § 4], this implies that g is either sl(ω(M)) or gl(ω(M)). Since det(M) is irregular
of rank one, its Galois group is C∗. So G= GL(ω(M)). 2

An immediate application is the following (see § 7.1 for Hq(a; b; λ)).

Theorem 39. If a1, . . . , ar ∈ qR is not q-Kummer induced and if r is coprime to s > 0, then
Gal(Hq(a; b; λ), ω) = GL(Cr).

9.2 Another example of a q-Kloosterman equation
The proof of the following ⊗-indecomposability criterion is left to the reader.

Proposition 40. Let M be an object of E(C(z),σq) of rank n. Assume that M is regular singular

at ∞ with exponents c1, . . . , cn in qR. If M is ⊗-decomposable, then there exists a divisor
1< d < n of n such that c1, . . . , cn mod qZ is of the form (c′ic

′′
j ; 16 i6 d, 16 j 6 n/d) mod qZ

for some c′1, . . . , c
′
d ∈ C∗ and some c′′1, . . . , c

′′
n/d ∈ C∗.

We now give an illustration of the previous result. Note that we cannot apply Theorem 35
to Klq((q1/2 −X)2(1−X)n−2 − q, V ) where V ∈ C[X] is such that V (0) = q. However, we can
obtain the following result.
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Proposition 41. Let us consider V ∈ q +XC[X]. Then, for any odd integer n> 2 coprime to
deg V , the Galois group of Klq((q1/2 −X)2(1−X)n−2 − q, V ) is GL(Cn).

Proof. Recall (see § 7.2) that M =Klq((q1/2 −X)2(1−X)n−2 − q, V ) is pure isoclinic at 0
with slope deg V/n and is regular singular at ∞, having exponents q1/2 with multiplicity 2
and 1 with multiplicity n− 2. Since n is odd, Corollary 13 ensures that the Galois group of M
is connected. It is easily seen that M is ⊗-indecomposable by using Proposition 40. Theorem 27
leads to the conclusion. 2
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155–188 Journées de Géométrie Algébrique de Rennes (Rennes, 1978), vol. III.

vdPR07 M. van der Put and M. Reversat, Galois theory of q-difference equations, Ann. Fac. Sci. Toulouse
Math. (6) 16 (2007), 665–718.

vdPS97 M. van der Put and M. F. Singer, Galois theory of difference equations, Lecture Notes in
Mathematics, vol. 1666 (Springer, Berlin, 1997).

Julien Roques Julien.Roques@ujf-grenoble.fr
Institut Fourier, Université Grenoble 1, UMR CNRS 5582,
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