Abstracts of Australasian PhD theses
 Root-theory of involutive

 Banach-Lie algebras

 Banach-Lie algebras}

Kristine Patricia Hanscombe

The structure and classification theory of finite dimensional Lie algebras has been extended to a class of complex involutive Banach-Lie algebras of infinite dimension.

A complex Banach-Lie algebra E with involution * is called a symmetric Lie algebra if for all self adjoint $x \in E, \mid \exp (i t$ ad $x) \mid=1$ for all $t \in R$, and is called an S-algebra if, in addition, it has no proper abelian ideals nor abelian quotients. A pair (E, M) consisting of an S-algebra E and a self adjoint maximal abelian sub-algebra $M \subset E$ is called chromatic if the orbits in E under the action of the group $G=\left\{\exp (i\right.$ ad $\left.h): h \in M, h=h^{*}\right\}$ are relatively compact. An S-algebra E is spanned by the root spaces with respect to M if and only if (E, M) is a chromatic pair. All semisimple complex finite dimensional Lie algebras equipped with a compact real form, all semisimple L^{*}-algebras, and all completions of

$$
\operatorname{sl}(H)=\{T \in B(H): \operatorname{rank} T<\infty, \text { trace } T=0, H \text { a Hilbert space }\}
$$

in uniform cross-norms are chromatic S-algebras.
The root theory for chromatic pairs is completely analogous to that for semisimple complex finite dimensional Lie algebras. A chromatic pair (E, M) is algebraically determined by its root system, and (E, M) is simple if and only if its root system is indecomposable. The simple

[^0]chromatic pairs have been classified, and have been found to fall into the four big Dynkin classes A, B, C, D.

[^0]: Received 28 March 1977. Thesis submitted to the University of Western Australia, August 1976. Degree approved, February 1977. Supervisor: Professor J.P.O. Silberstein.

