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Abstract

Despite a number of studies reporting glacier extent changes and their response to climate change
over the eastern Tien Shan, glacier mass-balance changes over multiple decades are still not well
reconstructed. Here, glacier mass budgets on the Karlik Range, easternmost Tien Shan during the
time spans of 1972–2000 and 2000–2015 are quantified using digital elevation models recon-
structed from topographic maps, SRTM X-band radar data and ASTER images. The results
exhibit significant glacier mass loss in the Karlik Range for the two time spans, with a mean
mass loss of −0.19 ± 0.08 m w.e. a−1 for the 1972–2000 period and −0.45 ± 0.17 mw.e. a−1 for
the 2000–2015 period. The doubling of mass loss over the latter period suggests an acceleration
of glacier mass loss in the early 21st century. The accelerated mass loss is associated with regional
warming whereas the decline in annual precipitation is not significant.

1. Introduction

As one of the largest mountain systems of high mountain Asia, Tien Shan (39–46° N, 69–95°
E) stretches ∼2500 km from west-southwest to east-northeast. It holds one of the highest con-
centrations of glaciers at the middle and low latitudes of the world, and is known as ‘central
Asian Water Tower’. Glaciers serve as not only a reliable and unequivocal climate indicator,
but also as an indispensable water resource for the domestic use, agricultural irrigation, hydro-
power and ecology in Chinese Xinjiang, Kyrgyzstan and nearby countries with large popula-
tions (e.g. Pritchard, 2019). In response to climatic warming in recent decades, these glaciers
are experiencing wide-ranging mass loss, which affects the downstream seasonal runoff, and
increases the risk of proglacial lake outbursts (e.g. Watson and others, 2019). These issues
have widespread concerns among the public and policy-makers. Therefore, quantitative esti-
mation of glacier mass changes is of vital importance for water management, disaster risk
reduction and making policy on the adaptation of environmental change and local
development.

Based on the characteristics of climate, topography and drainage basin, Tien Shan is gen-
erally divided into four sub-regions, i.e. western, northern, central and eastern Tien Shan.
There are 10 778 glaciers with a coverage of 13 566.6 km2 (Zhang and others, 2019). Their spa-
tial distribution is uneven, among which glaciers in central Tien Shan are largest in area,
accounting for 59.3% of glacier area over the whole Tien Shan, followed by western Tien
Shan, whereas the smallest glacierized area is found in the eastern Tien Shan (Chen and others,
2016). During the past half-century, significant warming has caused widespread retreat of
alpine glaciers (Haeberli and others, 2007; Farinotti and others, 2015). In accord with glaciers
in other regions of the world, glaciers in the Tien Shan have been retreating since the mid-19th
century (e.g. Solomina and others, 2004; Bolch and others, 2009; Narama and others, 2010),
resulting in a decrease of glacier area and mass loss of 18 and 27% for the 1961–2012 period
(Farinotti and others, 2015). At the regional scale, glacier behavior is usually heterogeneous.
Between the 1960s and 2000, 20% shrinkage in the extent of glaciers was observed over the
western Tien Shan, 15.1% over the central Tien Shan, and 13 and 3.1% over the northern
and eastern Tien Shan, respectively (Chen and others, 2016). In the central Tien Shan,
decrease in the area and mass from east to west and from the inner to the outer ranges has
been also documented between the 1970s and 2000s (e.g. Pieczonka and Bolch, 2015).
Although a lot of effort has been made to quantify glacier distribution and glacier changes
over the Tien Shan, considerable gaps in knowledge still exist with respect to ice loss rates
and related climate drivers on different timescales, especially for the eastern Tien Shan.

To investigate the temporal changes in the glacier mass, continuous glacier mass-balance
measurements are generally required by means of traditional glaciological methods of snow
pits and ablation stakes. However, these are only available for a few select glaciers over a lim-
ited number of years due to extremely harsh conditions and logistic constraints (Paterson,
1994). In recent decades, substantial advances have been made in geodetic mass-balance mea-
surements, including improved resolution and spatial coverage, to estimate glacier surface ele-
vation and mass changes over various time spans. The advantage of this method is to calculate
the regionally averaged glacier mass balance over the several years or decades through
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multi-temporal digital elevation models (DEMs). Here, we focus
on the Karlik Range in the easternmost Tien Shan, where several
studies have revealed significant shrinkage in glacier extent during
the past 40 years, and an acceleration of shrinkage since the 1990s
(Wang and others, 2009). However, a comprehensive estimate of
changes in glacier mass balance on different timescales is lacking.
Thus, based on the available topographic maps, ASTER DEM and
SRTM DEM, our objective is to quantify the surface-elevation and
mass changes of the glaciers on the Karlik Range between 1972
and 2015. We also investigated several climate drivers related to
the observed changes.

2. Study area

Karlik Range is located on the easternmost Tien Shan and sur-
rounded by deserts such as the Gobi (Fig. 1). Its highest peak is
Tomurti Peak at an elevation of 4886 m a.s.l. Largely controlled
by the westerlies and Mongolian-Siberian high, the climate is con-
tinental, with dominant precipitation occurring in summer (May–
September), and with cold and dry winter (Wang and others,
1986). Records from the Yiwu Weather Station on the north
slope of Karlik Range indicate that only 8% of annual

precipitation falls in winter (Luo and others, 1999). A unique gla-
cial field with nearly free of debris is present over the Karlik
Range. There are different types of the glaciers, including flat-top,
valley, hanging and cirque glaciers. According to the second
Chinese Glacier Inventory by Landsat Thematic Mapper (TM)
and Enhanced Thematic Mapper Plus (ETM+) images during
2006–2011 (Guo and others, 2015), there are 146 glaciers covering
an area of 109.2 km2. The glaciers with an area of <1 km2 are
dominant, and the largest one has an area of only 6.6 km2.
Their equilibrium-line altitude (ELA) ranges from 3900 to 4000
m a.s.l.

3. Data and methods

3.1 Data

3.1.1 Topographic maps
Four topographic maps at a scale of 1 : 50 000 generated using aer-
ial stereo pairs from July 1972 were acquired by the Chinese
Military Geodetic Service (Table 1) . These maps were projected
to the Beijing Geodetic Coordinate System 1954 (BJ54) and the
Yellow Sea 1956 datum (the mean sea level at the Qingdao
Tidal Observatory in 1956). A seven-parameter transformation

Fig. 1. (a) Location of the study area. Sub-regions of Tien Shan: (I) western Tien Shan, (II) central Tien Shan, (III) northern Tien Shan and (IV) eastern Tien Shan. (b)
Glacier field of the Karlik Range, seen on the Landsat ETM+ image on 17 September 2001.

2 Zhujun Wan and others

https://doi.org/10.1017/jog.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2020.76


was used to convert the BJ54 and Yellow Sea 1956 datum to the
World Geodetic System 1984 (WGS1984) and Earth Gravity
Model 1996 (EGM96). The contours and points digitized from
these maps are used to establish a DEM at a resolution of 30 m,
called TOPO-DEM.

According to the Standardization Administration of the
People’s Republic of China (General Administration of Quality
Supervision Inspection and Quarantine, 2008), the nominal
accuracy of topographic maps in verticality is ±3 m over flat
regions (<2° slopes), ±5 m over hilly regions (2–6° slopes), ±8 m
over mountainous regions (slopes of 6–25°) and ±14 m over
high mountain regions (slopes of >25°). The accuracies were
determined by comparing with measured elevations of ground
control points. The average slope of glacier fields in the Karlik
Range is 15.3°; thus, we consider the vertical accuracy of TOPO
DEM to be ±8 m.

3.1.2 SRTM DEM and ASTER DEM
In this study, we use the Shuttle Radar Topography Mission
(SRTM) DEMs (Table 1), which are generated by X-band and
C-band synthetic aperture radar data with swath widths of 225
and 45 km, respectively (Farr and others, 2007). The SRTM
data have been collected on 11 February 2000 and we consider
that the SRTM DEM for the glaciers on Karlik Range also covers
this temporal range. The C-band SRTM DEM covers an approxi-
mately global surface from 56° S to 60° N latitudes. This DEM is
thought to represent the glacier surface at the end of the ablation
period of 1999, because C band radar penetrates into the winter
snowpack (Rignot and others, 2001). Due to the narrower swath
of antennas in the X-band sensor, the resulting DEM only
accounts for approximately half of the C-band SRTM DEM
extent. The C-band SRTM DEM has an initial spatial resolution
of 3 arcsec (Rodriguez and others, 2006). On 24 September
2014, 1 arcsec (∼30 m) global C-band SRTM DEM became avail-
able. Its coordinate system is WGS84, defined as 1996 Earth
Gravitational Model (EGM96) geoid. The X-band SRTM DEM
has a spatial resolution of 1 arcsec and follows the WGS84 ellips-
oid vertical datum. The nominal absolute elevation accuracy of
SRTM data is ±16 m at the 90% confidence level, equivalent to
a root mean square error of ∼10 m.

C-band radar penetration of SRTM into snow and ice can
reach up to 10 m in the accumulation area of glaciers (Dall and
others, 2001; Rignot and others, 2001). Because of the narrower
wavelength of X-band radar, it penetrates snow and ice to shal-
lower depth than that of the C-band; therefore, it is usually
neglected for glacier mass-balance estimates. Fortunately, the
X-band DEM covers >95% of glaciers in the Karlik Range; thus,
this DEM is used to assess glacier mass balance in this study.
The void-filled version 4.1 SRTM dataset (SRTM4.1), which has
a resolution of 3 arcsec (Jarvis and others, 2008) and was pro-
duced by the CGIAR Consortium for Spatial Information using
the original SRTM3 data (USGS, 2006), is also used as a reference
to correct the X-band SRTM DEM, TOPO-DEM and ASTER
DEM. A MATLAB-geoid height program is used to convert the
vertical reference datum of the SRTM X-band DEM to the
EGM96 geoid. This program uses the EGM96 Geopotential
Model and correction coefficients to calculate point geoid undu-
lations with respect to the WGS84 ellipsoid at any given latitude
and longitude by spherical harmonic synthesis. The EGM96
Geopotential Model uses a 15-min grid of point values in the tide-
free system to a degree and order 360. The uncertainty in the con-
version based on this model is estimated to be 0.01 m (https://
www.mathworks.com/help/aerotbx/ug/geoidheight.html), which
is negligible in the estimate of glacier elevation changes.

The Advanced Space borne Thermal Emission and Reflection
Radiometer (ASTER) is a multispectral imager that was launched

on board Terra spacecraft of the National Aeronautics and Space
Administration (NASA) in December 1999. It contains three sub-
systems: a visible and near-infrared telescope (VNIR), a shortwave
infrared (SWIR) sensor and a thermal infrared (TIR) facility, at
resolutions of 15, 30 and 90 m, respectively. The VNIR subsystem
consists of two independent telescopes that produce stereo images
for creating DEMs. The 3N (nadir) and 3B (backward) bands of
ASTER Level 1A images are used to generate the ASTER DEM
(AST14 DEM) by the Land Processes Distributed Active
Archive Center (LP DAAC) based on SilcAst software.
AST14DEM does not contain data gaps and has an estimated ver-
tical accuracy of 10–20 m (Nuth and others, 2011). AST14DEM is
geodetically referenced to the WGS84/EGM96 geoid. After care-
fully checking the quality of the ASTER images (no clouds and
minimum snow cover) used to produce AST14DEMs, we choose
two AST14DEMs tiles obtained on 13 and 24 August 2015 for the
glacier mass change evaluation (Table 1).

3.2 Methods

3.2.1 DEM co-registration and terrain curvature corrections
Before we calculated the surface elevation changes based on DEM
differencing, a 3-D co-registration was necessary to minimize the
biases caused by the horizontal and vertical offsets between the
DEMs in evaluation. As Nuth and Kääb (2011) noted, the rela-
tionship between the elevation difference and topographic slope
and aspect can be quantified using the following equations:

dH
tan (a)

= a cos (b−F)+ c (1)

c = dH
tan (a)

(2)

X = a× sin (b) (3)

Y = a× cos (b) (4)

Z = c× tan (a) (5)

where α and Φ are the topographic slope and aspect, respectively;
dH is the elevation difference of the ice-free areas; dH is the over-
all elevation difference, representing the vertical bias and a, b and
c are the regression parameters, determined using least square
optimization. X, Y and Z stand for the horizontal shift in the
X-direction, Y-direction and mean vertical bias,
respectively (Table 2).

Before co-registration, all DEMs were projected in the UTM
Zone 46 North projection and resampled to the same cell size
of 30 m resolution. Then, SRTM4.1 was used as the no-glacier
reference to correct the horizontal and vertical shifts in the
X-band SRTM DEM, TOPO-DEM and ASTER DEM datasets
(Fig. S1). Offsets on the stable non-glacierized terrain were calcu-
lated by a minimum of the standard deviation (SD) of the eleva-
tion difference (Berthier and others, 2007). When masking out
the stable terrain for co-registration, the areas with slope angles
of <5° were eliminated, following the approach of Wang and
others (2018).

Gardelle and others (2013) suggested that differences in the
original spatial resolution of DEMs may lead to altitude-
dependent vertical biases, which exhibit a robust relationship
with the terrain maximum curvature. Furthermore, the resulting
vertical biases consistently exist, whether or not the terrain is
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covered with glaciers. Therefore, we used this relationship from
the ice-free terrain to correct the biases in the terrains covered
by glaciers.

3.2.2 Glacier polygons and geodetic mass-balance calculation
To quantify the glacier mass balance over different time spans, the
corresponding glacier extents were delineated. We visually inter-
preted the glacier boundaries from 1972 based on the topographic
maps corrected by aerial images. The resulting glacier boundaries
were further verified using three Landsat Multispectral Scanner
images from August and September 1977 and SRTM4.1 data.
The polygons delineating glacier extents in 2000 were determined
using a combination of Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) imagery from 2001,
with SRTM4.1. Landsat 8 and ASTER images (Table 1) were
used to delineate the glacier extents in 2015. To ensure the clarity
of the glacier boundary and reduce the false photointerpretation
of glaciers, images with the minimal seasonal snow and no
cloud coverage were selected. When manually delineating glacier
boundaries, the accuracy of all photo interpretations was bound
to the minimum of a single pixel.

To minimize error in the elevation change calculation, outlier
filtering was performed before the glacier surface elevation
changes were calculated. First, elevation changes of >100 m in
the glacier zones below the ELA and elevation increases of >50
m above the ELA likely result from stereo-matching errors caused
by cloud cover or a low contrast of radiometry. Thus, these data
were defined as outliers and were not included in the elevation
change assessment. Second, the pixels were regarded as outliers
if their elevation change values were not within ±3σ in each
100 m altitude bin (Gardelle and others, 2013). The DEM eleva-
tion uncertainties usually increase as the slope angle increases,
especially on mountain crests (>30° slope). As suggested by
Pieczonka and others (2011), pixels with slopes >30° were
excluded. These glaciers are small and their slope angles are rela-
tively high within the accumulation zone. Several unrealistic inter-
polation over data gaps may occur when using topographic maps
derived from stereo photogrammetry, often in low-contrast accu-
mulation zones. Here, following Holzer and others (2015), we
excluded pixels with values outside the 30 and 68% elevation
change quantiles of the accumulation zone for each glacier.

There are a number of methods for filling in missing elevation
change data of glaciers, such as linearly interpolating elevation
differences, using the mean difference of the elevation bin, apply-
ing a polynomial fit of the elevation change by the elevation bin,
and combining glacier hypsometry with the curve. According to
McNabb and others (2019), among the void-filling methods,
using linear interpolation of elevation changes and local mean
hypsometric methods perform best and result in differences
from the non-void filled elevation change estimates of <1%. We
used the local mean hypsometric method to fill the voids and
the missing elevations were assigned from the mean value of
the corresponding 100-m elevation bin.

To estimate the mass balance of an individual glacier, we first
calculated its volume change by multiplying each grid pixel eleva-
tion change value with the corresponding pixel area (the reso-
lution of the DEMs) in the glacier polygon, and then summing
these values. Then, the variation in the glacier surface elevation
was determined by dividing the calculated glacier volume changes
by the area of the glacier. Finally, we used an average ice-firn dens-
ity of 850 ± 60 kgm−3 (Huss, 2013) to convert the glacier elevation
change to glacier geodetic mass balance in units of m w.e. a−1.

3.2.3 Uncertainty assessment
Systematic and random uncertainties in the glacier elevation
changes (UΔh) were estimated using the SD of the averaged Ta
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elevation change (STDh), the number of measurements (consider-
ing spatial autocorrelation) from non-glacierized terrain (e.g.
Nuth and Kääb, 2011; Paul and others, 2015) and the averaged
absolute difference (AAD) between the median elevation change
on and off-glacier (Berthier and Brun, 2019) in Eqn (6):

UDh = STDh�����
Neff

√ + AAD (6)

where Neff is the number of independent pixels measurements.
Because the gridpoints have strong spatial autocorrelation, the
influence of spatial autocorrelation should be removed in the cal-
culation. Neff was estimated by the following formula:

Neff = P × Nt

2d
(7)

where Nt is the total number of pixels from stable areas; P is the
pixel resolution and d is the distance of spatial autocorrelation. As
suggested by Koblet and others (2010) and Bolch and others
(2011), the spatial autocorrelation of gridpoints from 20 pixels
is negligible. In this study, the spatial autocorrelation distance
was considered to be 600 m, which was a conservative value deter-
mined by semivariogram analyses over mountainous regions
(Rolstad and others, 2009; Maurer and others, 2016; Brun and
others, 2017).

To account for the errors introduced when filling the elevation
values by extrapolation, the uncertainty of extrapolation (Ue) was
also calculated. Following Maurer and others (2016) and Maurer
and others (2019), the maximum of the SDs of glacial elevation
change in any 100 m bin were regarded to be Ue.

The glacier boundary errors in the estimation of changes in
glacier thickness cannot be negligible. The uncertainty of the gla-
cier extent in this study was based on the formula proposed by
Braun and others (2019):

Ua = P/A
P/A(Paul et al.)

× 0.03 (8)

where Ua is defined as the error of the glacier area and P/A is the
ratio between the perimeter and area. Paul and others (2013) ana-
lyzed the accuracy of the remote-sensing image to extract the

glacier boundary and found an area ratio parameter P/
A(Paul et al.) of 5.03 km

−1; therefore, this parameter was applied
to the estimation of uncertainty in glacier areas by Braun and
others (2019). Huss and others (2013) estimated the uncertainty
in the ice density to be 60 kg m−3, which was also included in
the overall uncertainty estimate.

The total uncertainty in the glacier mass balance (U) was esti-
mated using Eqn (9), which accounts for systematic and random
uncertainties in glacier elevation change (UΔh), the extrapolation
uncertainty (Ue), the area uncertainty (Ua) and the ice density
error (Ud):

U = DM

×
���������������������������������������������������������
(UDh/Dh)

2 + (Ue/
�����
Neff

√
)
2
/Dh2 + (Ua/a)

2 + (Ud/d)
2

√

(9)

where ΔM represents the mass-balance estimate, Δh is the esti-
mated elevation change, a is the glacier area and d is the ice dens-
ity. The total uncertainty in the glacier mass balance was reported
at ±1σ (standard error of the average).

4. Results

Glaciers in the Karlik Range experienced significant surface low-
ering during the past 40 years. For the entire study area, the mean
glacier elevation change is estimated to be −0.22 ± 0.08 m a−1

from 1972 to 2000, and −0.52 ± 0.20 m a−1 for the 2000–2015
period (Table 3), which results in annual mass loss rates of
0.19 ± 0.08 m w.e. a−1 over 1972–2000 and 0.45 ± 0.17 m w.e. a−1

over 2000–2015. This reveals accelerated mass loss in the early
21st century, compared to that in 1972–2000.

The DEM differencing for the three time spans 1972–2000,
2000–2015 and 1972–2015 shows spatially and temporally hetero-
geneous change in glacier surface elevation in the Karlik Range
(Figs 2 and 3). Larger ice surface lowering is mainly observed in
the lower part of the ablation zone, whereas smaller ice thinning
is generally observed at higher elevations. During 1972–2000,
∼79% of the glaciers’ surface lowered. Over 2000–2015, glacier
thinning is observed in almost all glacier gridcells, and the thin-
ning rates are generally larger compared to those in 1972–2000.
The annual mean mass loss rate of north facing glaciers (−0.37

Table 2. The offsets in X, Y and Z directions of the DEM dataset and the uncertainty in DEMs before and after co-registration

Offsets in X, Y and Z directions Before co-registration After co-registration

X
(m)

Y
(m)

Z
(m)

dh
(m)

SD
(m)

dh
(m)

SD
(m)

TOPO-DEM 9.2 44.7 −3.8 −10.5 32.4 −4.5 19.4
SRTM DEM −9.3 35.6 −3.2 −5.1 30.0 −3.4 27.5
ASTER DEM 0.3 56.7 8.6 4.0 41.0 8.4 37.7

SD stands for standard deviation and dh denotes mean bias.

Table 3. Glacier elevation change and mass balance for the Karlik Range during 1972–2000, 2000–2015 and 1972–2015 periods

Period

Elevation change
(m a–1)

Mass balance
(m w.e. a–1)

North-facing glaciers South-facing glaciers Overall North-facing glaciers South-facing glaciers Overall

1972–2000 –0.43 ± 0.08 –0.22 ± 0.08 –0.22 ± 0.08 –0.37 ± 0.08 –0.18 ± 0.08 –0.19 ± 0.08
2000–2015 –0.61 ± 0.20 –0.65 ± 0.20 –0.52 ± 0.20 –0.52 ± 0.17 –0.56 ± 0.17 –0.45 ± 0.17
1972–2015 –0.45 ± 0.07 –0.28 ± 0.07 –0.30 ± 0.07 –0.38 ± 0.06 –0.24 ± 0.06 –0.26 ± 0.06

The uncertainty was ±1σ of total uncertainty.
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± 0.08 m w.e. a−1) is double that of south facing glaciers (−0.18 ±
0.08 m w.e. a−1) for the 1972–2000 period (Table 3). However,
between 2000 and 2015, the mean mass loss rate of north facing
glaciers (−0.52 ± 0.17 m w.e. a−1) is lower than that of south
facing glaciers (−0.56 ± 0.17 m w.e. a−1).

Large positive elevation change values (>4 m a−1) occur in sev-
eral grid pixels near the mountain ridges, over several parts of gla-
cier margins and steep faces. Glacier thickening in these regions is
likely related to DEM artifacts, sliding or avalanches, and so on,
but we can ignore their impacts on the elevation change estimates
due to their minor spatial coverage (<1%).

The altitudinal distribution of rates of glacier elevation changes
in 100 m elevation bins, with uncertainties, for the periods 1972–
2000, 2000–2015 and 1972–2015, are shown in Figure 4. Error
bars are so large that no clear trends can be easily observed within
the uncertainty limits. However, error bars are the SD values of
the DEM differencing on all gridcells of each elevation bin,

which include uncertainties in the glacier elevation changes and
the large glacier elevation changes that occur at local scales. All
in all, these glacier ice thinning profiles are a function of elevation,
i.e. the rate of thinning decreases with increased elevation.
Between 1972 and 2000, glacier thinning (negative glacier eleva-
tion change rates) is dominant, with greater thinning in the
lower elevations. From 2000 to 2015, the glacier surfaces lowered
at all altitudes.

5. Discussion

5.1 Comparison with the previous estimates of glacier changes
in the Karlik Range

Previous studies showed an overall decline in glacier extent in the
Karlik Range since the Little Ice Age (LIA). Between the LIA and
2006–2010, glaciers experienced a decrease in area of at least

Fig. 2. Surface elevation change of the glaciers over the Karlik Range: (a) between 1972 and 2000 and (b) from 2000 to 2015.
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29.6% (Li and others, 2016). Wang and others (2009) reported
5.3% area loss from 1971/72 to 2001/02 in this region, and accel-
erated shrinkage since the 1990s. For the whole Karlik Range, the
total extent of 75 glaciers decreased by 10.5% between 1972 and
2005 (Li and others, 2011). Total glacier area loss over the eastern
Tien Shan is estimated to be 21.5% during 1977–2013 by Du and
others (2019).

Ice thickness measurements of Ground Penetrating Radar in
three sites in the upper parts of Miaoergou Ice Cap (43°03′ N,
94°19′ E) on the Karlik Range show that the thinning of this
ice cap is 0.2 m a−1 between 1981 and 2005 (Li and others,
2007). Our estimates show a surface lowing of this ice cap of
0.26 ± 0.06 m a−1 over 1972–2015, which is consistent with the
results of Li and others (2007). Based on Real Time
Kinematic-Global Position System elevation measurements and
DEMs generated from 1 : 50 000 topographical maps from 1972,
Wang and others (2015) reported a thinning of 0.51 m a−1 over
the ablation zone of the Yushugou No. 6 (43°05′ N, 94°19′ E) gla-
cier during 1972–2011, which is broadly consistent with our esti-
mate for the ablation area of the same glacier (0.41 ± 0.07 m a−1

over 1972–2015).

5.2 Comparison with the other regions of Tien Shan

A number of studies have estimated glacier mass changes on Tien
Shan over the different time spans with different methods. For
example, Farinotti and others (2015) reported glacier mass
changes over the western and central Tien Shan during 1961–
2012 based on average GRACE-based estimates, ICESat-based
estimates and estimates based on glaciological measurements
and modeling. Pieczonka and Bolch (2015) evaluated glacier
mass loss over the central Tien Shan during 1976–1999 using
KH-9 Hexagon data and SRTM DEMs. These studies are also
affected by relatively large uncertainties mainly caused by noise
in remote-sensing images, such as that related to radar signal
penetration, voids in the optical stereo-imagery due to low radio-
metric contrast and so on. As a result, the differences in regional
glacier mass loss rates may often fall within their uncertainty
bounds. Furthermore, the different glacier mass loss rates may

occur over different time frames. Thus, we cannot make direct
comparisons with these estimates. Glacier mass loss estimates
for the entire Tien Shan, not including the Karlik Range, between
2000 and 2016, were calculated by Brun and others (2017) using
ASTER images and SRTM DEM. Compared with the result of
Brun and others (2017) (−0.28 ± 0.20 m w.e. a−1), our regional
glacier mass budget is more negative (−0.45 ± 0.17 m w.e. a−1 dur-
ing 2000–2015). This may be attributed to differences in regional
air temperature changes. From 2000, a significant positive trend
of annual mean air temperature was observed in the eastern
Tien Shan, whereas no obvious temperature changes occurred
in the other regions of Tien Shan (Chen and others, 2016).
Other possible factors include differences in the spatial extents
of studies, and errors in determination of the radar penetration
of SRTM DEMs. In addition, the uncertainty in the estimate by
Brun and others (2017) is still large, almost equal in magnitude
to their average estimate.

5.3 Uncertainties in the glacier mass-balance estimate

The error of signal penetration of SRTM is an important source of
uncertainty. Under conditions of melting/liquid water, almost no
penetration occurs in the X-band and C-band radar signals of
SRTM. However, under frozen conditions, the C-band radar
can penetrate several meters. SRTM X-band energy is prone to
penetrate dry snow over the accumulation zone (Gardelle and
others, 2012). The average penetration depth of TanDEM-X is
0.61 ± 0.06 m for the Puruogangri icefield in the inner Tibetan
Plateau (Liu and others, 2019), which appears to imply that the
penetration depth of the X-band SRTM DEM may be not negli-
gible for our studied glaciers, especially for the accumulation
areas. This implies that the uncertainty in the glacier mass-
balance estimate will further increase if this is not considered.
However, compared with the large average elevation changes
(>6 m) for any time spans within 1972–2000, 2000–2015 and
1972–2015, X-band radar signal penetration might be minimal
in our study area and the uncertainty in the glacier mass-balance
estimate result from the X-band penetration depth may be negli-
gible. Therefore, as most studies have done, X-band penetration is

Fig. 3. Surface elevation change of the glaciers over the Karlik Range during 1972–2015.
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not considered based on the hypothesis proposed by Gardelle and
others (2012). Of course, if we corrected the X-band penetration
depth in our estimate, the resulting glacier elevation changes
might slightly increase for the 1972–2000 period but would
decrease for the 2000–2015 period.

Our error bars for glacier mass balance (0.08–0.17 m w.e. a−1)
are relatively large. Systematic errors in the glacier elevation
change estimate account for ∼78% of the total uncertainty.
These errors largely result from noise in the DEMs. In addition,
the uncertainty in the elevation changes somewhat depends on
the ability to co-register DEMs. However, the vertical deviation
of ice-free areas, which is used to co-register DEMs, may not
fully reflect the vertical deviation on the glaciers. To explore
this discrepancy, as suggested by Berthier and others (2019), we
add the average absolute difference of the median elevation
change on and off-glacier in the uncertainty estimate.

The uncertainties in the glacier mass change estimate may
complicate interpretation of the resulting variability in glacier ele-
vation and mass balance. In magnitude, the errors cover ∼35% of
the changes in the mass balance during 1972–2000, 41% of those
that occur during 2000–2015, and 23% of those that occur during
1972–2015. Despite the relatively large errors (maximum: 0.17 m
w.e. a−1), the error bounds are smaller than the mean glacier mass
loss over 1972–2000 (−0.19 m w.e. a−1) and the mean value for
2000–2015 (−0.45 m w.e. a−1).

5.4 Variability in the glacier mass balance

Glacier mass loss is usually estimated from the shrinkage in the
glacier extent and surface lowering. As described in Section 4,
between 1972 and 2000, glaciers experience surface lowering of
−0.22 ± 0.08 m a−1, and the mean surface lowering rate reaches
−0.52 ± 0.20 m a−1 since 2000. Most glaciers (>80%) have
decreased in extent during the two time spans (Du and others,
2019). The glacier mass loss caused by extent shrinkage accounts
for 47.3% of the total glacier mass loss during 1972–2000. For the
2000–2015 period, 25.9% of the total glacier mass loss occurs due
to reduced glacier extent.

To investigate the role of morphometrics in glacier mass bal-
ance, we examine the correlation between glacier mass-balance
change over 1972–2015 and morphometric factors, i.e. the eleva-
tion, surface slope and aspect of individual glaciers (Figs 5a, b, c).
Glacier mass-balance changes positively correlate (r = 0.46, p <
0.05) with mean elevation, which reveals less negative changes
with increasing elevation. Similarly, glacier mass-balance changes
positively correlate with the aspect values (r = 0.48, p < 0.05).
Several previous studies reported the important role of surface
slope in changes in the glacier extent, length and surface elevation
(e.g. DeBeer and Sharp, 2009; Garg and others, 2017), because of
the effect of slope on ice velocity and snow accumulation and
transport. However, no statistically significant correlation is
found between the glacier mass balance and mean surface slope.
We further examine the relationship between the glacier mass-
balance changes and morphometric factors at a gridcell scale. In
general, the grid with lower elevations experiences larger glacier
mass loss. Despite the significance at the confidence of >99%,
no strong correlations (r < 0.3) are observed for elevation, surface
slope and aspect at the gridcell scale (Figs 5d, e, f).

Although debris coverage is an important non-climatic factor
that affects glacier mass-balance changes, it is not considered
because almost no debris is observed on the glaciers in this
study region. The formation and development of proglacial
lakes are also linked with glacier melting. Three proglacial lakes
are observed on the Landsat 8/OLI images acquired on 16
September 2015, but not occur in the Landsat ETM+ images
obtained on 17 September 2001. The average rate of thinning of
the three lake-terminating glaciers is 0.68 ± 0.17 m w.e. a−1 for
the 2000–2015 period, higher than the regional average. This
agrees with the previous estimates of the differences in the surface
lowering between land and lake-terminating glaciers (e.g. Neckel
and others, 2017; Wu and others, 2019).

Fig. 4. Averaged glacier elevation change rate in each 100 m elevation bin over the
Karlik Range, for the (a) 1972–2000, (b) 2000–2015 and (c) 1972–2015 periods.
Generally, glacier elevation change rates decrease with increased elevation.
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5.5 Climate forcing

Glacier mass-balance fluctuations are the net result of variations
in snowfall, melting and refreezing. For glaciers in high mountain
Asia, the contribution of sublimation or refreezing to the tem-
poral variability in glacier mass balance is very limited, compared
to those caused by changes in the snowfall and melting (e.g.
Huintjes and others, 2015; Li and others, 2018). Thus, the
observed glacier mass loss on the Karlik Range during 1972–
2015 may be associated with regional air temperature and precipi-
tation changes. Based on the CRU dataset, a marked warming
(0.45°C decade−1, p < 0.05) in the eastern Tien Shan from 1961
to 2014 was reported by Chen and others (2016). Records from
Yiwu (32 km to the northeast of Karlik Range, at an elevation
of 1729 m a.s.l.) and Hami (84 km to the southwest of Karlik
Range, at an elevation of 738 m a.s.l.) meteorological stations
(Fig. 1) show a significant warming during 1972–2015, with an
increase in the summer mean temperature of 0.11°C decade−1

( p < 0.05) at Hami Station and 0.33°C decade−1 ( p < 0.05) at

Yiwu Station (Fig. 6a), respectively. The annual mean tempera-
tures at the three hydrometric stations (Yushugou, Toudaogou
and Baiji Stations) also experienced dramatic increases (0.79,
0.58 and 1.28°C decade−1) during the past 30 years (Fig. S2).
Furthermore, a more rapid warming (0.86°C decade−1) is found
during the summer at the Yushugou hydrometric station (Fig. S3).

There are slight increases but insignificant trends in annual
precipitation records for the 1972–2015 period at the Yiwu
(6.18 mm decade−1, p > 0.05) and Hami (3.37 mm decade−1,
p > 0.05) stations (Fig. 6b). No significant trends ( p > 0.05) are
observed at the three hydrometric stations (0.74 mm decade−1 at
Yushugou Station, 4.10 mm decade−1 at Toudaogou Station and
1.20 mm decade−1 at Baiji Station) during the 1970s to 2007
(Fig. S4). In the eastern Tien Shan, the snowfall portion of total
annual precipitation declined during the past 50 years (Guo and
Li, 2015; Chen and others, 2016). These records appear to indicate
that snowfall in this study region likely decreased during 1972–
2015. Furthermore, glaciers over Tien Shan are considered to be

Fig. 5. The relationship between the glacier mass balance and morphometric factors including mean elevation, aspects and slopes for individual glacier (n = 103)
and at gridcell scale (n = 127 922, 97 218). Small slopes in gridcells may be within the uncertainty range of the DEM vertical accuracy. Thus, when calculating cor-
relations at the gridcell scale, we exclude the gridpoints with slope of <10°, which is determined based on a gridcell distance of the 3 × 3 grid of pixels in the
DEM and the vertical accuracy of the DEM.
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much more sensitive to air temperature variability than snow
accumulation (Oerlemans and others, 1992; Rupper and Roe,
2008; Farinotti and others, 2015). For example, on Glacier No.
1 (43°06′ N, 86°49′ E) at Urumqi River head over the eastern
Tien Shan, when the air temperature increased by 1°C, the glacier
ELA would rise by >80 m, which requires a >40% increase in pre-
cipitation to offset the glacial ablation caused by temperature
increase (Liu and others, 1999). Thus, a slight increase in the
annual precipitation in this region contributes little to glacier or
snow accumulation; thus, the insignificant increase in precipita-
tion is unable to offset the glacial ablation caused by a significant
increase in air temperature.

The N-facing glaciers mass loss was much larger than that of
the S-facing glaciers from 1972 to 2000, which is possibly related
to variations in the regional summer temperatures. Records from
the Yiwu Weather Station on the north slope of Karlik Range
show a warming trend (0.16°C decade−1) in the summer air tem-
perature, but a cooling trend (−0.30°C decade−1) occurs at the
Hami Weather Station on the south slope during 1972–2000.
During the same period, only a slight increase in annual precipi-
tation is found at the two stations (Fig. 6). This probably contri-
butes to very limited increase in accumulation of the glaciers.

However, different summer temperature changes may cause
more ablation on the N-facing glaciers than on S-facing glaciers.

A doubling of glacier mass loss during 2000–2015 compared to
1972–2000 may be related to the recorded mean summer air tem-
peratures, which are 0.62 and 0.94°C warmer for 2000–2015 than
those in 1972–2000 at the Hami and Yiwu Stations, respectively,
as a result of the dramatic warming during the past 40 years.
Assuming a similar sensitivity of glaciers in this study to variabil-
ity in the air temperature as was observed for the sensitivity of
Glacier No. 1 at Urumqi River head, the averaged ELA of the gla-
ciers on the Karlik Range should have risen by at least 40 m. To
offset glacial melting resulting from increased temperature, annual
precipitation must increase by >50%. Five year smoothing
averages of the anomalies of annual precipitation show slight
increases between 1972 and the mid-1990s, but decreases in the
annual precipitation since the late 1990s are observed at the two
weather stations (Fig. 6). A decline in the snow cover extent is
found from 2003 to 2014 in this region (Chen and others,
2016). Under such climate conditions, the icefield experiences
more melting rather than accumulation. As a consequence, gla-
ciers generally show higher thinning rates at the ablation zones
during 2000–2015, compared with those in 1972–2000 (Fig. 2).

Fig. 6. Time series of (a) summer air temperature and (b) annual precipitation from Yiwu and Hami meteorological stations, which are located 32 and 84 km from
Karlik Range, respectively. The series are shown as anomalies relative to their respective 1981–2010 averages.
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The larger extent of surface lowering over 2000–2015 are
observed, relative to 1972–2000 (Fig. 2). However, meteorological
and glacial observations over the glacier field are still required to
improve atmospheric and glacier energy-balance models to fur-
ther quantify the response of glacier melting to climate changes.
To address this, one automatic weather station will be established
on Yushugou No. 6 glacier, and more glacial observations, such as
ice thickness, ice velocity and stake-based mass balance, will be
performed at the Tianshan Glaciological Station, Chinese
Academy of Sciences (personal communication from Puyu
Wang), due to the easy access to this glacier.

6. Conclusions

In this study, topographic maps, SRTM DEMs and ASTER DEMs
are used to examine variability in the mass balances of glaciers in
the Karlik Range over the past 40 years. These changes are spa-
tially and temporally heterogeneous. More negative mass balance
occurs at lower elevations. Compared to south facing glaciers,
north facing glaciers experience larger mass losses during 1972–
2000, but lower mass losses for the 2000–2015 period. On average,
a negative glacier mass balance (−0.26 ± 0.06 m w.e. a−1) is found
for the period 1972–2015, as the result of glacier extent shrinkage
and surface lowering. In particular, the average rate of glacier
mass loss during 2000–2015 is twice that estimated for the
1972–2000 interval. The accelerated glacier mass loss for
the more recent interval is coincident with increased air tempera-
tures measured at meteorological stations in the region since
the late 1990s, whereas the decline in annual precipitation measured
at hydrometric stations was not significant since the late 1990s.

The uncertainties in our glacier mass-balance estimate remain
relatively large, accounting for ∼35 and 41% mass loss changes in
the two time spans of 1972–2000 and 2000–2015, respectively.
The main source of uncertainties is the noise inherent in DEMs
constructed by topographic maps, SRTM observations and
ASTER images. In addition, the penetration depth of the
X-band SRTM is not considered, and this likely increases the
uncertainties of the glacier mass loss assessment. Other studies
of glacier mass balance based on remotely sensed DEMs usually
also suffer from considerable noise/uncertainty (e.g. Pieczonka
and Bolch, 2015; Braun and others, 2019). Consequently, at this
time, we cannot effectively separate regional differences in glacier
mass changes from their uncertainty bounds.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2020.76.
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