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Summary

The n0 coalescent of Kingman (1982a, b) describes the family relationships among a sample of n0

individuals drawn from a panmictic species. It is a stochastic process resulting from nQ— 1
independent random events (coalescences) at each of which n (2 ̂  n ̂  n0) ancestral lineages of a
sample are descended from n — 1 distinct ancestors for the first time. Here a similar genealogical
process is studied for a species consisting of two populations with migration between them. The
main interest is with the probability density of the time length between two successive coalescences
and the spatial distribution of n — 1 ancestral lineages over two populations when n to n — 1
coalescence takes place. These are formulated based on a non-linear birth and death process with
killing, and are used to derive several explicit formulae in selectively neutral population genetics
models. To confirm and supplement the analytical results, a simulation method is proposed based
on the underlying bivariate Markov chain. This method provides a general way for solving the
present problem even when an analytical approach appears very difficult. It becomes clear that the
effects of the present population structure are most conspicuous on 2 to 1 coalescence, with lesser
extents on n to n — 1 (3 < n) coalescence. This implies that in a more general model of population
structure, the number of populations and the way in which a sample is drawn are important
factors which determine the n0 coalescent.

1. Introduction

The family relationships among a sample of n0

members drawn from a particular generation of a
population, called the n0 coalescent by Kingman
(1982 a), play a central role in describing the genealo-
gical behaviour of generations of individuals. As
Kingman (1982 a, b) and Tavare (1984) pointed out, a
genealogical approach is certainly interesting and
important in its own right, but it is also very useful in
producing a wide variety of classical results in the
mathematical theory of population genetics. The
power and elegance of the theory rely on equivalance,
exchangeability, or neutrality among individuals and
have been best demonstrated in single-locus multiple
allele systems in a panmictic population (Griffiths
1980; Kingman 1982a,b; Tavare 1984 and references
therein).

However, little attempt, it seems, has been made to
extend the theory to geographically structured species.
This paper deals with two partially isolated popu-
lations and formulates such a population structure in
terms of genealogical relationships among a sample of
members drawn from these populations. Each popu-

lation is assumed to be a diffusion population or
diffusion time scale approximations are assumed to be
valid. The outline of a general mathematical for-
mulation and the main results for the model of
population structure with symmetrical migration and
equal population sizes are given in section 2. There a
problem emerges concerning the spatial distribution
of n — 1 (2 < n ̂  n0) ancestral lineages over the two
populations when a pair of n ancestral lineages
coalesce to a common ancestor. This distribution may
be derived from coalescence time, or waiting time with
which n ancestral lineages were descended for the first
time from n—\ distinct ancestors. This conjecture is
confirmed in section 3 by explicitly considering the
underlying probabilistic model, a continuous time
bivariate Markov chain. It is demonstrated that the
chain provides an efficient way of stimulating the
model for arbitrary sample sizes. It seems very difficult
to explore the n0 coalescent and related processes in a
general way, but for small samples it is feasible. Such
mathematically tractable cases are presented in detail
in sections 4 and 5, in which it is also shown how to
superimpose mutations on genealogical processes.
Wright's (1931) island model requires an extension of

https://doi.org/10.1017/S0016672300027683 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300027683


N. Takahata 214

the symmetrical population structure model to an
asymmetrical one with respect to migration and
population sizes. This situation is briefly considered in
section 6.

The results of this paper indicate that the speed of
the n0 coalescent is largely influenced not only by
migration rate but also by the number of populations
composing a species and the way in which n0

individuals are drawn. Throughout the paper, popu-
lation structure is assumed not to change in time, but
the theory developed here can be applied with slight
modifications to the case where two populations
under study were divided from an ancestral species at
a given past time.

2. Formulation and results

A species considered here is monoecious and haploid,
and consists of two partially isolated populations X
and Y. There are constant N selectively equivalent
individuals in each population. Suppose for the
moment that generations are discrete and non-
overlapping, and for convenience they are counted
backward chronologically from the time at which n0

individuals are randomly sampled without replace-
ment from the species (7"=0). Suppose also that
out of n0 individuals j0 are drawn from X and k0 =
no—jo from Y. This initial sample configuration is
described by an integer j0 in Sn = {0,1,2, ...,«„}.
When we consider the composition of this sample with
respect to an ancestral species at generation T, there
would be some subset of the sample which descended
from an individual, T generations ago; any two
individuals in this subset shared this common ancestor.
For given T, there may be n such subsets (1 ^ n ^ n0).
Then the configuration of n ancestral lineages T
ago can be described again by an integer j in Sn =
{0,1,2,...,/!}.

Assume that migration occurs immediately after
reproduction in each generation, in which N, = Nm
individuals are exchanged at random without re-
placement between X and Y. Here we have taken an
opportunity to define the proportion of immigrants m.
There are N, immigrants and NR = N—N, residents
accompanied with per-generation migration. Let / £ Sn

be the configuration of n ancestral lineages before
migration, certain generations ago. The configuration
after migration is determined by two probabilities.
One is the probability that k ancestral lineages come
from i in X from which NR individuals are sampled to
form X without migration. Denote this probability by
uik, which is given by the hypergeometric distribution

NR-k N

[see Feller 1970, pp. 43-47]. The other is the
probability that / ancestral lineages come from n — i'm
Y from which N, individuals are sampled to form X

with migration. Denote this probability by vn_( „
which is given by

n-i\(N-n + i

l
N

Then the probability of jeSn after migration is given
by "Luik vn_, }_h where the sum is taken over the
possible range of k. For given je Sn, this convolution
provides the transition probability that the con-
figuration was ieSn before migration, which we
denote by Mn.

In what follows, we assume that m and TV"1 are
much smaller than 1 and therefore any of their higher
order products can be neglected. Then Mn takes a
simple form given by
MM= \-nm + 0{m/N),

(n-j)m + 0(m/N),

jm + O(m/N),
(1)

Mjt = O{m/N) for \i-j\ >\
where O{x) stands for the order of magnitude of x.

Genealogy or lines of descent in a randomly mating
population has been studied by Watterson (1975,
1984), Griffiths (1980), Kingman (1982 a, b), and
others among whom Tavare (1984) provides a
comprehensive review. A key quantity that was
formulated in these studies is the probability G)k that
j individuals drawn from the population without
replacement have k distinct parents. In a single
population with large size iV and in the absence of
mutation, it is approximately given by

N+O(N~2) if k=j

N+O(N~2) if k=j-1

~2) o therwise

(2)

in units of generations (Kingman 1982ft; see also
Watterson 1975; Gladstien 1978).

We wish to derive a formula pertinent to the
sojourn time in Sn under the joint effects of migration
modelled by (1) and random sampling drift occurring
in each population which is modelled by (2). Let Tn be
a random time at which the number of distinct
ancestral lineages becomes n (1 < « < n0, Tn =0),
and gj be the probability that n ancestral lineages with
configuration je Sn have n distinct parents with the
same configuration. Given n,

1 -

is the probability that j ancestral lineages in X have j
distinct parents and

1 - N
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is the probability that n —j ancestral lineages in Y have
n —j distinct parents so that g} is given by

=X~ {(2)
fory = 0,1,2, ...,n.

Now we consider a Markov chain

{Z(0,r = 0,1,2,...}

starting at Tn and confined in Sn; the (J, i) element of
the transition matrix A of Z(i), irrespective of Tn, is
given by

AH = Mj(gt.

From (3),

(4)

so that Z(t) is a sub-Markov chain, or a Markov chain
with killing; when the process enters into Sn_l or two
ancestral lineages in Sn are descended from a common
ancestor, it is terminated. The sojourn time in Sn may
be computed in the following way. Let />,(«, t) be the
probability that n ancestral lineages have config-
uration ieSn at Tn + t, given an initial (spatial)
configuration in Sn at Tn. These probabilities
pt(n,i) (i = 0,1,2, ...,ri) satisfy a set of difference
equations

n

(5)

We now define the probability of waiting (coalescence)
time, q(n, t), with which n ancestral lineages have
n — 1 distinct ancestors for the first time. Noting
that £,/*,(«, 0 >s a monotonic decreasing function of /
and that the difference between two successive
generations corresponds to the probability that n
ancestral lineages are descended from Sn_x exactly at
the (7^ + f)th generation, it must hold that

(6)qin, 0 = 2 {pt(n,t- \)-pt(n, t)},
(-0

which plays the same role as G'n* — Gl
nn for a panmictic

population (see (2)).
Since our concern is with the case iV-* 00 with

keeping Nm = 0(1), we replace (5) and (6) by their
continuous time version with the scaled time
T = t/(2N). Let B be the infinitesimal generator
which corresponds to A. We then obtain

(7)Bu+1=¥.n-j)6,

Bj( = Q for |/-y|

where 6 = ANm and a} = {j(j- \) + (n-j)(n-j-1)}.
With this infinitesimal generator, (5) becomes

dpjn, T)
dr

= £ pin, T) BJ(, (8)

and (6) corresponds to the probability density of

(9)

(10)

^dpt(n,r)
< 7 ( « , T ) - - 2 , dj

which can be rewritten as

i-o

from (7) and (8).
It is noteworthy that in the present formulation,

genealogical processes in partially isolated populations
are not pure death processes but birth and death
processes with killing. Karlin & Tavare (1982)
developed a method for solving general linear birth
and death processes, but our process is non-linear so
that their method may not be directly used; it is not
easy to derive the spectral representation of B for
arbitrary n. Nevertheless a general prescription of the
problem, as described below, is available.

Consider the Laplace transform of p}{n,r) and
q{n,r), defined by

To

= \
Jo

p](n,s)=\ e-"p}{n,T)dr, q(n,s)
J

Tec

= \

Jo

Eqs. (8) and (10) are equivalent to

ilpj(n,s)(sS(j-Bj()=pi(n,0),

q(n,s) =

" q(n,r) dr.

(11)

(12)
i-0

where S(j = 0 for / 4= j and 1 for / = / Substituting the
solutions of (11) for (12) provides the Laplace
transform of the probability density of n to n—\
coalescence time. In our model, as in the previous
work, each coalescence occurs independently and the
n0 coalescent (Kingman 1982 a) is a result of n0— 1
coalescences. Thus the probability density of the total
sojourn time in the n0 coalescent is given by the inverse
Laplace transform of the product

II q(n,s). (13)
n-2

However, the spatial (initial) distribution of pt(n, r)
cannot be given a priori except for n = n0 and must be
specified whenever coalescence takes place. This
distribution can be inspected in the following way.
From (7), (11) and (12), we see

(14)
1-0

In the above, pfn, 0) is the total sojourn time in state
jeSn, and (14) corresponds to the fact that n ancestral
lineages derive from n — 1 distinct ancestors in a finite
length of time with probability 1. This suggests that
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the spatial distribution in Sn_t when a coalescence
occurs may be given by

Po(n-l,0) = n(n-l)po(n,0),

p^n-1,0) = {n-j)(n-j- l)£(n,

n^(n- 1,0) = n(n-\)pn{n,0).

(15)

A proof of (15) is given in the Appendix and the
validity is exemplified in the following sections.

3. Simulation results

To supplement the analytical results, a simulation
method is proposed based on the underlying bivariate
Markov chain whose state space is two dimensional
lattice points. A lattice point (j, k) stands for the situa-
tion wherey distinct ancestral lineages among a sample
of size n0 resides in X and k in Y (1 ̂ j+k < n0).
The infinitesimal generator Q in this state space can be
derived from the same consideration for (7), but
defines a conservative birth and death process, i.e.

2-1

It is given by

(J,k)U+l.k-l)

Qu.*)u.m) = ° otherwise.

When l+m =j+k, changes are due to migration
while when it decreases by one, changes are due to a
coalescence between a pair of ancestral lineages in
either of two populations.

Suppose that the process (sample path) just entered
in state (j,k) {j+k = ri). The holding time to (J,k) is
exponentially distributed with mean \/q(i k) (e.g.
Karlin & Taylor 1981, pp. 145-149). At the end of this
wait, the path jumps into a new state (/, m) with
probability Qu,kni.m)/<lu,ky I n t n ' s n e w state, the path
waits there a random time interval whose distribution
law is an appropriate exponential and then jumps
again, etc.

Our concern is with the sojourn time in state je Sn,

and with the probabilities of the first arrival states in
Sn_t when a coalescence takes place. They are denoted
by pfn, 0) and pt{n— 1,0) as in (15). In all simulations,
the initial configuration in Sn was set as j = [n/2] for
given n ancestral lineages where [x] stands for the
integer part of x. Thus the path always started at
([n/2],n — [n/2]). In each repeat, an exponential
random number with the mean specified by the initial
configuration was first generated and recorded. Then
a uniform random number was generated to determine
which state is attained according to the probability
law discussed above. If the number of distinct lineages
decreases by one, the path was immediately terminated
with scoring one to an arrival state. Otherwise the
path was continued. When the path arrives at a
particular configuration in Sn more than once, the
sojourn time there was computed as the total sum of
independent exponential random numbers generated
with the same mean. On the other hand, the spatial
distribution in Sn_t was calculated by dividing the total
scores by the number of repeats. This requires a
number of repeats so that we generated 105 inde-
pendent sample paths for a set of parameters. Both
sides of (15) were then compared and the results for n
to n — 1 coalescence are given in Table 1.

It is to be noted that when we are interested in the
whole process of the n0 coalescent, the birth and death
process with (16) is continued until all the members
drawn from a species descend from a single common
ancestor. The probability density of the total sojourn
time in the «0 coalescent can be obtained from the
sojourn times in n0 ->• n0 — 1 -» ... ->• 1 coalescences. The
number of subsets of a sample with respect to an
arbitrary time T/(2N) can also be computed by the
same simulation procedure. This simulation method is
very efficient and can be used for the case of any
sample size for which the present analytical approach
is difficult as seen below.

4. Coalescences for small samples

When n is small, it is not so tedious to solve (11) and
(12). In this section, some explicit results for n = 2, 3
and 4 are presented. To facilitate computation,
however, it is still effective to make use of a symmetry
in (11). Let rt(n, T) = p((n,T) +/?„.,(«, T) for
0 < / < / - 1 (/ = [n/2]), and let r£n, r) = p,(n, T) when
n = 2/and /-,(«, T) = p,(n, T) +p,+1(n, r) when n = 21+ 1.
In terms of Laplace transforms of r((n,T), (11) lead to,
when n = 21,

~<2/+l-0?M-
ft
- ri+1 = r,(n,0),

, - | / r l _ 1 = !•,_,(/!,0), (17)

https://doi.org/10.1017/S0016672300027683 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300027683


The coalescent in two partially isolated diffusion populations

Table 1. Simulation results of sojourn times in Sn and probabilities of initial configurations in 5B_1 (the initial
configuration in Sn is in state j = [n/2] with probability 1)

jeSn_1 for a and b, jeSn fore

0 1

a
b
c
a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c
a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

0-500
0-500
0-250
0-23
0-22
0004

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0-500
0-497
0-249

0128
0128
0021

0010
0010
0001
0003
0003
0

0
0
0

0
0
0

0
0
0

0 = 4Nm = 01
0-500
0-500

10.43

0-976
0-975
0-465

0-502
0-498
0004

0-252
0-250
0
0002
0002
0
0001
0001
0

0
0
0

0-500
0-501
1-471

0-833
0-827
0-319

0-489
0-489
0-023

0-278
0-277
0007

0018
0018
0

0008
0008
0

0
0
0

0-248

0001
0001
0002

0-498
0-497
0-237

0-743
0-730
0119

0-497
0-490
0001

0-335
0-328
0
0002
0002
0

0-250
0039
0038
0094

0-492
0-489
0177

0-678
0-671
0097

0-483
0-477
0.006

0-340
0-336
0003

0017
0017
0

0*
0
0
0004
0004
0005
0002
0-499
0-491
0080

0-661
0-649
0054

0-494
0-497
0

0
0
0
0002
0002
0001

0004
0004
0001

0-502
0-497
0041

0 = ANm = 10

0006
0010
0010
0023

0040
0040
0014

0-482
0-477
0067

0-620
0-617
0047

0-484
0-480
0002

0
0
0
0001

0017
0017
0006

0032
0032
0004

0-480
0-480
0036

0
0
0
0

0
0
0
0002
0002
0

0
0
0
0

0001
0001
0

0018
0017
0002

0
0
0
0

0
0
0

0
0
0
0

0
0
0

J

J

10-93
(1000)

0-491
(0-332)

0-245
(0.167)

0123
(0100)

0082
(0067)

0054
(0048)

0042
(0.036)

1-970
(1000)

0-441
(0.332)

0-224
(0167)

0120
(0100)

0080
(0-067)

0-054
(0048)

0041
(0036)

" Probabilities of the first arrival states in Sn_t when coalescence takes place, corresponding to the initial distributions
/ 0 ) i ( 5 )p / ) ( )

"Expected probabilities of the first arrival states which are computed by the right-hand sides of (15) and sojourn times given
in rows c.
'Sojourn times in states (j,n—J) until n to n— 1 coalescence takes place, corresponding to p^n,0) in (15).
d Total sojourn times in state n in units of t/2N. The values in parentheses are expected waiting times in a panmictic
population of size 2N (see Kingman, 1982 a, b).
* All values are smaller than 5 x 10~4.
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and when n = 21+ 1,

218

= rt(n,O),

(18)

In the above equations, the arguments of Laplace

oTco'meT18 ° f ^ " ' ^ W C r e d r ° P P e d ' W k h r~t("'S)' ( 1 2 ) (^e, for example, Hudson, 1983; Tajima, 1983). On
the other hand, as 6 decreases, q(2, r) may approach 0

[n/2]

*JAn,s), (19)q(n,s) = and therefore M2 infinity, depending on the initial
configuration, but the variance always approaches

and the initial distribution in Sn_x is given by, when infinity.
n = 21,

ri(n-\,0) = (n-i)(n-i-

r(_1(n-l,0) = /(/+l)ri_1(j

and when n = 21+ 1

rf(n-l,0) = (n -0 ( / i - i -

' >' (0 - 2 ) , (20)

/ < / - ! ) , (21)

Case of n = 2. Despite its simplicity, this case is
instructive and practically important to demonstrate
the effects of population subdivision on coalescence.
For convenience, denote r,(2,0) by rt. From (17) we
readily have

(22)

Case of n = 3. The situation is as simple as that for
n = 2. The matrix corresponding to (18) takes the
form of

2 + ̂  + ̂ J (28)

and therefore the determinant is

in which \B2\ is the determinant of the matrix

\2 + d + s -d]
B*-[ -0 e +sl-

ot \B2\ = 2d + 2(\+0)s + s2. Thus (19) becomes

q{2,s) =

(23) Again abbreviating r,.(3,0) by r, (i = 0, 1), we have

(24)

Note that q(2,0) = 1 and that q(2, s) = 0 if 6 = 0 and
r0 = 0 as they should be. Coalescence takes place with
probability 1 unless there is no migration and unless
two members are drawn from different populations.

The inverse Laplace transform of (24) is the
probability density of waiting time (coalescence time),
given by

q(2,r) = 2e-<1+")T[{cosh(a7-)-a-1 sinh (ar)}r0

+ da~x sinh(aT)/-,], {a = y/(\+62)) (25)

and the mean and variance are

M2=]+r1d~1, (26)

(27)

J
and

(29)

(30)

Thus the probability density of 3 to 2 coalescence time
is given by

6 T ) , (31)

C2=l+2r0~2b-l{3r0-(]+d)rl},

b =

and the mean and variance are

by directly differentiating (24). These results converge
to those for a single population of size 2N as 6
increases;

#2 , s) -> (1 + s)-\ M2 and V2 -> 1

3~ 3(2 + 0) '
(32)
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As 6 decreases,

(2+ 5) (6+ 5) '

3 2 3^0'
V -^-- — -r
' 3 4 9r0

and as 6 increases,
3

9(3,5)- 3 + 5'

(33)

(34)

which are equivalent to those for a panmictic
population of size 2N.

For n ^ 3, coalescence does occur within a finite
length of time with probability 1 even if 6 = 0. This is
because at least one of the two populations always
contains more than one ancestral lineage of the
members drawn from the species. As remarked in
section 2, a problem occurs when coalescence takes
place; we must now determine the initial configuration
in S2, which is given by

ro(2,0) = 6fo(3,0) =

= 2r1(3,0) =

0 + 4ro(3,O)
2(2 + 0) '

0 + 4^(3,0)
(35)

2(2 + 6)

from (21). Note that trivial relationships such as
r((2,0) = r4(3,O) when 6 = 0 and ro(2,0) = r1(2,0) = \
when 6 = oo are met in (35). In Table 1, we have
assumed that ^(3,0)= 1— ro(3,O) = 1. In this case,
ro(2,0) = 1 -rx(2,0) = 0/[2(2 + 0)] and becomes 0-024
for 0 = 0-1 and 0-167 for 0 = 1 which are precisely the
same values in Table 1 (adding two terms with 7 = 0
and 2 for n = 3). Thus we claim that for a given initial
configuration in S3, the Laplace transform of 3 to 1
coalescence time in (13) has the form of

+2ro(3,O))5} (36)

from (24), (30) and (35).
Case of n = 4. The situation becomes a little

complicated. From (17), we have the matrix

- 2
0

-\0
6 + 20 + 5

0 "I
- 2 0

J- | 0 4 + 20 + iJ

and the determinant

(37)

+ 2(ll+30)52 + 53.

Again abbreviating r((4,0) by r( (/ = 0,1,2), the
solutions of (17) can be written as

and therefore
q(4, s) = | 5 4 r [48(6 + 60 + 02) + 4{ 15(2 + 0) r0

+ rl)5
2]. (39)

We do not give the explicit form of 4 to 3 coalescence
time, nor the mean and variance. They are too
complicated and we content ourselves with the fact
that (39) reduces ^(4,5)-• 6/(6+5) as 0 increases. It is
noteworthy, however, that the mean and variance
formulae for n = 4 are necessary to compute, for
example, the variance of the number of nucleotide
differences in pairwise comparisons among multiple
genes sampled from two populations. This line of
study was made by Takahata & Nei (1985), and we
study, in the next section, a similar problem concerning
the number of nucleotide differences between genes
based on the infinite site model (Kimura, 1971) with
no recombination (Watterson, 1975).

Before going further, we briefly examine the initial
configuration in S3 when 4 to 3 coalescence occurs.
From (20), we obtain

_ (24 + 200 + 02)
ro(*,V)- 4(6 + 60 + 02)
'i(3,0) =
0(4 + 30) r0 + (24 + 220 + 302) rt + (24 + 240 + 302) r2

4(6 + 60 + 02)
(40)

If 0 = 0, ro(3,0)[initial configuration (0,3) or (3,0) for
n = 3] is the same as ro(4,0) [initial configuration
(0,4) or (4,0) for n = 4] and r,(3,0) [initial con-
figuration (1,2) or (2,1) for n = 3] = l-ro(4,0) =
r1(4,0) + r2(4,0). If on the other hand 0 = 00,
ro(3,O) = | and rj(3,0) = |. In Table 1, we have
assumed that r2(4,0) = 1 and ro(4,0) = rt(4,0) = 0.
Thus ro(3,0) = 1 - rt(3,0) = (92/[4(6 + 60 + 02)]. The
theoretical value of ro(3,O) becomes 0004 for 0 = 0-1
and 0-019 for 0 = 1 , which agree very well with the
simulation results.

5. Applications

We apply some of the above results to other problems
in genealogy. The Laplace transform q(n, s) plays a
central role in solving these problems. Consider a
single locus with no intragenic recombination and
assume the infinite site model of Watterson (1975).
Let v be the mutation rate per locus per unit time of
T = T/(2N). For a given time span T, the number of
nucleotide changes dn that accumulate at this locus is
Poisson distributed;

(41)

ro(4, s) = |fl4|-' [{24 + 200 + 02 + 2(5 + 20) 5 + 52} r0 + \d (4 + 20 + 5) r, + 0V2],

(38)
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The generating function h(z \ T) of dn conditioned on r
is given by

h(z\r) = e-"il-z). (42)

Assume that T is a random variable whose probability
density is given by q(n,r) in (10) and consider the
unconditional generating function of (41);

I h(z\T)q{n,r)dT= P e~^^ q(n,7)di. (43)
Jo Jo
The above formula is exactly the same as the Laplace
transform of q(n, T) with parameter v(\ — z). Thus the
generating function of P{dn = k) is given by

q(n,v(\-z)). (44)

If we are interested in the number of segregating
sites in a sample (Watterson, 1975), we first count the
nucleotide changes that occur in all gene lineages
during n to n — 1 coalescence. Since these n lineages
evolve independently, the generating function of this
probability is given by

q(n,nv(\-z)) = r hn(Z\r)q(n,T)dr (45)
Jo

and therefore the generating function for the number
of segregating sites during the n0 coalescent takes the
form of

(46)

As an example, consider the case of n0 = 2. Formula
(46) then becomes

d + 2vro(2,O)(l~z)
(47)

and P{d2 = k] is the coefficient of z* in (47). In
particular, P{d2 = 0} is the probability of homozy-
gosity, given by

P{d2 = 0} =
fl + 2wo(2,0)

(48)

which reduces well known results, [l+2y] x when
8 = oo (Kimura & Crow, 1964) and

when ro(2,0) = 0 (Nagylaki, 1983; Takahata, 1983).
Furthermore, (47) leads to

P{d2 = k) =
(\+vy

+1

for 8 = 0 and r o (2 ,0)=l , (49)

for 8 = oo. (50)

Equations (49) and (50) correspond to those for a
panmictic population of size N and 2N respectively.
Although we could have anticipated these results, it is
to be noted that they do not necessarily delimit the
range of d2. In fact, when 8 = 0 and ro(2,0) = 0,

P{d2 = A:} = 0

for any finite value of k but P{d2 = oo} = 1. This can
be seen also in the mean and variance of nucleotide
differences,

d2 = 2v{\ +{l-ro(2,0)}r1] (Slatkin 1987), j

K(t/2) = rf2 + 4 , 2 [ l + r 1 + {l-r0(2,0)2}r2], J

which are directly inspected from (26) and (27).
Another application of q(n,s) may be as follows. In

some occasions, we are interested in the number of
residence changes of an individual lineage during n to
n— 1 coalescence. Consider the simplest case of n = 2.
We first count the number of residence changes in
both lineages, K. When two individuals are sampled
from a same population, K must be even. Recalling
that transition from state (2,0) or (0,2) to (1,1) occurs
with probability 6/(2 + 8) and the reverse occurs with
probability 1, we have

P(K = 2j) = \ (7 = 0 , 1 , . . . )
\2 + 6) 2 + 8'

and thus the generating function of k is given by
2/[2 + 8(l — z2)]. Similarly, when two lineages are
sampled from different populations, K must be odd
and the generating function becomes 2z/[2 + 8(1— z2)].
The probability of Kv = k (the number of residence
changes of an individual lineage) conditioned on
K = 2/ is given by a binomial distribution

2/

because two lineages change their residence equally
likely. Thus the conditional generating function of
Ki has the form of i(l+z)2 ' and therefore the
unconditional one becomes

2{ro(2,0) + /-1(2,

The mean and variance are

Hr,(2,0) + d}, i{(2 - rx(2,0)) ^(2,0) + 38 + 8%

respectively. This derivation was suggested by R.
Hudson.

The corresponding formulation, however, becomes
cumbersome as n increases. An approximation may
then be given as follows. Given T generations, k
residence changes occur with probability

mk(\-m)

approximately. [Here we ignored the fact that at least
two lineages must reside in a single population when
a coalescence occurs.] This probability can be well
approximated by a Poisson distribution for we have
assumed a small value of m. The generating function
becomes

= exp[-i(9T(l-z)] for large TV. (52)
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Thus if T is again a random variable with density
q(n, T), the unconditional generating function of (52)
becomes q(n,6/2(\—z)). In the case of n = 2, we
have

2 + ro(2,0)(l-z)
for 0 * 0 (53)

and the mean and variance are, respectively,

1^(2,0)+ 0}, K(4 -rx(2,0))r1(2,0) + 30 + 02}. (54)

These are in fairly good agreement with the exact
solutions. It may be said that residence changes do not
occur so frequently even during 2 to 1 coalescence
time and even for a critical value of 0 = 1 as a
panmictic condition. Sampling from a single locality
may not contain immigrants even though migration is
frequent. When 6 = 0, it is clear that q(2,0) = 1 so
that a lineage is confined in a single population.

6. The island model

We have studied coalescence processes in a species
which consists of two populations, each having N
selectively equivalent individuals and exchanging
immigrants in a symmetrical way, This model does
not include Wright (1931) island model. To incor-
porate it into the present framework of theory, we
must take account of different migration rates between
two populations of different sizes. Let N and N' be
these population sizes and assume that Nm individuals
from X and N'm' from Y(Nm — N'm') are exchanged
between two populations. We have

(55)
e'\ + O(e),

e = M~\ e' = N'~

instead of (3). The continuous time version of A in (4)
can be readily obtained, but scaling time is not useful.
Then the infinitesimal generator B has the following
components in the original time scale;

(56)

= 0 for |/-y

The formula of /5,(2,.s) is unnecessary because
q(2,s) = e'po(2,s) + ep2(2,s) from (12) with n = 2. A
little algebra leads to

q(2,s) = |52|-
1[2m

+ {e'(3m + m' + e) pQ + (me + m'e)p1

+ e(m + 3m' + tT)pt} s + (e'p0 + ep2) s
2], (58)

which is reduced to (24) when e = e' and m = m'. For
other quantities, we have, for example,
M2 = [2(m + m'f + (m + 3m') ep0 + {(2m + m') e

+ (m + 2m') e + ee'} px + (3m + m') e'p2/

[2m2e' + 2m'2e +(m + m') ee'],
(59)

v = per-generation mutation rate per locus.
Wright's island model with infinitely many popu-

lations may correspond to the case of e' = 0, m' = 0
and p2 = 1 (two members drawn from an island), in
which case we have

q(2,s)=
2m + e + s

so that

NU

M2=cc,

(60)

Equations (60) imply that coalescence does not occur
in a finite length of generations because two members
from the island might have come from the continent
and when this happens, their most recent common
ancestor must have existed infinitely many generations
ago. No coalescence of this case is a consequence of
large N in the continent and no time scaling.

7. Conclusions

A general effect of population structure on genea-
logical relationships among a sample of n0 members
drawn from a species is to spin out coalescence events
at each of which a pair of the ancestral lineages of the
sample derive from a common ancestor. This is equiva-
lent to saying that population structure generally
increases genetic variation in a species, because more
mutations can accumulate independently in different
lineages with longer coalescence times. This rather
trivial conclusion is flavoured as follows. The effect of
population structure can markedly prolong 2 to 1
coalescence time, but only slightly n to n—\ coal-
escence time (3 < n < «„). Such a strong effect on 2 to
1 coalescence stems from a low migration rate and two
ancestral lineages that happen to occur in different
populations. By contrast, the weak effect on n to n — 1

To be complete, we present some results cor-
responding to (11) and (12) with (56) for the case of
n = 2. Abbreviate pt(2,0) by pt (i = 0,1,2). We then
have

po(2, s) = \B2\~
l [{2m2 + (m + m') e+ (3m + r,

p2(2, s) = |fl2|"' [2m'2p0 + m'(2m' + e + s)p1+{2m'2 + (m + m') e'+ (m + 3m' + e')s + s2}p2],

\B2\ = 2mV + 2m'2e ') ee -\• {2(m +m')2 + (m + 3m')e + (3m + m')e' + ee'}s
(57)
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coalescence is due to the fact that at least two
ancestral lineages must have been in a population any
time. Thus the conclusion is true only in a species
which is subdivided into two as modelled here. If a
species is made up of c populations, the effect of such
population structure should be manifest up to c to
c — 1 coalescence. This is because c ancestral lineages
can be distributed over c populations separately in
which case there is no possibility that two out of c
such lineages coalesce to an ancestor until they
happen to move in a same population. When migration
is infrequent, initial sampling mainly determines the
distribution of c ancestral lineages over c populations,
and therefore can greatly affect genealogical processes.
In this sense, an extension of the present population
structure model is interesting and practically im-
portant, but beyond the scope of this paper.

We have assumed that population structure is
stable throughout time, but if we deal with an incipient
stage of speciation, this assumption would not be
appropriate. However, the formulae of q(n,r) and
q(n,s) in (10) and (12) would be still useful to handle
such a situation. For instance, Takahata & Nei (1985)
studied the variance of nucleotide differences among
genes sampled from two species which have been
completely isolated since their separation from an
ancestral species. If we allow for migration between
these descendant species and want to study the same
problem, we need to use those formulae or the
simulation method developed in this paper.

Most of this work was done while I was on leave in La
Reunion, Mauritius and Seychelles under a grant for sci-
entific research abroad from Monbusho, Japan. The en-
vironment and colleagues, Drs S. Ishiwa, A. Fukatami and
Y. Fuyama, there offered me a valuable time to write this
paper. Thanks are due to Drs M. Kimura, A. Shimizu,
Y. Ogura, R. Hudson and two anonymous referees for their
helpful comments on an early version of this paper.

Appendix

Equations (15) give the distribution of the state in Sn_x

at which a coalescence (killing) occurs. From (16) we
have the probability density that an event due either
to migration or to killing occurs at time T from current
state je Sn as

/>/M,T)(/j0/2 + a,) (A 1)

where a} = j(J~ ^) + (n—j)(n—j— l)asin text, and the
probability that the event is a killing as

a,/(n8/2 + a,). (A 2)

Further, the killing event may be subdivided into two
possibilities: either the coalescence occurred in popu-
lation X, or in population Y. The probabilities of
these two events arey'(y— l)/a, and

respectively. In order to get p}{n —1,0), compute first
the probability that at time T an event occurs which
results in a killing and a new statedG5n_t. The state at

which the killing occurred must have been j+ 1 eSn or
jeSn. The first of these events has probability

while the second has probability

Combining these and simplifying give the required
probability as

JU+ Vpj+l(n,T) + (n-j)(n-j- !)/»/«,T). (A 3)

Finally, integrating (A 3) from T = 0 to oo leads to
(15).

References

Feller, W. (1970). An Introduction to Probability Theory and
Its Applications. New York: John Wiley.

Gladstien, K. (1978). The characteristic values and vectors
for a class of stochastic matrices arising in genetics. SI AM
Journal of Applied Mathematics 34, 630-642.

Griffiths, R. C. (1980). Lines of descent in the diffusion
approximation of neutral Wright-Fisher models. Theore-
tical Population Biology 17, 37-50.

Hudson, R. R. (1983). Testing the constant-rate neutral
allele model with protein sequence data. Evolution 37 (1),
203-217.

Karlin, S. & Taylor, L. L. (1981). A Second Course in
Stochastic Processes. New York: Academic Press.

Karlin, S. & Tavare, S. (1982). Linear birth and death
processes with Killing. Journal of Applied Probability 19,
477^87.

Kimura, M. (1971). Theoretical foundations of population
genetics at the molecular level. Theoretical Population
Biology 2, 174-208.

Kimura, M. & Crow, J. F. (1964). The number of alleles
that can be maintained in a finite population. Genetics 49,
725-738.

Kingman, J. F. C. (1982 a). The coaiescent. Stochastic
Processes and their Applications 13, 235-248.

Kingman, J. F. C. (19826). On the genealogy in large
populations. Journal of Applied Probability 19 A, 27-43.

Nagylaki, T. (1983). The robustness of neutral models of
geographic variation. Theoretical Population Biology 24,
268-294.

Slatkin, M. (1987). The average number of sites separating
DNA sequences drawn from a subdivided population.
Theoretical Population Biology 32, 42-49.

Tajima, F. (1983). Evolutionary relationship of DNA
sequences in finite populations. Genetics 105, 437-460.

Takahata, N. (1983). Gene identity and genetic differ-
entiation of populations in the finite island model.
Genetics 104, 497-512.

Takahata, N. & Nei, M. (1985). Gene genealogy and
variance of interpopulational nucleotide differences.
Genetics 110, 325-344.

Tavare, S. (1984). Line-of-descent and genealogical process,
and their applications in population genetics models.
Theoretical Population Biology 26, 119-164.

Watterson, G. A. (1975). On the number of segregating sites
in genetical models without recombination. Theoretical
Population Biology 7, 256-276.

Watterson, G. A. (1984). Lines of descent and the coaiescent.
Theoretical Population Biology 26, 77-92.

Wright, S. (1931). Evolution of Mendelian populations.
Genetics 16,97-159.

https://doi.org/10.1017/S0016672300027683 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300027683

