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Dynamics of particle aggregation in dewetting
films of complex liquids

J. Zhang1,†, D.N. Sibley1,†, D. Tseluiko1,† and A.J. Archer1,†
1Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
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We consider the dynamic wetting and dewetting processes of films and droplets of complex
liquids on planar surfaces, focusing on the case of colloidal suspensions, where the particle
interactions can be sufficiently attractive to cause agglomeration of the colloids within the
film. This leads to an interesting array of dynamic behaviours within the liquid and of the
liquid–air interface. Incorporating concepts from thermodynamics and using the thin-film
approximation, we construct a model consisting of a pair of coupled partial differential
equations that represent the evolution of the liquid film and the effective colloidal height
profiles. We determine the relevant phase behaviour of the uniform system, including
finding associated binodal and spinodal curves, helping to uncover how the emerging
behaviour depends on the particle interactions. Performing a linear stability analysis of
our system enables us to identify parameter regimes where agglomerates form, which we
independently confirm through numerical simulations and continuation of steady states,
to construct bifurcation diagrams. We obtain various dynamics such as uniform colloidal
profiles in an unstable situation evolving into agglomerates and thus elucidate the interplay
between dewetting and particle aggregation in complex liquids on surfaces.

Key words: colloids, drops, thin films

1. Introduction

The dynamics and equilibration of films and droplets of colloidal suspensions over
surfaces is an everyday process (Kalliadasis & Thiele 2007). Paints and coatings are a
classic example of such liquids. For example, dispersions containing polymer particles
are routinely used as paints (Keddie & Routh 2010). These are formulated so that the
pigment and other suspended particles remain well dispersed throughout the solvent liquid.
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However, this is not always the case; sufficiently strong attractive interactions between the
colloids can lead to agglomeration (Hansen & McDonald 2013). Such particle ordering
within liquid films on surfaces is of interest due to the resulting pattern formation having
potential uses for structure creation after the solvent liquid has evaporated, to leave a
dried-on structure. This includes the well-known coffee stain effect discussed by Deegan
et al. (1997) and also a wide variety of other ways that colloidal particles in thin liquid
films can organise themselves (Thiele 2014).

Particle suspensions are also used in the manufacture of structures on surfaces.
For example, inks containing conductive copper particles are used to form electrical
connections via ink-jet printing (Chalmers, Smith & Archer 2017b). Another application is
to use colloids which assemble naturally to form silicon photonic bandgap crystals (Vlasov
et al. 2001). In nature, bacterial colonies on surfaces are another example of particles
(the bacteria) in a liquid film (Mimura, Sakaguchi & Matsushita 2000; Trinschek, John &
Thiele 2018), although in this case the particles are also active particles.

There is much previous work on droplets wetting, spreading or dewetting from surfaces,
discussion of theories for contact line motion and the dynamical equations used to describe
liquids on surfaces, perhaps the most notable being the thin-film equation, obtained via
the lubrication approximation. There are several excellent reviews on this broad area,
including by De Gennes (1985), Oron, Davis & Bankoff (1997), Bonn et al. (2009), Craster
& Matar (2009), Lohse (2022) and Wilson & D’Ambrosio (2023). What is of interest here
is the dewetting behaviour of liquid films and in particular on how this is influenced by
(and coupled to) the aggregation/demixing of colloidal particles suspended in the liquid.
Dewetting is the process by which an initially uniform film on a surface breaks up into
droplets, leaving the surface bare in places. For pure liquids, this has been extensively
studied both in experiments, see e.g. Reiter (1992) and Seemann, Herminghaus & Jacobs
(2001), and in theory; for example, see Thiele, Velarde & Neuffer (2001) and Becker et al.
(2003).

Studies of the influence of suspended colloidal particles on the dynamics of liquid films
on surfaces include those of Parisse & Allain (1996, 1997) who observed that the colloids
can alter significantly the shape of the surface of droplets. They also developed a simple
model to explain the changes during drying. One way to model the influence of colloids on
droplet dynamics is via particle-based models. Typically, these have a stochastic dynamics,
generally referred to as kinetic Monte Carlo (KMC) models. This effective dynamics arises
because these are coarse-grained models: simulating over the relevant time scales the true
molecular dynamics of even a micron-sized droplet containing just a few colloids is just
not feasible even with modern computers, due to the huge numbers of solvent molecules to
be simulated. Examples of these sorts of KMC models include effective two-dimensional
(2-D) models, such as those of Rabani et al. (2003), Martin, Blunt & Moriarty (2004) and
Vancea et al. (2008), and also fully three-dimensional (3-D) models, such as the models
of Sztrum, Hod & Rabani (2005), Kim, Park & Hagelberg (2011), Chalmers et al. (2017b)
and Areshi, Tseluiko & Archer (2019); see also references therein.

Such considerations highlight the importance and need for coarse-grained continuum
models. Given the success of thin-film hydrodynamic models, it is natural to seek to
incorporate the influences of suspended colloids into such models. Thiele et al. (2009)
give a review of some of these approaches. Most directly connected with the KMC
models are those that use dynamical density functional theory (DDFT) to construct
coupled partial differential equations (PDEs) for the dynamics of the liquid and the
colloids over the surface (Archer, Robbins & Thiele 2010; Robbins, Archer & Thiele 2011;
Chalmers, Smith & Archer 2017a). The real value of the DDFT approach is that it is
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based on thermodynamics, building this into the resulting models correctly. The dynamical
equations are based on a free energy functional which incorporates the correct physics.
Here, we do not use a DDFT, but we do enforce that our theory be based on a free energy
functional having the necessary terms.

Hydrodynamic models of the thin-film-equation-type can also be constructed based on a
free energy functional (Mitlin 1993; Kalliadasis & Thiele 2007; Thiele et al. 2009; Thiele
2018). Here, we should also mention the work of Náraigh & Thiffeault (2010), who derived
a long-wave model, starting from the full model-H hydrodynamics. Improvements and
applications to various different problems can then generally be made by either adding
additional terms (additional physics) to the free energy functional or by modifying the
dynamical coefficients to take account of any additional kinetic mechanisms the system
may have. These include e.g. the work of Warner, Craster & Matar (2003), Frastia, Archer
& Thiele (2011, 2012) and Zigelman, Jabal & Manor (2019) on the formation of periodic
line deposits by drying colloidal films, or the work in Thiele, Archer & Pismen (2016)
describing liquid films containing surfactant molecules. In Náraigh & Thiffeault (2010)
and Thiele (2011), models consisting of a pair of coupled equations for the dynamics of the
film height and the local height-averaged concentration of the colloids were derived. These
works, and also Thiele, Todorova & Lopez (2013), showed that dewetting can be triggered
by the coupling between the film height and concentration fluctuations. Such fluctuations
are typically thermal in origin; the recent work of Zhang, Sprittles & Lockerby (2019)
and Zhao et al. (2022) explain well how the microscopic (molecular) scale properties of
liquid films connect to the mesoscopic scales at which the thin-film equation operates. The
thermal fluctuations lead to a stochastic term in the equations (Grün, Mecke & Rauscher
2006) that becomes important in certain regimes, such as when there is the possibility of
holes in the film to be nucleated.

The thin-film hydrodynamic model that we develop here builds on the results in Thiele
(2011), Thiele et al. (2013) and Todorova (2013). As derived in these works, the free energy
can be rather general, but then in their subsequent analysis the authors assume that the
interactions between the colloids are such that there is no aggregation and that when the
film thickness becomes large the colloids remain well dispersed in the (bulk) liquid. One
can go beyond this by including additional terms in the free energy to incorporate the
effect of the interactions between the colloids. This was the approach taken in Náraigh &
Thiffeault (2010) and also in the recent study conducted by Diez et al. (2021), where a
thin-film model for the decomposition and dewetting of nanoscale alloys was developed.
Their theory is based on a simple Cahn–Hilliard-type (Hilliard & Cahn 1958; Cahn 1965;
Langer 1992) double-well free energy, appropriate to the binary alloys they consider. But
for the colloidal suspensions of interest here, we must go beyond this by including in the
free energy both the logarithmic ideal-gas term (in order to correctly describe the low
density limit), as well as terms describing the effect of the attractions and steric repulsions
between the colloids.

It should be mentioned that the thin-film models discussed above, together with the
theory we develop here, all assume that the distribution of the colloids over the surface
can be described by a height-averaged field, i.e. averaging the local concentration of the
colloids over the direction perpendicular to the substrate. This assumption is valid in many
cases, but it is not always the case. To include the effect of variations in the local density
of the colloids perpendicular to the substrate one must e.g. take the approach of Maki &
Kumar (2011), who use the thin-film approximation to describe the solvent liquid, but then
describe the transport of the colloids within the film with the full convection–diffusion
equation. Alternatively, one can use DDFT models, such as that of Chalmers et al. (2017a),
although this neglects some aspects of hydrodynamic flow over surfaces.
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Liquid + Particles 
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Figure 1. Illustration of the system we consider. Panel (a) is a sketch of a droplet of a colloidal suspension
deposited on a surface. Panel (b) is the cross-section sketch with system size Lx. Here, h(x, y, t) is the film
height and φ(x, y, t) is the effective local concentration.

This paper is organised as follows: in § 2, we discuss how to extend the pair of coupled
thin-film equations from Thiele (2011) to incorporate colloidal interactions and thus allow
for the possibility of particle agglomeration, if the attractive interactions are strong enough.
A linear-stability analysis of the resulting equations is conducted in § 3, together with a
brief explanation of the bulk (uniform film) phase diagram. In § 4 we present numerical
results from solving the coupled equations for the film height and concentration profiles
over time in one spatial dimension, i.e. assuming that the film is two-dimensional. Then,
in § 5, we present results from numerical continuation of stationary states as the system
size is varied, together with corresponding bifurcation diagrams showing how the various
different solutions originate and are connected. In § 6 we present results from solving the
coupled equations over time in two spatial dimensions, i.e. assuming that the film is fully
three-dimensional. Finally, in § 7 we present a few concluding remarks.

2. The thin-film model

Consider the dynamics of a film or droplet of a partially wetting liquid on a flat substrate,
which contains colloidal particles suspended inside the liquid. We introduce a Cartesian
coordinate system (x, y, z)with the x- and y-axes pointing along the substrate and the z-axis
perpendicular to the substrate – see figure 1. Particles that can be classified as colloids,
i.e. that remain suspended in the solvent liquid, typically have radii R in the range of
1 nm < R < 10 μm (Mewis & Wagner 2012). In our study we assume that the liquid is
incompressible and has constant surface tension γ and constant viscosity η. The variables
that we use to describe the system are the liquid-film height h(x, y, t) and the effective
colloid height ψ(x, y, t) = h(x, y, t)φ(x, y, t), which both change in the space and time
domains. The effective height ψ is the product of the film height, h and the dimensionless
local height-averaged colloid concentration, φ.

The governing equations for the dynamics of the coupled fields h and ψ can be written
as the following gradient dynamics system (Thiele 2011):

∂th = ∇ ·
[

Qhh∇ δF
δh

+ Qhψ∇ δF
δψ

]
, (2.1a)
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∂tψ = ∇ ·
[

Qψh∇ δF
δh

+ Qψψ∇ δF
δψ

]
, (2.1b)

where F[h, ψ] is the free energy of the system and Qij, with i, j = h, ψ , are the elements
of the film mobility matrix. When there is no slip at the surface, this takes the form (Thiele
2011)

Q =
(

Qhh Qhψ
Qψh Qψψ

)
= 1

3η

(
h3 h2ψ

h2ψ hψ2 + 3D̃ψ

)
. (2.2)

Note that, in the limit ψ → 0 (i.e. no colloids), (2.1) reduce to the usual thin-film equation
for a pure liquid, with mobility coefficient Qhh = h3/3η. Note also that φQhh = Qhψ =
Qψh and D̃ = a2/6π, where a is a molecular length scale, is a dynamical coefficient related
to the diffusion coefficient of the colloids in the liquid. We say more on this below. Here,
δF/δh and δF/δψ are functional derivatives of the free energy functional

F[h, ψ] =
∫∫ [

g(h)+ γ

2
|∇h|2 + hf

(
ψ

h

)
+ εh

2

∣∣∣∣∇
(
ψ

h

)∣∣∣∣
2
]

dx dy. (2.3)

The first term in the integrand, g(h), is the binding potential, which is the effective
interaction between the liquid–air interface and the solid–liquid interface below it. It
results from the molecular interactions in the liquid and so is short ranged, influencing
the system largely in the vicinity of the contact line. The derivative Π(h) ≡ −∂g/∂h is
the disjoining pressure. In this paper we use (Kalliadasis & Thiele 2007; Bonn et al. 2009;
Craster & Matar 2009)

g(h) = B
h3 − A

h2 , (2.4)

where here we take A and B to be constants. This commonly used approximation may be
obtained as the leading-order terms arising from an expansion of the full binding potential
in powers of 1/h (Dietrich 1988; Schick 1990; Hughes, Thiele & Archer 2015, 2017). In
particular, the term −A/h2, which dominates for large h and determines whether the liquid
wets the surface or not, originates from integrating over the van der Waals interactions
between molecules. A variety of different approximations for g(h) are used in the literature.
The main influence of the particular form of g(h) is to determine the contact angle droplets
make with the surface and whether the wetting transition which occurs as the value of A
is varied is either continuous or is a first-order transition (Dietrich 1988). However, even
subtle details such as the nature of the molecular ordering in the liquid in the vicinity of the
surface can influence the form of the biding potential (Hughes et al. 2017; Yin et al. 2017;
MacDowell 2019; Llombart et al. 2020). In Thiele et al. (2013) the case where A in (2.4)
is treated as a function of the colloid concentration φ is considered. Note that (2.4) can be
written as g(h) = B(1 − Ah/B)/h3. In other words, the ratio h̃ ≡ B/A is one of the relevant
length scales in our system and is the length scale we use in our non-dimensionalisation
below. This length scale is related to the thickness of the equilibrium precursor film, heq =
1.5h̃, which corresponds to the minimum of g(h), i.e. where g′(heq) = 0.

The second term in (2.3) describes the surface tension contribution and gives a
contribution to the free energy that is proportional to the area of the liquid–air interface
in the long-wave limit. Just the first two terms in (2.3) alone are what one would use to
describe a liquid film with no colloids involved and the dynamical equation that follows
from this is commonly used to describe the dewetting of liquid films.
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The third and fourth terms in (2.3) incorporate the contribution to the free energy
of the suspended colloids. Note that, since φ = ψ/h, the third and fourth terms in the
integrand of (2.3) together are simply h( f (φ)+ (ε/2)|∇φ|2), where f (φ) is a Helmholtz
free energy density that depends on the local height-averaged colloid concentration φ
(Thiele 2011; Thiele et al. 2013). In other words, we just use a simple square-gradient
approximation for the free energy of the colloids (Hansen & McDonald 2013). We seek
to model colloids that can agglomerate, i.e. that can exhibit colloidal demixing into
a colloid-rich phase that coexists with a colloid-poor phase, due to sufficiently strong
attractive interactions between the colloids. For example, depletion interactions due to the
presence of non-adsorbing polymers in the system can drive such phase separation (Mao,
Cates & Lekkerkerker 1995; Likos 2001; Hansen & McDonald 2013). In the limit where
the film thickness h remains constant, our aim is to make these terms lead to a generalised
Cahn–Hilliard equation for the local concentration field φ. Another way to say this is that,
when h = constant, the colloids are described by a simple DDFT with a square-gradient
approximation for the free energy (Hansen & McDonald 2013). Of course, because these
terms are coupled to the film height, in general h is not a constant and in particular, when
ψ is spatially varying, then so is h because of this. When the concentration of the colloids
is small, then the colloidal free energy density is just the ideal-gas contribution (Thiele
2011; Thiele et al. 2013, 2016; Hansen & McDonald 2013)

f ≈ fid = kBT
a3 φ ln(φ), (2.5)

where kB is Boltzmann’s constant, T is the temperature and a is a molecular length scale.
Note that this term, combined with the diffusive term involving D̃ in the mobility matrix
(2.2), results in the Einstein–Stokes relation for the diffusion coefficient of the colloids

D = D̃
η

kBT
a3 = kBT

6πRη
, (2.6)

when a = R. This construction means that, in the limit when h = constant and ψ is small,
(2.1) yield the diffusion equation for the local colloid concentration. However, in general
we cannot assume that the colloids act as an ideal gas. This means the Helmholtz free
energy density in (2.5) must be modified to take the colloid interactions into consideration.
In order to do this, we recall that a virial expansion for the pressure p (strictly, the osmotic
pressure of the colloids) is

p = kBT
[
ρ + B2ρ

2 + B3ρ
3 + B4ρ

4 + · · ·
]
, (2.7)

where ρ is number density of the colloidal particles (i.e. ρ ∝ φ) and the virial coefficients
Bn are coefficients that depend on temperature. From the thermodynamic identity

p = −f + ρμ, (2.8)

where the chemical potential of the colloids is (Hansen & McDonald 2013)

μ = ∂f
∂ρ
, (2.9)

we can then integrate (2.7) to obtain

f = kBTρ
[
ln(Λ3ρ)− 1

]
+ B2ρ

2 + 1
2

B3ρ
3 + 1

3
B4ρ

4 + · · · , (2.10)

where Λ is the thermal de Broglie wavelength. Recall that, if the colloid particles interact
via the pair potential u(r), which includes an effective solvent-mediated contribution
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(Likos 2001), then the second virial coefficient is (Hansen & McDonald 2013)

B2(T) = −2π

∫ ∞

0

[
exp

(
−u(r)

kBT

)
− 1

]
r2 dr. (2.11)

So, as the attractive interactions between the colloids increases in strength, then B2
becomes increasingly negative. At some point, it becomes sufficiently negative to drive
aggregation of the colloids, leading to phase separation into a colloid-poor ‘gas’ phase
and a colloid-rich ‘liquid’ phase. The density in the aggregated phase is determined by
the size of the colloids (i.e. the steric repulsions) and packing effects which are controlled
by the cubic and higher-order terms in (2.10). For simplicity, here, we just include one
higher-order term (the one with coefficient B4) and assume the following expression for
the free energy of the colloids (recalling φ ∝ ρ):

f (φ) = kBT
a3 φ lnφ − α

2
φ2 + β

4
φ4. (2.12)

Note that, if we instead retain the cubic B3 term, this does not lead to any significant
qualitative changes to the model. The key feature that the model must have, and we
enforce, is that the free energy is bounded from below for φ > 0 and has two minima,
corresponding to the colloidal gas and liquid phases, respectively. Our main reason for
retaining instead the quartic term is that the resulting model has some useful connections
to the Cahn–Hilliard equation (Cahn 1965). Thus, the parameter α ∝ −B2 models the
influence of the attractive interactions between the colloids and the term with coefficient
β incorporating the effect of the steric repulsions between the colloids.

Since there is also an interfacial tension between the colloidal-liquid and colloidal-gas
phases, we must have the fourth term in (2.3), where the parameter ε determines the value
of this interfacial tension. It turns out that ε can often be related to −B2 (Robbins et al.
2011; Hansen & McDonald 2013), but here we treat it as an independent parameter in the
model.

Recalling that φ = ψ/h, inserting (2.4) and (2.12) into (2.3) and scaling all lengths with
the length scale h̃ ≡ B/A, as follows:

h = h̃h∗, ψ = h̃ψ∗, x = h̃x∗, y = h̃y∗, (2.13a–d)

we can non-dimensionalise the free energy in (2.3) to obtain

F∗[h∗, ψ∗] ≡ F

γ h̃2
=
∫∫ [

1
2
|∇∗h∗|2 + A′

(
1

h∗3 − 1
h∗2

)

+K′ψ∗ ln
ψ∗

h∗ − α′

2
ψ∗2

h∗ + β ′

4
ψ∗4

h∗3 + ε′

2
h∗
∣∣∣∣∇ψ∗

h∗

∣∣∣∣
2
]

dx∗ dy∗. (2.14)

More generally, this can be written as

F∗[h∗, ψ∗] =
∫∫ [

1
2
|∇∗h∗|2 + g∗(h∗)+ h∗f ∗

(
ψ∗

h∗

)
+ ε′

2
h∗
∣∣∣∣∇ψ∗

h∗

∣∣∣∣
2
]

dx∗ dy∗,

(2.15)
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where g∗ and f ∗ are the dimensionless binding potential and colloid free energy,
respectively. Here, these take the specific form

g∗(h∗) = A′
(

1
h∗3 − 1

h∗2

)
, (2.16)

and

f ∗(φ∗) = K′φ∗ lnφ∗ − α′

2
φ∗2 + β ′

4
φ∗4. (2.17)

As a result, (2.14) depends on five dimensionless parameters, namely

A′ = A

γ h̃2
= B

γ h̃3
, K′ = kBTh̃

γ a3 , α′ = αh̃
γ
, β ′ = βh̃

γ
, ε′ = ε

γ h̃
. (2.18a–e)

From this, we can calculate the functional derivatives of the free energy with respect to
film height h and effective height ψ , which are required for the dynamical equations (2.1).
For reference, in Appendix A, we write down in full these functional derivatives and their
gradients. Scaling time as t = τ t∗, where

τ = 3ηh̃
γ
, (2.19)

we can write the dynamical equations (2.1) as the following non-dimensional equations:

∂h∗

∂t∗
= ∇∗ ·

[
h∗3∇∗ δF∗

δh∗ + h∗2ψ∗∇∗ δF∗

δψ∗

]
, (2.20a)

∂ψ∗

∂t∗
= ∇∗ ·

[
h∗2ψ∗∇∗ δF∗

δh∗ +
(

h∗ψ∗2 + a∗2

2π
ψ∗
)

∇∗ δF∗

δψ∗

]
, (2.20b)

with dimensionless molecular length scale a∗ = a/h̃. It is worth noting that the typical
(precursor-film) velocity in our system, U ≡ h̃/τ , corresponds to a capillary number, Ca ≡
ηU/γ ∼ O(1). Henceforth, we abandon the superscript ‘∗’ on all quantities and deal solely
with the non-dimensional variables and parameters.

3. Linear-stability analysis, bulk phase diagram and dispersion relation

3.1. Linear-stability analysis
To determine the parameter values for which a uniform film with h = hi and ψ = ψi is
stable, where hi and ψi are constants, we perform a linear-stability analysis. To do this, we
substitute the following ansatz:

h = hi + κ exp(i(kxx + kyy)+ ωt), (3.1a)

ψ = ψi + χ exp(i(kxx + kyy)+ ωt), (3.1b)

into the coupled pair of (2.20) and then linearise in the amplitudes κ and χ , which are
assumed to be small. This corresponds to a sinusoidal perturbation with dimensionless
wavevector k ≡ (kx, ky) and dimensionless dispersion relation (growth rate) ω. The aim
is to obtain the dependence of ω on the wavenumber k = |k| and in particular the sign
of ω(k). If ω(k) > 0 for any k, then the uniform film is unstable, since this indicates the
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perturbations in (3.1) grow over time. Taking together (2.20) and (3.1), Taylor expanding
and then linearising in κ and χ , we obtain the system

ω

[
κ

χ

]
=
[

C1 C2
C3 C4

] [
κ

χ

]
= C̄

[
κ

χ

]
, (3.2)

where the matrix C̄ can be written as the product of two matrices, C̄ = Q̄J̄ , where the first
is the linearised mobility matrix (cf. (2.2))

Q̄ = h3
i

⎡
⎣ 1 φi

φi φ2
i + a2φi

2πh2
i

⎤
⎦ , (3.3)

and the second is the following (largely thermodynamic in origin) matrix:

J̄ = −k2

⎡
⎣k2 + g′′(hi)+ φiF̄ −F̄

−F̄
1
φi

F̄

⎤
⎦ , (3.4)

where F̄ = (φi f ′′(φi)+ ε′φik2)/hi = (K′ − α′φi + 3β ′φ3
i + ε′φik2)/hi, and where we use

∂h/∂t = ωκ exp(i(kxx + kyy)+ ωt) and ∇h = ikκ exp(i(kxx + kyy)+ ωt), together with
corresponding derivatives of ψ . The Jacobian matrix coefficients for our specific g and f
are

C1 = −h3
i k2

[
k2 + A′

(
− 6

h4
i

+ 12
h5

i

)]
, (3.5)

C2 = 0, (3.6)

C3 = −h3
i k2φi

[
k2 + A′

(
− 6

h4
i

+ 12
h5

i

)]
+ a2φi

2π
k2
[
K′ − α′φi + 3β ′φ3

i + ε′φik2
]
,

(3.7)

and

C4 = − a2

2π
k2
[
K′ − α′φi + 3β ′φ3

i + ε′φik2
]
. (3.8)

Note that C3 = φi(C1 − C4). We also observe that C2 = 0, which originates from the
multiple cancellations of terms that occur when the functional derivates of the free energy
are substituted into the dynamical equations (see Appendix A), and it is an expression of
the fact that bulk concentration gradients do not drive osmotic flow. In order to find the
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relationship between ω and k, we simply find the eigenvalues of the matrix

[
C1 − ω C2

C3 C4 − ω

]
. (3.9)

The first eigenvalue is

ωh = −h3
i k2

[
k2 + A′

(
− 6

h4
i

+ 12
h5

i

)]
, (3.10)

and the second is

ωψ = − a2

2π
k2
[
K′ − α′φi + 3β ′φ3

i + ε′φik2
]
. (3.11)

It is because C2 = 0 and C3 = φi(ωh − ωψ) that we obtain the simple results ωh = C1
and ωψ = C4.

By writing the Jacobian matrix as the product of two symmetric matrices (shown in
(3.3)–(3.4)) and noting also that Q̄ is positive definite allows one to write the linear
problem as a generalised eigenvalue problem and therefore to directly deduce that
(i) all eigenvalues are real, and that (ii) the stability thresholds do not depend at all on
the mobility coefficients in Q̄, which is what one must expect, given the overall gradient
dynamics structure in (2.1).

Note also that ωh is the dispersion relation that is obtained for a pure liquid film, in the
limit ψ → 0. Moreover, ωψ is the dispersion relation that is obtained when considering
just the colloids evolving in a liquid film that remains constant in thickness for all
time. In other words, there is no coupling between film-height fluctuations and colloidal
concentration fluctuations at the linear level. It is only at the nonlinear level that they are
coupled. If we were to replace the binding potential in (2.4) with one including a coupling
between ψ and h, then our linear decoupling would no longer occur, as in the models of
Náraigh & Thiffeault (2010) and Thiele et al. (2013). Such a coupling may even push an
otherwise stable systems over the instability threshold.

Because of the decoupling just mentioned, the standard pure-liquid-film condition for
ωh(k) > 0 also applies here, i.e. one must have

∂2g
∂h2

∣∣∣∣
hi

= A′
(

− 6
h4

i
+ 12

h5
i

)
> 0. (3.12)

The limit of linear stability for the liquid film is thus the locus in the phase diagram of the
equation

∂2g
∂h2

∣∣∣∣
hi

= 0. (3.13)

From (3.12) we see that this linear-stability threshold is simply hi = 2, i.e. for hi > 2
the film is linearly unstable. Note, however, that, when hi becomes large, the growth
rate becomes very small and the unstable wavenumbers also become very small, i.e.
corresponding to large length-scale instabilities.
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Similarly, for the colloids to be stable, with ωψ(k) ≤ 0 for all k, we must have

∂2f
∂φ2

∣∣∣∣
hi,ψi

= K′ − α′φi + 3β ′φ3
i > 0. (3.14)

The corresponding limit of linear stability is just the locus in the phase diagram of the
equation

∂2f
∂φ2

∣∣∣∣
hi,ψi

= 0. (3.15)

Owing to the fact that we derive our dynamics from the free energy functional, as we show
in the following subsection, this condition for the spinodal (onset of linear instability)
for colloidal phase separation is precisely the same as that we obtain from the standard
thermodynamic definition of the spinodal.

3.2. Bulk phase diagram for the colloids
When the colloids agglomerate, the system separates into two phases, one with colloid
concentration φa and the other with concentration φb. These two phases are in
thermodynamic coexistence. The values of φa and φb vary as a function of the temperature
and the other parameters in the model (i.e. K′, α′ and β ′). A plot of φa and φb in the
temperature vs concentration plane yields the binodal curve. In the same diagram, we can
also plot the spinodal curve from (3.15). These two curves meet at a single point in the
phase diagram, namely the critical point (Hansen & McDonald 2013). The binodal curve
separates the single-phase and two-phase-coexistence regions of the phase diagram, while
the spinodal curve is the linear-stability boundary: i.e. the system is linearly unstable if
we choose the parameters so that the system is initially uniform and inside the spinodal
curve. The phase diagram for our model is shown in figure 2, and here we discuss how it
is constructed.

The binodal curve (coexisting states) can be determined by considering the
thermodynamic requirements for two different phases to coexist: namely, they must be
in thermal, mechanical and chemical equilibrium. This means that for phases a and b the
temperature, pressure and chemical potential must be simultaneously equal

Ta = Tb, pa = pb, μa = μb. (3.16a–c)

The first condition is equivalent to the requirement that the value of K′ be the same in
both phases – see (2.18b). Taking the second and third conditions, using the expressions
in (2.8) and (2.9) for p and μ and remembering that the density of the colloids ρ ∝ φ,
we obtain the following pair of simultaneous equations to be solved for the two coexisting
concentrations φa and φb:

∂f
∂φ

∣∣∣∣
φ=φa

= ∂f
∂φ

∣∣∣∣
φ=φb

, (3.17)

and [
φ

(
∂f
∂φ

)
− f

]∣∣∣∣
φ=φa

=
[
φ

(
∂f
∂φ

)
− f

]∣∣∣∣
φ=φb

. (3.18)

Solving these for fixed α′ and β ′ and for a range of values of K′ yields the binodal
curve. The corresponding spinodal is obtained from (3.15). These are shown in figure 2
for three different values of β ′/α′ = β/α. We plot the binodal and spinodal curves in the
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Figure 2. Bulk colloid phase diagram in the plane of dimensionless temperature K′/α′ = kBT/(αa3) vs
colloid concentration φ, for the three values of β ′/α′ = β/α = 0.8, 1 and 2. The solid lines are the binodals
and the dashed lines are the corresponding spinodals. The circles identify coexisting colloid concentrations for
the particular temperature K′/α′ = 0.15 and β ′/α′ = 1, that are referred to in § 4.1.

dimensionless temperature K′/α′ = kBT/(αa3) vs concentration φ plane. One can see that
K′/α′ and β ′/α′ are the relevant ratios to consider, by simply taking the spinodal condition
obtained from (3.15) (see also (3.14)) and dividing through by α′ to obtain the following
expression for the spinodal:

K′

α′ = φi − 3
β ′

α′φ
3
i . (3.19)

From our dynamical equations, we identify the spinodal as a linear-stability threshold.
However, from the thermodynamic point of view, it is the line in the phase diagram at
which the isothermal compressibility χT diverges. This compressibility can be evaluated
as (Hansen & McDonald 2013)

χT = 1
φ

∂φ

∂p
. (3.20)

From this expression, together with (2.8) and (2.9), one can easily show that that the
spinodal condition in (3.15) is precisely the line in the phase diagram where χT → ∞.

Inspecting figure 2, we see that increasing the ratio β ′/α′ moves the critical point to
the left and downwards in the phase diagram. Recall that β ′ is the parameter originating
from the steric repulsions between the colloids and α′ is related to the strength of the
attraction between the colloids. Thus, adjusting the ratio β ′/α′ for fixed K′/α′ varies the
value of φ in the dense colloidal phase, while at the same time also shifting the critical
point. As long as β ′/α′ ∼ O(1), the precise value makes very little difference qualitatively
to the behaviour of our model. Thus, henceforth, we fix β ′/α′ = 1 (so that our phase
diagram roughly matches some of the typical colloid phase diagrams displayed in chapter
12 of Hansen & McDonald 2013, and references therein) and vary just the ratio K′/α′ =
kBT/(αa3), which is equivalent to either varying the temperature or the strength of the
attraction between the colloids. On the other hand, if modelling a particular experimental
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system, then adjusting the values of β ′/α′ and K′/α′ to values different to those used here
may be more appropriate.

3.3. Dispersion relations
Having obtained the dispersion relations (growth rates) in (3.10) and (3.11), we now discuss
the different possible stability regimes. As mentioned already, the liquid film is unstable
for hi > 2 and for all A′ > 0, where we have ωh(k) > 0 for a band of wavenumbers 0 <
k <

√
2kh, where

kh =
√

3A′hi(hi − 2)
h3

i
(3.21)

is the fastest-growing mode, i.e. ωh(kh) is the maximum growth rate. The largest possible
value of kh is kmax

h = 2
√

60A′/125 ≈ 0.124
√

A′, which occurs when hi = 2.5.
Similarly, the colloids are unstable when the concentration takes a value inside the

spinodal, where f ′′(φ) < 0 (see (3.14) and figure 2) and also where ωψ(k) > 0 for a band
of wavenumbers 0 < k <

√
2kψ , where

kψ =
√

−(K′ − α′φi + 3β ′φ3
i )

2ε′φi
, (3.22)

which is the fastest-growing mode, i.e. ωψ(kψ) is the maximum growth rate. The largest
possible value of kψ = kmax

ψ occurs when φi = (K′/6β ′)1/3, which corresponds to a curve
in the phase diagram ∝ φ3

i that passes through both the origin and the critical point and
where

kmax
ψ =

√√√√√√α′ −
((

9
2

)2

K′2β ′
)1/3

2ε′
. (3.23)

Thus, we see that in general there are four possible stability scenarios, with four
corresponding arrangements for the dispersion relations ωh and ωψ : (a) both the liquid and
the colloids are stable (see figure 3a); (b) the liquid film is unstable, but the colloids are
stable (see figure 3b); (c) the liquid stable, but the colloids are unstable (see figure 3c); and
finally, (d) both are unstable (see figure 3d). In all cases we set β ′/α′ = 1, corresponding
to the middle of the three phase diagrams in figure 2.

When both the liquid film and the colloids are unstable, then there are four possible
arrangements of the dispersion relations, related to the question of whether kψ >
kh or not and which lead to the fastest growth rate, i.e. whether ωψ(kψ) > ωh(kh)

or not. Recall that the fastest-growing modes kh and kψ each correspond to initial
fastest-growing wavelengths λh = 2π/kh and λψ = 2π/kψ , respectively. Thus, suppose
ωψ(kψ) < ωh(kh), so that the fastest-growing mode is that corresponding to perturbations
of the film height. When kψ > kh, then the wavelength of the fastest growing film-height
mode is longer than the corresponding fastest mode in the colloidal demixing. In
contrast, when kψ < kh, then the wavelength of the fastest film-height mode is shorter
than the fastest colloidal demixing mode. However, when ωψ(kψ) > ωh(kh), then the
fastest-growing mode is that due to colloidal demixing and this can have a wavelength
either longer or shorter than the fastest-growing film-height mode, depending on whether
kψ > kh or not. All four of these cases are possible, depending on the choice of parameters
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Figure 3. Dispersion relation for four cases with A′ = 1, K′ = 0.15, ε′ = 0.4 and a2 = 100. In case (a), both
the film height and colloids are stable (hi = 1.9 and φi = 0.15). In case (b), the film height is unstable and
colloids are stable (hi = 2.2 and φi = 0.15). In (c) the film height is stable and colloids are unstable (hi = 1.9
and φi = 0.17). In (d), both the film height and colloids are unstable (hi = 2.5 and φi = 0.17).

in (3.10) and (3.11). Note that it is the presence of the two interfacial tensions γ ∝ 1/A′
and ε′ in the denominators of (3.21) and (3.22), respectively, that are the main players in
determining the characteristic length scales λh and λψ .

4. Numerical results

We return to the full non-dimensional system in (2.20), which are a pair of coupled
PDEs that are first order in time and fourth order in each spatial variable. As illustrated
in figure 1, here, we consider Cartesian coordinates in both the case of a single spatial
variable x, representing a 2-D colloidal droplet, and the case of spatial variables (x, y),
representing the 3-D situation. To complete the PDE system, we must supply appropriate
initial conditions for the dependent variables h and ψ , and for simplicity in all situations
we solve our system with periodic boundary conditions.

To obtain solutions of the full system, we developed independent codes for the 2-D and
3-D situations in MATLAB. For the spatial derivatives we use central finite differences
with the periodic boundary conditions included. We choose a sufficiently large number of
spatial discretisation points for a converged simulation – i.e. we performed convergence
tests (not displayed) with varying mesh spacing to check convergence. In our 2-D code we
solve in a spatial domain x ∈ [0, Lx)with 500 discretisation points, and in three dimensions
in (x, y) ∈ [0, Lx)× [0, Ly) with 110 points in either direction. To integrate in time, we use
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the variable-step, variable-order solver ode15s from Shampine & Reichelt (1997) which
efficiently allows for integrating over many orders of magnitude in time whilst capturing
processes on fast times scales. Due to the adaptive nature of ode15s a time step is not
prescribed, but absolute and relative error tolerances were set to 10−9 for all computations.
Note that decreasing the tolerances by an order of magnitude does not qualitatively change
our results.

In order to verify our codes and investigate the behaviour of colloidal liquids from our
model, we conduct a series of simulations and compare the results with the theoretical
dispersion relations from § 3. For this, we set initial conditions as flat profiles with
perturbations

h(x, t = 0) = h0(x) ≡ hi + Ai(x),

ψ(x, t = 0) = ψ0(x) ≡ ψi + Bi(x),

}
(4.1)

where 0 ≤ x < Lx. When discretised like the fields h and ψ , at each lattice point, the
perturbations Ai(x) and Bi(x) are small-amplitude randomly generated numbers uniformly
distributed in (−εh, εh), (−εψ, εψ), where we retain control of the orders of magnitude of
the perturbations of the film height and colloid profiles εh and εψ , respectively. This initial
condition corresponds to an initially uniform-height well-mixed liquid layer deposited on
the surface, with the small-amplitude perturbations corresponding to the small variations
that always exist either due to the manner in which such films are deposited on surfaces or
due to the thermal fluctuations that are always present on colloidal scales.

The initial conditions (4.1) mirror the linear-stability analysis ansatz (3.1), allowing a
direct comparison between analytical and numerical results. The early evolution from
near-flat profiles is visually unremarkable, however, the modes of growth become clear
upon transformation into Fourier space. For example, even the wavenumber k that
corresponds to the fastest-growing mode of wavelength λh = 2π/kh or λψ = 2π/kψ can
only be distinguished at early times from initially selected noise after Fourier transform.
It is thus more convenient to directly compare the analytical and numerically evaluated
dispersion relations. To do this, we Fourier transform our variables as ĥ = F(h) and
ψ̂ = F(ψ), where F(·) denotes the Fourier transform, such that the linearised dynamical
equations (2.20) (cf. (3.2)) become[

∂tĥ
∂tψ̂

]
=
[

ωh 0
φi(ωh − ωψ) ωψ

] [
ĥ
ψ̂

]
. (4.2)

Noting that the ĥ equation decouples (as discussed in § 3, due to C2 = 0), we can directly
find an analytical solution. We then solve for ψ̂ in terms of ĥ, i.e.

ĥ(t) = ĥ0 exp(ωht), (4.3a)

ψ̂(t) =
(
ψ̂0 − φiĥ0

)
exp(ωψ t)+ φiĥ0 exp(ωht), (4.3b)

where ĥ0 and ψ̂0 are the Fourier transformed initial conditions and φi = ψi/hi. From this
result, we can rearrange (4.3) to obtain the computational ωh and ωψ as

ωh = 1
t

ln

(
ĥc(t)

ĥ0

)
, (4.4a)

ωψ = 1
t

ln

(
hiψ̂c(t)− ψiĥc(t)

hiψ̂0 − ĥ0ψi

)
, (4.4b)
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Figure 4. Results for a case with A′ = 2, K′ = 0.15, α′ = 1, ε′ = 0.5, a2 = 2, hi = 2.2 and φi = 0.4.
(a) Dispersion relation calculated numerically via (4.4) using εh = 10−7, εψ = 10−5 (symbols) compared with
the analytic results in (3.10) and (3.11) (lines). (b) Measure of the evolution (cf. (4.5)).

with ĥc(t) and ψ̂c(t) being the Fourier transforms of the computed results at any time t > 0.
The time we end the simulation must remain within the linear regime for comparison with
the linear-stability analysis, since at later times it departs from the linear regime, as the
higher-order terms become significant and more complex evolution of the system occurs.
To see when this occurs, it is instructive to consider ln |h − hi| (equivalently ln |ψ − ψi|)
at a point in the domain, since rearrangement of (3.1) gives that

ln |h − hi| ∼ ωht + · · · , (4.5)

and thus the slope of ln(max|h − hi|) against t gives an approximation of ωh(kh). We
discuss these results in the context of various cases next.

4.1. Case when the film height instability is dominant and kh < kψ
As a first case, we consider a situation where ωh(kh) > ωψ(kψ), i.e. the film height
instability grows faster and dominates over any colloidal modes, and also where kh < kψ ,
so it is at longer wavelength. The relevant dispersion relations are shown in figure 4(a).
Using the results in (4.4) to numerically evaluate the dispersion relations we can verify
our numerical scheme through comparison with the analytical results in (3.10) and (3.11),
which show excellent agreement.

In figure 4, we set the system length Lx = 200, with model parameters selected as A′ =
2, K′ = 0.15, α′ = 1, ε′ = 0.5 and a2 = 2, with hi = 2.2 and φi = 0.4 and, as previously
mentioned, we fix β ′/α′ = 1 throughout. In figure 4(a) we see that the computational
results (magenta dots for h and black circles for ψ) lie on the analytical dispersion relation
curve, with little error. Errors increase with system length Lx, since more growing modes
fit in the domain (recall that all possible Fourier modes must satisfy our periodic boundary
conditions), which then couple/interfere at an earlier stage in the dynamics. Through
numerical experimentation we regularly see excellent agreement between the numerical
and analytical values for the film-height eigenvalue ωh, whereas for the colloids there can
be deviations of the numerical results from the analytically obtained curve ωψ ; they do,
however, always follow the correct trend. This comparison makes for a very sensitive test
of the numerics.
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Next, we consider the evolution over time of the fastest-growing mode through our result
in (4.5). In figure 4(b) we plot the logarithm of the maximum difference (as a function of
position) between the initial and evolving heights. For this case, the film-height instability
dominates, which is demonstrated by the slope of 0.0055, matching the value of ωh(k =
kh) from figure 4(a) with negligible error (cf. the slower maximum growth rate of the
colloids is ωψ(k = kψ) = 0.0013). Additionally, we can predict that the system exits the
linear regime when εheωht ≈ 1, i.e. around t ≈ 3000, which corresponds well with the
region where linearity starts to be lost in figure 4(b). Note that the first few points of the
curves in figure 4(b) do not correspond to the fastest-growing mode. This is because for
simplicity we have chosen to quantify the evolution by considering the maximum change
from the initial condition. The randomness of the initial condition (4.1) dictates that this
does not initially coincide with a location demonstrating the growth of the fastest-growing
mode. Thus, different random seeds exhibit minor differences, until the fastest-growing
mode dominates over the effect of the choice of randomness. We further note that our
result for ψ in figure 4(b) shows that, after t ≈ 1500, it does not grow with rate ωψ(kψ),
due to being coupled to h; i.e. after t ≈ 1500 the fastest-growing modes for both h and ψ
are those with wavenumber kh.

From the wavenumbers kh and kψ of the fastest-growing modes in the system, the
corresponding wavelengths λ = 2π/k and the length of the system Lx = 200, we can
predict the number of peaks that initially form in the system. Using the values of kh and
kψ in (3.21) and (3.22), i.e. at the peaks in ωh and ωψ , together with the figure 4 parameter
values, we have λh ≈ 42 and λψ ≈ 15, so we expect at early times approximately 4 peaks
in the film height, and 13 for the colloids. This is confirmed in figure 5, which displays the
full time evolution of both h and φ.

Having observed the agreement between our analytical and numerical results in the
linear regime, it is interesting to explore the longer-time dynamics of our system. Figure 5
shows an example evolution, where we display the film height h(x, t) in figure 5(a), the
colloidal concentration φ(x, t) in figure 5(b), the final profiles of the system in figure 5(c)
and the free energy of the system against time in figure 5(d). We can see that the free
energy of the system always decreases over time. At early times we see the exponential
growth or decay of modes as predicted by the linear theory. This corresponds to a decay
of the small-wavelength modes, so the profiles initially appear to become smoother,
but longer-wavelength unstable modes grow in amplitude, so that after some time the
system starts forming peaks. As mentioned, the number of peaks is determined by the
fastest-growing modes and can be predicted by considering the dispersion relations. In
figure 5(a) these peaks become visible at t ≈ 2.5 × 103 for the film height h, with the
subdominant instability in the colloid profile taking longer to become visible, at around
t ≈ 104, as can be seen in figure 5(b).

The dynamics after the initial linear-growth regime can be complex, with evolution due
to capillarity of the film height, spinodal decomposition and coarsening of the colloids, as
well as dynamics driven by the coupling between the two. In the case shown in figure 5(a),
multiple small droplets initially form and then subsequently coalesce, with translation
occurring as a consequence of the coalescence events. The evolution is somewhat similar
to that typically observed for films of a pure liquid evolving from a uniform film to form
droplets and then ultimately a single droplet, as the liquid dewets from a surface. However,
the major difference in the case here is that there are two sudden translations of the droplet
around t = 2.3 × 107 and t = 3.2 × 1010, both of which arise through the coupling to the
colloid concentration profile, which is exhibiting coarsening via Ostwald ripening – i.e.
diffusion of colloids from one dense region to another through the low density regions
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Figure 5. Panel (a) shows a waterfall plot of the local film height over time and (b) shows the corresponding
local concentration of colloids. Both use a logarithmic scale in t. Panel (c) shows the final equilibrium profiles.
These are for A′ = 2, K′ = 0.15, α′ = 1, ε′ = 0.5, a2 = 2, hi = 2.2 and φi = 0.4. In (c), the dashed black
horizontal lines denote the two coexisting φ values, indicated in figure 2. Panel (d) shows the free energy of
the system against time.

(Lifshitz & Slyozov 1961; Wagner 1961) – to reduce the number of colloid-rich regions
from 3 to 2, and then from 2 to 1.

Consider now the colloid evolution displayed in figure 5(b): the phase diagram in
figure 2 shows that, for a given temperature (K′/α′), there are two equilibrium values
of φ that occur in a bulk system. These are indicated by the circles in figure 2, with
concentrations φ1 = 0.08 and φ2 = 0.6. Their respective values being the intersection
points between the horizontal temperature line and the corresponding binodal curve. These
are the values that the colloidal concentration wants to evolve towards, with the interfacial
tension term in our model (the term with coefficient ε in (2.3)) penalising interfaces and
thus driving the system to have as few regions of dense/sparse colloids as possible. This
is indeed observed, with regions of high density having a clear plateau that corresponds
to the dense state point, and these regions evolving in a similar way to droplets through
translation and coalescence or joining through Ostwald ripening. Whether aggregation
occurs through translation and joining or through the Ostwald mode depends on the
state point, size of the droplets and distance between them. The situations in which
each coarsening mode dominates can be understood and determined using the methods
presented in Pismen & Pomeau (2004), Glasner & Witelski (2005), Glasner et al. (2009),
Dai (2010), Pototsky, Thiele & Archer (2014) and Henkel, Snoeijer & Thiele (2021).
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Figure 6. Results for a case with A′ = 1, K′ = 0.13, α′ = 1, ε′ = 0.5, a2 = 10, hi = 2.5 and φi = 0.4.
(a) Dispersion relation calculated numerically via (4.4) using εh = 10−7, εψ = 10−5 (symbols) compared with
the analytic results in (3.10) and (3.11) (lines). (b) Measure of the evolution (cf. (4.5)).

For visual ease, and to highlight the relation to the phase diagram, we show the final
profile of the system in figure 5(c). In this final state we observe that all colloids gather
into a single region, with a single droplet too. Reaching equilibrium is slow for the film
height, and even more so for the colloidal coarsening. To verify this profile as being final,
we have separately considered the time evolution of the centre of mass and the free energy,
both of which reach a plateau. The approach to equilibrium is faster when considering a
3-D situation (two spatial variables x and y) since aggregation and droplet motion can
occur in different directions, accelerating the process.

4.2. Case when the colloidal instability is dominant and kh < kψ
A different case that is interesting to compare with the one in the previous subsection
is a situation where both the film height and colloid profiles remain linearly unstable,
with the fastest-growing mode for the film height being still at a longer wavelength
than that of the colloids, but we swap the relative growth rates of the instabilities, i.e.
ωψ(k = kψ) > ωh(k = kh), so that the colloid concentration fluctuations grow the fastest.
We use the following parameter values to achieve this situation: A′ = 1, K′ = 0.13, α′ = 1,
ε′ = 0.5, a2 = 10, hi = 2.5 and φi = 0.4. This situation is clear from the dispersion
relations displayed in figure 6(a), where once again the analytical and numerical results
show excellent agreement. The evolution of the profiles (not shown) is similar to that
displayed in figure 5, except the dominant early-time linear-stage dynamics, which instead
corresponds to the growth of colloidal concentration fluctuations. An interesting feature
of the dynamics in this case can be observed from figure 6(b), where Lx = 300. From
(4.5) we expect a linear-growth regime at early times, which we do indeed observe, with
the dominant colloid instability growing with a steeper slope than in the case shown in
figure 4. However, the line in figure 6(b) for the film height has a sharp turn, departing at an
early stage from its corresponding slower linear-growth regime. It is clear that the coupling
to the colloidal demixing drives this later growth, which occurs at a rate greater than the
rate predicted by linear analysis and therefore must be due to the nonlinear coupling terms.
This difference from the case displayed in figure 4 can be traced back to the top-right zero
in the matrix in (4.2), meaning that nonlinear couplings are required for fluctuations in ψ
to influence h.
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4.3. Two strongly coupled cases where the long-wavelength colloid instability dominates
It is now of interest to consider cases where the coupling between the film height and the
local colloid concentration is stronger. Inspecting the free energy in (2.14), we see that
terms involving both h and ψ have coefficients K′, α′, β ′ and ε′. To uniformly increase
the coupling between the two fields without changing the colloidal bulk phase behaviour
(rather than independently changing the relative strength of colloidal interactions,
interfacial tension, etc.), we increase all of these parameters whilst maintaining the values
of the ratios K′/α′, β ′/α′ and ε′/α′ the same. The parameter values we now use are:
A′ = 1, K′ = 11, α′ = β ′ = 100, ε′ = 4000, a2 = 100 and hi = 2.5. First, we consider the
case φi = 0.4. The dispersion relations (not displayed) show that the colloidal instability
dominates at longer wavelength (smaller k) than the film-height instability. From the
dispersion relations in (3.10) and (3.11) we obtain the fastest-growing wavelengths to be
λh = 52 and λc = 115, so in a system of length Lx = 300 we should observe around three
maxima to initially develop in the colloid concentration profile and six in the film height.
This simulation is displayed in figure 7(a–c), where we see that the early-time dynamics
agrees with this calculation.

The simulation reaches an equilibrium state, displayed in figure 7(c), where the film
height and colloid concentration profiles coarsen into a single drop. The equilibration
process is much faster than in the cases considered in the previous subsections as there
are fewer initial wavelengths, and the approach to equilibrium of the colloids is quicker
because the case we consider here in figure 7(a–c) has all terms in the free energy that
control the colloids multiplied by a factor of 100. The influence of the much stronger
coupling can be observed in figure 7(c), where either side of the droplet (peak in the
film height) there are deep depressions in the film height that correspond in location to
the interfaces between low and high density regions of the colloids. The influence of
the strong coupling can also be observed during the evolution in the waterfall plot in
figure 7(a), where these depressions appear as deep trenches. It is instructive to compare
the equilibria of figure 7(c) with figure 5(c). In the latter, there is weak coupling, and hence
the system evolves to a state where there is a droplet sitting on a precursor film at h ≈ 1.5,
corresponding to the ideal height based on the binding potential of our model, and the
droplet being of a shape dictated by conservation of mass from that given by the initial
condition and surface tension of the liquid. Similarly, the colloid concentration profile
evolves to plateaus at high and low density phases with values given in the phase diagram
in figure 2, with a minimum number of interfaces. By contrast, the highly coupled situation
displayed in figure 7(c) has distorted profiles. In particular, we see strong depletion regions
where the liquid height is significantly below the ideal precursor-film value, which occurs
so as to accommodate the mass of colloidal particles in a single region within the droplet,
and also the required interfaces between high and low density states. However, we would
caution against ascribing too much significance to details of the ordering observed in
the precursor film, since the most natural interpretation of films of this thickness is as
a monolayer adsorbed on the surface, where the thin-film equation is arguably not a good
description (Yin et al. 2017).

As mentioned, in figure 7(c) we observe that the colloids end up within the single final
droplet on the surface, i.e. the film height and the colloidal concentration profiles are in
phase in the final result. This is not always the case; the outcome largely depends on the
total amount of colloids within the system. In order to change the final result from being
in phase to anti-phase (an example of the latter is shown in figure 7( f )) we can control
the initial colloid concentration to a different location on the phase diagram in figure 2. In
the case shown in figure 7(d–f ), we decrease the initial average concentration to φi = 0.3,
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Figure 7. Waterfall plots (using linear t) of (a) the film height, and (b) the local colloid concentration, for A′ =
1, K′ = 11, α′ = β ′ = 100, ε′ = 4000, a2 = 100, hi = 2.5 and φi = 0.4. Panel (c) displays the final equilibrium
profiles. Panels (d–f ) show similar results, but with φi = 0.3, corresponding to a decrease in the total amount
of colloids in the system.

and achieve an anti-phase final result. We observe that the system is generally anti-phase
when the total concentration of colloids is low (i.e. lower φi, corresponding to locations
on the left-hand side of the phase diagram within the spinodal in figure 2), and in phase
for higher concentrations (i.e. higher φi, corresponding to locations on the right-hand side
within the spinodal). We investigate this matter further in § 5, with the aid of bifurcation
diagrams.
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Figure 8. Final equilibrium profiles corresponding to cases where (a) the colloids are stable (and the film
height is unstable) and (b) the film height is stable (with unstable colloids). The parameter values are the same
as those for figures 3(b) and 3(c), respectively.

4.4. Cases including stability of either film height or colloid profiles
As previously discussed, there are also situations where either a uniform film height or
colloid concentration can be linearly stable. The case where both are stable is obvious,
because in this situation any small perturbations in the initial profiles decay over time and
the profiles both become flat. We also analysed some cases with profiles where one of
the film height or colloid concentration profiles is stable, while the other unstable. Typical
dispersion relations for cases like these are shown in figure 3(b,c). Examples of equilibrium
profiles from our dynamic simulations are shown in figure 8.

In figure 8(a), we have stable colloids and unstable film height. The film height evolves
to form a droplet, while the concentration of the colloids remains roughly the same as
the initial concentration φi. As a result, the colloids follow the overall film height, as can
be seen in the field ψ , so that the colloid profile ends up in phase with the film height
profile. When the film height is stable, the system does not form a droplet. However, if
the colloids demix, the film height is still affected by the unstable colloids. For example,
in figure 8(b), we see that the colloids have separated into high and low density regions,
and the interfaces between these distort the film height such that, together, the profiles
minimise the overall free energy. We also notice that the computation time for this case is
much longer. This is because when the film is stable, the colloids lose the driving from the
film-height evolution, so the system reaches equilibrium in a much longer time. To put this
another way: when the film height remains roughly constant, the only process governing
the time evolution of the colloids is diffusive aggregation and this is a much slower process
than the liquid dewetting dynamics.

4.5. Dynamics leading to asymmetrical final profiles
In our explorations of the model, we have also observed cases where the final profiles
are asymmetrical. A typical example is displayed in figure 9, which occurs when A′ = 1,
K′ = 0.13, α′ = β ′ = 3, ε′ = 0.5, a2 = 2, hi = 2.5 and φi = 0.41. This corresponds to
the dimensionless temperature K′/α′ = 0.043, which is lower than in the cases considered
previously. Here, the coexisting colloid concentrations are φ1 = 0.00055 and φ2 = 0.77
(cf. figure 2), so there is a greater difference between these than in the cases considered
previously. The time evolution for a system of size Lx = 60 is displayed in waterfall plots
in figure 9(a,b), with the corresponding final profiles in panel (c) and dispersion relations
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Figure 9. Panels (a,b) show waterfall plots over time (using log t) of the film height and the local colloid
concentration, respectively, for A′ = 1, K′ = 0.13, α′ = β ′ = 3, ε′ = 0.5, a2 = 2, hi = 2.5 and φi = 0.41.
Panel (c) shows the final equilibrium profiles and (d) shows the dispersion relation for this system.

in (d). From the dispersion relations we see that the colloid mode is by far the fastest
growing in the early stages. Thus, in the dynamics we see this instability dominating
the overall dynamics and making the system exit the linear regime relatively quickly.
We also see the colloid concentration variations coupling strongly to the film height h.
Compared with the examples discussed previously, where we observe symmetric final
profiles with the colloids distributed evenly outside the droplet (see e.g. in figure 5c),
in the present case the coupling between h and φ is much stronger. Therefore, the colloidal
concentration variations are mirrored in the film-height variations over the surface. In
figure 9(a,b) the initial number of peaks that form in h and φ are accurately predicted by
the dispersion relation. Since the system evolves to minimise the free energy, plots of the
free energy always decreases over time (not displayed), with each decrease in the total
number of colloid agglomerates (bumps) visible in figure 9(b) corresponding to a step-like
drop in the total free energy. For some asymmetric cases we observe that, due to small
numerical round-off errors, the final droplet can very slowly slide at constant velocity over
the smooth surface. Such translations do not change the free energy. The sliding speed
depends on choice of grid spacing and the direction can change with a different set of
initial randomness. Of course, this cannot be a genuine feature, as confirmed with the aid
of bifurcation diagrams in § 5.4.
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5. System equilibrium and bifurcation diagrams

5.1. Bifurcation diagram for a simple case with small coupling
In the previous sections, we showed examples of the dynamics of our system for a range
of different parameters, and we noticed that the final film height and colloid concentration
profiles equilibrate to being either in phase (peaks, or high density regions occur at similar
positions) or anti-phase (where a peak in the film height corresponds to a lower density
of colloids). We now investigate systematically the dependence of the equilibrium profiles
on the system length Lx. We do this by producing bifurcation diagrams for some of the
cases previously considered. The bifurcation diagrams are generated using our in-house
numerical codes developed in MATLAB employing a spectral method, see, for example,
Lin et al. (2018) and Blyth et al. (2018); Blyth, Lin & Tseluiko (2023). Equations (2.20)
are rewritten as a dynamical system for the Fourier coefficients of h and ψ , which is
truncated at a sufficiently high wavenumber to ensure accuracy. Steady-state solution
profiles correspond to the fixed points of this dynamical system, resulting in a system
of nonlinear equations for the non-zero-wavenumber Fourier coefficients of h and ψ .
Two additional equations are obtained from requiring fixed average values of h and ψ .
Additionally, we pin the solutions such that h has a local extremum in the middle of the
domain, i.e. we impose the condition hx|x=Lx/2 = 0. This necessitates the introduction of
an additional unknown parameter, to maintain consistency between the number of imposed
equations and unknowns. To achieve this, we introduce a fictitious wave speed, c, resulting
in the addition of terms chx and cψx to the right-hand sides of (2.20a) and (2.20b),
respectively. This speed is trivially found to be zero in all continuation computations.
Various solution branches of the resulting system of nonlinear equations for different
parameter values are obtained by initially starting from small-amplitude nearly sinusoidal
solutions on a domain size close to a cutoff wavelength obtained from the linear stability
analysis. Numerical pseudo-arclength continuation is then performed, initially with respect
to the domain-size parameter, and subsequently with respect to other relevant parameters,
see, for example, Tseluiko, Baxter & Thiele (2013), Lin et al. (2016), Engelnkemper et al.
(2019) and Tseluiko et al. (2020) for more details on numerical continuation techniques
for liquid-film problems.

Our bifurcation diagrams depict the equilibria of our system when varying Lx and
keeping all other parameters fixed. Each realisation of the equilibrium profiles is
represented by a point in each diagram (one for h and one for ψ) corresponding to the
L2-norm of the profile, subtracting the profile average value hi or ψi, i.e.

‖h − hi‖ =
√∫ Lx

0
|h − hi|2 dx, (5.1)

and

‖ψ − ψi‖ =
√∫ Lx

0
|ψ − ψi|2 dx. (5.2)

In all the bifurcation diagrams shown here, blue lines represent continuation results
starting from the known initial linear instability in the film height and red lines are
similarly from the colloid instability (see § 3), termed here the film-height mode and the
colloid mode. However, due to the coupling between the film height and the local colloid
concentration, an instability in either affects both profiles, and hence both red and blue
lines appear on the bifurcation diagrams for the norm of the equilibrium profile for both h
and ψ . Sections of the branches corresponding to stable and unstable solutions are shown
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with solid and dashed lines, respectively. Bifurcation points to side branches are illustrated
using squares.

The bifurcation diagrams displayed do not show all possible branches, and hence not all
possible equilibria of our system, but those included are instructive for understanding the
dynamics of our system. Similarly, not all bifurcation points where the stability of solution
branches changes are displayed, but some are illustrated with squares. In later cases in this
section, some significant points where branches collide are discussed.

We begin by presenting the bifurcation diagrams in figure 10(a,b), which correspond
to the dynamical simulations discussed in § 4.1. The parameter values are A′ = 2, K′ =
0.15, α′ = 1, ε′ = 0.5, a2 = 2, hi = 2.2 and φi = 0.4. Solution branches corresponding
to inhomogeneous profiles begin on the x-axis at the points corresponding to where the
system is first big enough to fit one unstable wavelength. We can read from figure 4(a) the
largest wavenumbers when the system is unstable (the roots of ωh(k) = 0 and ωψ(k) = 0)
as kh0 = 0.215 and kψ0 = 0.535. Note that kh0 ≡ √

2kh and kψ0 ≡ √
2kψ , which can be

obtained from (3.21) and (3.22), respectively. The corresponding wavelengths are λh0 =
2π/kh0 = 29.2 and λψ0 = 2π/kψ0 = 11.7, and are accurately captured in the bifurcation
diagrams, figure 10(a,b), corresponding to the circular blue and red points on the x-axis,
where the norms equal zero.

As Lx is increased, the equilibrium profiles change. For h in figure 10(a), we see that
profiles on the two different branches originating from either the film-height or colloid
instability are very similar, since both norm lines lie very close to each other. However, for
ψ in figure 10(b), the norms are very different and correspond to very different profiles. To
illustrate this, we plot representative profiles for the points at Lx = 200 in figure 10(c,d). In
figure 10(c) the ψ profile is largely flat with a small central bump, whereas in figure 10(d)
the ψ profile has a larger central bump and shoulders extending into the flat-film region,
being significantly different from the flat solution, and thus has a much larger L2-norm.
This substantial difference is seen in figure 10(b), where the L2-norm at Lx = 200 on one
branch is roughly twice the value on the other. Additionally, we see in the representative
profiles in figure 10(c,d) that the maxima in both h and ψ occur together, which is the case
all along these solution branches. Hence, for this set of parameter values, we conclude that
profiles of any system length Lx have the colloids located in phase with the centre of the
droplet. We note that the solutions of the colloid-mode branch are linearly stable, whereas
the solutions of the thin-film mode branch are all linearly unstable. In addition, there are
a number of bifurcation points on the thin-film branch. Although we have not checked the
nature of all these bifurcation points, our preliminary analysis shows that most likely they
correspond to transcritical bifurcations. The side branches passing through these points are
not shown here, as the solutions of these branches are linearly unstable. We note also that
the equilibrium profiles in figure 10(d) agree well (up to horizontal translation) with the
final profiles after the dynamic evolution of our hydrodynamic model in figure 5, giving
confidence to both results.

5.2. Bifurcation analysis for a case with strong coupling
In § 4 we noted that the system can evolve to situations where the colloid local
concentration profile can end up being either in- or anti-phase with the film height. We now
investigate how this is manifested in the bifurcation diagrams showing the various possible
equilibrium solutions, and how the transition occurs. First, we display in figure 11(a,b)
bifurcation diagrams for the (stronger coupling) set of parameters used in figure 7(d–f ),
where the final profiles correspond to the film height and the colloid concentration profiles
being anti-phase.
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Figure 10. Bifurcation diagrams and final states for cases shown in § 4.1, where A′ = 2, K′ = 0.15, α′ = 1,
ε′ = 0.5, a2 = 2, hi = 2.2 and φi = 0.4. Panel (a) shows the film-height L2-norm corresponding to two main
branches of solutions for varying system size Lx. These originate from instabilities in either the film height
(blue) or in the colloid local concentration (red), shown with circles. Squares represent locations of bifurcation
points. Stable and unstable solutions are shown with solid and dashed lines, respectively. Similarly, (b) shows
the L2-norm of the corresponding ψ profiles. Panels (c,d) show equilibrium profiles from continuation at the
final Lx = 200 point in (a,b): (c) shows the film-height branch (blue lines in a,b), and (d) the colloid instability
branch (red dashed lines in a,b).

In figure 11(a,b) the two blue lines are branches of solutions corresponding to
instabilities in the film height. The first, as in figure 10, corresponds to one wavelength
(single droplet) in the system and the second, starting at double the wavelength of the
first branch, corresponds to profiles of two wavelengths (two droplets). As a result, the
starting point of the second film-height branch is at twice the value (system length Lx) of
the starting position of the leftmost branch. An example of a single wavelength solution
on the first branch is shown in figure 11(c), and an example of a two wavelength solution is
shown in figure 11(d) (recall that the domain is periodic in x). In the bifurcation diagram,
we also display (red line) the continuation along the colloid-mode branch, that crosses the
first film-height branch at the first bifurcation point, which turns out to correspond to a
transcritical bifurcation (as can be more clearly seen in the inset, discussed in more detail
later). The starting point of this branch is located to the left, at smaller Lx, of the second
film mode branch and they do not intersect. This corresponds to an anti-phase profile, with
a representative example shown in figure 11(e). This profile is the same as the one shown
in our dynamical simulation in figure 7( f ) with the droplet at a different location since in
dynamical simulation we used a randomly perturbed initial condition.
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Figure 11. (a,b) Bifurcation diagram for parameters as in figure 7(d–f ), where now a second blue line branch
corresponding to a double-droplet profile is depicted. The solid lines correspond to stable solutions, whereas
the dashed lines correspond to unstable solutions. (c–e) Equilibrium profiles from the film-height mode (c) first
film-height branch and (d) second film height branch; (e) equilibrium profiles from the colloid film mode.

The eigenvalues (not displayed) corresponding to solution branches displayed in
figure 11(a,b) show that the part of the first blue film-height branch before the first
bifurcation point is stable, and so is indicated as a solid line, while the rest of the branch is
unstable, indicated as a dashed (blue) line. The second blue film-height branch is entirely
unstable, so is all dashed.
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The red colloid branch starts out unstable until reaching the leftmost turning point,
except for the small part near where it crosses the film-height branch at the transcritical
bifurcation point. This part is magnified in figure 11(a) in the top inset and the stable
part is highlighted by the thicker red solid line. The branch becomes stable for a very
small section between the turning point and the first bifurcation point on the film-height
branch (corresponding to a transcritical bifurcation). The colloid branch is stable from the
leftmost turning point until Lx = 219.5, where it becomes unstable again for a very short
section (see the bottom inset).

When we increase the total average colloid concentration, the zero (neutral
wavenumber) in the dispersion relation for the colloids shifts to smaller k, making the
starting point for the branch of solutions corresponding to the colloid instability shift to
larger Lx (smaller k corresponds to larger wavelengths). A sufficient increase can make
the colloid branch start to the right of the second film-height branch. For such model
parameters (here changing φi from 0.3 to 0.4 and keeping all other values the same), as
we increase the system size Lx, we find that the colloid-mode branch now crosses the
second film-height branch, as shown in the corresponding bifurcation diagrams displayed
figure 12(a,b). In such a case, the colloid-mode branch crosses the second film-height
branch at a pitchfork bifurcation point. We show the profiles at the intersection point in
figure 12( f ). Note that, at this point, the solution has the period equal to half of the domain
size, but this symmetry is broken on the colloid branch away from this pitchfork bifurcation
point.

To obtain the equivalent colloid-mode branch for lower φi, we can take an already
computed equilibrium solution for φi = 0.3 (for instance at Lx = 200), continue the
solution in φi to the desired value φi = 0.4 at the same Lx and use this to then continue
forward and backward in Lx, to generate the full colloid-mode solution branch displayed in
figure 12(a,b) (red line). Doing this, on continuing backward in Lx we find that this branch
meets the second branch of the film-height bifurcation curve at a pitchfork bifurcation
point, rather than the flat state (horizontal axis of our figures). We also use continuation to
take the system forwards to Lx = 300. Again, the eigenvalue plot (not displayed) suggests
that the first branch of the film-height mode is stable until the first bifurcation point in
figure 12(a,b), and the entire second branch for the thin film is again unstable.

From figure 12(a,b) we can see that the main branch of the colloid mode (thicker
red line) intersects the first branch of the film-height curve through the first bifurcation
point (which turns out to correspond to a transcritical bifurcation), and lands on the first
bifurcation point of the second film-height branch at a pitchfork bifurcation. We show the
profiles from each branch at Lx = 300 in figure 12(c–e). The profiles from the film-height
branches (shown in figure 12c,d) are similar to the anti-phase case because the parameters
related to the film height have not changed. However, from the colloid branch (figure 12e)
we see from the profiles that the film height and colloid concentration profiles are now in
phase. We now explore this transition between anti-phase to in phase further.

5.3. Transition from anti-phase to in-phase solution profiles
With the two sets of bifurcation diagrams in figures 11 and 12, we understand that there is
a fundamentally different structure between the anti-phase and in-phase cases. Critically,
the transition occurs depending on whether the colloid mode begins at higher or lower
Lx than the second film-height branch, or, equivalently, the largest value of k such that
the colloids are linearly unstable compared with half the value for the film (or twice the
wavelength). This change modifies the structure of the bifurcation diagram to enable an
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Figure 12. Bifurcation diagrams and profiles for an in-phase case, parameters as in figure 11 but with φi = 0.4.
(a,b) Show bifurcation diagrams for the L2-norm of the film height and colloidal profiles, respectively. Note
that there are many other branches in the bifurcation diagram; those displayed correspond to the one- and
two-wavelength solutions as predicted by our linear-stability analysis. The solid lines correspond to stable
solutions, whereas the dashed lines correspond to unstable solutions. Panels (c–e) show profiles on the three
displayed branches at Lx = 300: (c) shows the profile on the first film-height mode branch, (d) on the second
film-height mode branch and (e) on the colloids branch. ( f ) Shows the profile when the colloid-mode branch
terminates on the second film-height branch.
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Figure 13. Transition between anti-phase and in phase at Lx = 200. (a) Turning point in the maximum
difference in film height. (b–d) Profiles for Lx = 200 at φi = 0.3, φi = 0.4 and the critical concentration
φi = 0.367, with other parameters as in figure 11.

intersection with the second film-height branch or not. The transition thus occurs at this
point. Starting from a high value and decreasing φi, eventually the start point of the colloid
branch collides with the start point of the second film-height branch and the connecting
branch is annihilated below this critical value.

Another way to visualise the transition is to plot the maximum difference in film
height against the initial concentration φi; see figure 13(a) for Lx = 200. We observe a
clear turning point, located at φi = 0.367 (the middle red point) and this is the critical
concentration for the system to go from anti-phase to in phase. In the Lx = 200 profiles
displayed from the colloids branch, we can see a clear height difference between drops. In
figure 13(b) (corresponding to the left red point in figure 13a), the droplet in the middle
is taller, with the colloid concentration higher in the second smaller droplet (wrapping
around the two sides due to periodicity), making the system anti-phase. On the other hand,
in figure 13(d) (corresponding to the right red point in figure 13a), the drop with the most
colloids in is taller, and hence in phase. In figure 13(c) we plot the profile of the system
when the concentration is at the turning point of figure 13(a) (where φi = 0.367), where
the heights of both droplets are the same.

5.4. Bifurcation diagrams for a case with asymmetrical solutions
In § 4.5 we described an example situation with asymmetrical final profiles. Here, we
map out the bifurcation diagram for this case, displayed in figure 14. From noting that
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Figure 14. Bifurcation diagrams for the same parameters as in figure 9. Panel (a) shows the L2-norm for h,
while (b) shows this for ψ . The red dashed line is the solution branch corresponding to unstable equilibria
with symmetrical profiles. The red solid line is for the stable equilibria, which to the right of the red square are
asymetrical. The blue dashed line corresponds to the unstable thin-film branch of solutions.
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Figure 15. Profiles for a system of length Lx = 60 and corresponding to the bifurcation diagrams in figure 14.
Panel (a) shows the unstable symmetrical solution on the first colloid branch and (b) shows the stable
asymmetrical solution on the side branch bifurcating from the first colloid branch.

the neutral wavenumber in the dispersion relation in figure 9(d) for the colloids is much
bigger than that for the film height, we can predict that the starting point for the colloid
branch is at a much smaller wavelength (i.e. much smaller system size) than the one for
the film-height branch. Arguably, the most interesting feature that we observe in figure 14
is the pitchfork bifurcation point on the first colloid branch, indicated by a red square. The
side branch that bifurcates from this point is displayed as a red solid line. Interestingly,
the solutions on this side branch are stable and asymmetrical. The profiles for Lx = 60 for
both the symmetrical and asymmetrical colloid branches are shown in figures 15(a) and
15(b), respectively.

In figure 15(b), we display an asymmetrical profile, corresponding to the colloids being
slightly gathered together at one end of the droplet, with not enough of them in the system
to span equally to the other end of the droplet. Note that this equilibrium profile is almost
the exact replicate of the final equilibrium obtained from our dynamical simulation, shown
in figure 9(c). Note too, however, that, with different random seeds, we may observe
equivalent profiles that are either translations or a mirror image of the equilibrium profiles
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Figure 16. Dispersion relation for parameters A′ = 4, K′ = 0.15, α′ = 1, ε′ = 0.2, a2 = 50, hi = 2.5 and
φi = 0.4, relevant to the simulation presented in figure 17.

shown in figure 9(c), i.e. in our dynamical simulations, where the centre of the droplet
ends up and on which side of the droplet the colloids gather depends on the random initial
conditions. To confirm the stability of the asymmetrical state calculated in the bifurcation
diagram for Lx = 60, we set it as an initial condition for our dynamical code, finding that
over time it does not change, i.e. it is indeed stable.

6. Three-dimensional droplets

As discussed at the start of § 4, our model equations apply to systems of 3-D droplets,
i.e. consist of thin-film equations for the film height and colloid local concentration
depending on two spatial variables x and y. Our computer code for this case again uses
finite differences, but now extended to two spatial variables. This increase in complexity
of the code results in the numerical simulations taking considerably longer, but are still
manageable on a personal computer for the system sizes discussed here. To benchmark this
code, we run simulations with a very narrow domain width Ly in the y-direction together
with an initial condition that mimics our simulations from the previous section. We find the
results agree with high accuracy, up until Ly becomes sufficiently large that the expected
effects of the additional dimension begin to develop.

In figure 16 we show the dispersion relations for a system with parameters A′ = 4, K′ =
0.15, α′ = 1, ε′ = 0.2, a2 = 50, hi = 2.5 and φi = 0.4, showing both the film height and
the colloids are linearly unstable. Thus, at this state point we should expect both dewetting
of the film and also demixing of the colloids within the film. An example of the 3-D
film height and colloid concentration dynamics corresponding to this set of parameters
is shown in figure 17. We set the system size to be Lx = Ly = 55, with 110 discretisation
points in either direction and apply periodic boundary conditions. The initial condition
is similar to that used in the previous section, being flat profiles with small-amplitude
random perturbations, consisting of uniformly distributed random numbers for each (x, y)
location, for both h and ψ , with amplitudes εh = εψ = 10−5.

From the dispersion relations shown in figure 16 we can read off that the wavelengths
corresponding to most unstable wavenumbers are λh = 25 and λψ = 10.5. With the length
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Figure 17. Simulation of a square system of size Lx = Ly = 55 with periodic boundary conditions and
parameters A′ = 4, K′ = 0.15, α′ = 1, ε′ = 0.2, hi = 2.5 and φi = 0.4. Shown are (a,c,e) the film-height
profiles h and (b,d, f ) the effective colloid-height profiles ψ at the times (a,b) t = 200, (c,d) t = 500 and
(e, f ) t = 1100. The system exhibits coupled dewetting and demixing of the colloids within the film.

of the domain being 55, this means that, at early times, we are likely to observe two
wavelengths in the film height, since this is closest to the most unstable liquid height mode,
and to observe five wavelengths of the most unstable colloidal demixing mode. This can
indeed be seen in figure 17(a,b), which is for the early time t = 200, by taking a visual

990 A10-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.466


J. Zhang, D.N. Sibley, D. Tseluiko and A.J. Archer

10 20 30 40 50
0

10

20

30
y

x

40

50

0.1

0.2

0.3

0.4

0.5

0.6

Figure 18. The colloidal local concentration profile φ at the time t = 1100, corresponding to the coupled
dewetting and colloidal demixing (agglomeration) dynamics displayed in figure 17.

slice in either the x- or y-direction. In the ψ profile the five wavelengths are obvious, but
in h the two wavelengths are slightly harder to see, due to the coupling with the colloids.
However, by looking at the large-scale period of red–yellow fluctuations in a given slice,
the two wavelengths can be discerned.

After the initial phase corresponding to the linear regime, the profiles begin to coarsen
in a similar fashion to the cases where h and ψ depend on one spatial variable discussed
previously. By the time t = 500, the profiles have started to coarsen, forming four
separated liquid droplets (figure 17c), which eventually coalesce into a single droplet by
the final displayed time t = 1100, in figure 17(e). In a similar fashion, the colloid profiles
coarsen in figure 17(d, f ), but with the coupling to the liquid-film height affecting the
dynamics and creating obvious regions of colloids located in phase with the drops.

The time taken for this 3-D simulation to reach the final state is considerably shorter
than for similar corresponding 2-D cases, because the extra spatial dimension gives to the
coarsening process an additional degree of freedom in which to occur. The coarsening
is the slowest process in the whole dynamics and so speeding this up speeds up the
overall dynamics. The local colloidal concentration φ can be inferred from inspecting
the ψ profiles relatively easily. However, to avoid having to do this, we also plot this
field φ(x, y, t = 1100) in figure 18, which shows that at most points in space the local
colloid concentration takes the two coexisting bulk values predicted by calculating the
phase diagram in figure 2. This also shows that, although the dewetting process has
been largely completed, the colloidal coarsening still has some way to go. The colloidal
dynamics is very slow after this stage because the colloids have to diffuse through the thin
precursor-film layer to further coarsen.

7. Concluding remarks

Here, we have developed a low-order thin-film model for the dynamics of colloidal fluids
on planar surfaces. We have used our model to form an understanding of the manner
in which colloidal demixing (i.e. agglomeration) can influence and couple to liquid-film
dewetting processes. Our model is based on that of Thiele (2011), which we have extended
by adding additional terms to the free energy (2.3) in order to incorporate the effects
of colloidal particle interactions. In particular, to incorporate the influence of attractive
interactions between the colloids, which can drive demixing of the colloids within the
film.
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After non-dimensionalising the model, we have performed a linear-stability analysis,
uncovering an interesting partially decoupled dispersion relation that is responsible for
the early stage evolution of the system. The analytically determined eigenvalues from the
linear-stability analysis of initially uniform films demonstrate a rich array of situations
depending on whether either the liquid film or the colloids are stable, and the relative
wavelength of disturbance that initially grows in either the film height or in the colloid
local concentration profile. The decoupling in the dispersion relation does not occur if one
assumes (in contrast to our assumption here) that the binding potential g(h) in the free
energy (2.3) is also a function of the local colloid concentration φ. In this case, even when
there is no colloidal demixing, the coupling between film height and colloid concentration
fluctuations can trigger dewetting (Thiele et al. 2013).

We also determined the bulk phase diagram by analysing the thermodynamics of
the system. All thermodynamic quantities are determined by the assumed free energy
functional (2.3), and this also governs the properties of the eventual equilibrium states of
the system in the long-time limit. By deriving the model based on a free energy functional
which incorporates the necessary physics, we ensure that there is a consistency between
equilibria of the model and the thermodynamics, which is implicit in the specified free
energy functional. This general approach of starting from the free energy can be a very
fruitful and straightforward way to develop thin-film models incorporating a wide range
of physics (Thiele 2011). Just a few examples of phenomena that can be incorporated into
such models in this way include: evaporation leading to pattern formation (Frastia et al.
2011, 2012), evaporation in confined spaces (Hartmann et al. 2023), surfactant molecules
in the bulk and on the surface of films (Thiele et al. 2016), freezing and melting (Sibley
et al. 2021) and elastic substrates (Henkel et al. 2021; Kap et al. 2023). An interesting
future direction would be to incorporate different couplings between the film height and
the solute concentration, building on the present work and also that of Thiele et al. (2013),
to investigate more general situations where C2 /= 0 (see (4.2)), so coupling between
modes leading to instability could become even richer than the cases investigated here.
Additionally, by assuming a constant surface tension and viscosity, our model neglects
the possibility of Marangoni forces and the slow dynamics that one should expect when
the local colloid concentration becomes high. These would also be interesting areas for
future work. For the situations investigated here, replacing the constant viscosity with
a function that depends on the local colloid concentration will have no real qualitative
effect, other than to change some of the overall time scales for the dynamics. However,
when evaporation is present, the local colloid concentration can become sufficiently high
that, locally, the viscosity η → ∞, which can be important in determining the drying
patterns left by evaporating colloidal suspensions (Rabani et al. 2003; Martin et al. 2004;
Frastia et al. 2011, 2012; Robbins et al. 2011). It should also be mentioned that dynamical
effects such as slip at the surface or the diffusion of colloids over almost-dry surfaces can
also by incorporated easily into this whole class of models (Yin et al. 2017).

A matter worth commenting on is what we might expect to observe if we were to choose
parameters and/or the initial conditions so as to have a greater scale separation between
the precursor-film thickness and the typical height of droplets. While it is not possible
to comment on all possible scenarios in this regime, in general, we do expect similar
features to persist. However, to see, for instance, the coarsening dynamics, we would
need significantly greater computational time. We do envisage some situations that are not
captured in our bifurcation diagrams: for instance, with larger volume droplets we expect
even more intricate transient states and perhaps also equilibria. Recall that generically, as
the system size in such systems is increased, there is space for either more droplets of the
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size we describe or for fewer larger droplets, so increasing the number of solution branches
in the bifurcation diagrams. We leave this for future work on this subject.

We have used finite difference methods to develop MATLAB codes for solving our
model. In order to verify the code, we conducted numerous tests to compare the
computational and theoretical results, which all showed good agreement. We then
investigated the dynamics of the model in a variety of situations, including showing
bifurcation diagrams for various cases. In particular, we investigated how varying the
average concentration of the colloids can change the final state of the system from in phase
to anti-phase, and we also discovered cases with asymmetrical final solutions. Bifurcation
diagrams helped us understand these situations better, which also cross-checked the
simulation results. From the dynamics, we can see how the parameters we select and
the corresponding theoretical relations that arise affect the dynamics and final results of
the simulation. Moreover, we have developed a code for 3-D droplets, again exhibiting
excellent agreement with the theoretical predictions for the linear behaviour and the 2-D
code. As expected, the evolution of the system is much faster in three dimensions due to the
additional dimension, although the computer simulation times are typically significantly
longer due to the much larger number of grid points required.

Here, our intention has been to develop a general model for incorporating the influence
of colloidal agglomeration and demixing on the dynamics of thin films of liquids. Thus,
agreement with specific experiments such as those of Howard et al. (2023), where
colloidal aggregation in drying thin films was observed in experiments on carbon-nanotube
suspensions, is at best only qualitative. To better match specific experiments, additional
effects need to also be added to the model. For example, to match these particular
experiments quantitatively, the evaporation (Wilson & D’Ambrosio 2023), the colloid
(non-spherical) shape (Durán-Olivencia, Goddard & Kalliadasis 2016), droplet shape
(Wray & Moore 2023), surface roughness (Savva & Kalliadasis 2009), influence on g(h)
of molecular ordering at the surface and the nature of the wetting transition (Hughes
et al. 2017), possibly gravity (Moore & Wray 2023) and the surfactants (Kalogirou,
Papageorgiou & Smyrlis 2012) also present in the film need to be included in the model.
As future work, such effects could easily be incorporated, although we would suggest
systematically incorporating each different one in turn, separately. Finally, the effects of
internal flow from droplet orientation (Edwards et al. 2018) and of shielding in multiple
droplet systems (Wray et al. 2021) would be interesting to investigate within an augmented
model of the type considered here.
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Appendix A. Functional derivatives

The functional derivatives can be analytically determined, or found using the Maple
software (we did both), and may be written as

δF
δh

= −γ∇2h + g′(h)+ f
(
ψ

h

)
− ψ

h
f ′
(
ψ

h

)
− 2εψ

h3 (∇ψ · ∇h)

+3εψ2

2h4 |∇h|2 + ε

2h2 |∇ψ |2 + εψ

h2 ∇2ψ − εψ2

h3 ∇2h, (A1)

and
δF
δψ

= f ′
(
ψ

h

)
+ ε

h2 (∇ψ · ∇h)− ε

h
∇2ψ − εψ

h3 |∇h|2 + εψ

h2 ∇2h. (A2)

These have corresponding gradients

∇ δF
δh

= −γ∇3h + g′′(h)∇h + ψ

h

(∇ψ
h

− ψ∇h
h2

)
f ′′
(
ψ

h

)
− 4εψ

h3 (∇2h∇ψ)

+ 9εψ
h4

(|∇h|2∇ψ)− 3ε
h3

(|∇ψ |2∇h
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h3

(∇2ψ∇h
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h4
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)
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h5 |∇h|3 + εψ

h2 ∇3ψ, (A3)

and
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