ON THE INVARIANCE OF A QUOTIENT GROUP OF THE CENTER OF F/[R,R] Trueman MacHenry (received January 21, 1969)

1. Let F be a free group of rank ≥ 2 , let $F/R \cong \pi$, and let $F_0 = F/[R,R]$. Auslander and Lyndon showed that the center F_0^* of F_0 is a subgroup of $R/[R,R] = R_0$, and that it is non-trivial if and only if π is finite [1, corollary 1.3 and theorem 2]. In this paper it will be shown that there is a canonically defined (and not always trivial) quotient group of the center of F_0 which depends only on π . This result provides a dual to the well-known result of Baer [2] and Hopf [6] that $H_2(\pi,J) \cong R \cap F'/[R,F]$, where J is the ring of integers and F' = [F,F]. $H_2(\pi,J)$ is a quotient group of $Z = R_0 \cap F_0^*$ while the group discussed here is a quotient group of $D = R_0 \cap F_0^* = F_0^*$.

In order to state the main results we let Π be a finite group and denote by P the subgroup of R_o whose elements are products of all conjugates of an element in R_o by distinct coset representatives of R_o in F_o. Thus, regarding R_o as a Π -module under the operation induced by the inner automorphisms of F_o acting on R_o, P = {r ϵ R_o| $r = \sum_{\alpha \in \Pi} \alpha r_o, r_o \epsilon R_o$ }. Clearly, P \leq F^{*}_o. For an arbitrary group Π we define

Canad. Math. Bull. vol. 12, no. 5, 1969

$$K = \begin{cases} D/P & \text{if } \Pi & \text{is finite} \\ D & \text{if } \Pi & \text{is infinite.} \end{cases}$$
THEOREM 1. $K \cong H_1(\Pi, J) \quad \underline{\text{if }} \Pi \quad \underline{\text{is finite}};$

$$K = \langle 1 \rangle \qquad \text{if } \Pi \quad \text{is infinite and rank } F > 1.$$

Thus, for finite Π , $K \cong \Pi / \Pi'$.

Next, let II be finite and let T: $F \rightarrow R_0$ be the transfer map of F to R_0 [5, p. 201]. If TR is the image of the restriction of T to R, then

THEOREM 2.¹⁾ i) TF = D, ii) TR = P, iii) TF/TR = K.

Finally, with Z as defined above,

THEOREM 3. $Z \cap D = \langle 1 \rangle$.

Thus no central element in $\,F_{_{\hbox{\scriptsize O}}}\,$ can be written as a non-trivial product of commutators.

<u>Acknowledgements</u>. I would like to express my deep appreciation to Professor W. Magnus for his encouragement and suggestions during the preparation of this paper. I would also like to acknowledge the debt I owe to Professor R. Heaton of Rutgers University. It was from an interest we jointly explored that the ideas for this paper grew.

¹⁾ That TF = D has been proved independently by A. Karrass and D. Solitar, by H. Neumann, and by M. Ojanguren [9, Satz 6.2] using different methods from ours. The first two of these proofs have not been published.

2. <u>Proofs of theorems 1 and 2</u>. In the course of these proofs we use the following notation:

For any group G, G' = [G,G] and $G^* = center of G$.

LEMMA 1. TF/TR $\cong \Pi/\Pi'$, where Π is a finite group.

<u>Proof</u>. We suppose π finite and let $F = \langle x_i \rangle_{i \in I} = X$, where X is a free generating set of F of cardinality greater than 1, and let T be a right Schreier transversal of R in F, then

where \overline{tx} is the representative in T of tx, and $(t,x) = tx\overline{tx}^{-1} \mod R'$, [see, e.g., 5, 14.2.4]. Since T is a homomorphism, Tx_i generates TF. Since R_o is free abelian, so is TF. Moreover, since exactly |T| - 1 of the elements of (t,x), $t \in T$, $x \in X$, are the identity [8, theorem 2.10], $Tx_i \neq 1$ for any $i \in I$. Because $\{(t,x) | t \in T, x \in X, (t,x) \neq 1\}$ is a free generating set for R [8, theorem 2.9], $\{Tx_i\}_{i \in I}$ is a free-abelian generating set for TF. Hence the free-abelian rank

of TF is equal to the free rank of F and so TF \cong F/F'. The mapping $Tx_i \xrightarrow{\theta} x_i \mod F'$ determines such an isomorphism; call it θ also. θ sends R to RF'/F', and with the aid of the third isomorphism theorem we have finished the proof of the lemma.

Next let $\Psi: F \rightarrow \Pi$ be an epimorphism with Kernel R. In order to prove theorem 2, it is convenient to choose a particular representation for F_0 , namely, the Magnus representation: If M is the free Π -module with a free generating set $\{s_X | X \in X\}$, then the set of matrices of the form $\begin{pmatrix} \alpha & m \\ 0 & 1 \end{pmatrix}$, $\alpha \in \Pi$, $m \in M$, form a group E which is the splitting extension of the Π -module M by the group Π . The matrices of the form $\begin{pmatrix} \Psi X & S \\ 0 & 1 \end{pmatrix}$ generate a subgroup of E isomorphic to F_0 [7]. The subgroup of E representing R_0 belongs to M. With this representation of F_0 in mind we have the following commutative diagram with exact rows and columns:

We shall abbreviate the matrices $\begin{pmatrix} \alpha & m \\ 0 & 1 \end{pmatrix}$ to (α, m) .

Now M is a Π -derivation module for F (in fact, for JF) determined by a Π -derivation \triangle of F to M, i.e., a map \triangle : F \rightarrow M such that $\triangle x = s_x$, $x \in X$, and $\triangle(fg) = \Psi f \triangle g + \triangle f$, f,g \in F [cf. 4 and 3, chapter 14, problems 11-13]. Given an element $f \in F$, its Magnus representative² will be (Ψf , $\triangle f$).

²⁾ The element Δf is a homomorphic image of the Fox derivative of Δf , and the coefficient of s in f is a homomorphic image of the partial of f with respect to x^{X} (see [4]).

LEMMA 2. $\Delta t x \overline{t x}^{-1} = -\Delta \overline{t x} + \Psi t s_x + \Delta t$, $t \in T$, $x \in X$.

Thus the Magnus representation of R₀ is generated by $\{(1, -\Delta tx + \Psi t s_x + \Delta t) \mid x \in X, t \in T\}.$

LEMMA 3. TF <u>is represented in</u> M <u>by elements of the form</u> (1,m)where m $\varepsilon \, \delta M$, <u>i.e.</u>, m <u>belongs to the submodule of</u> M <u>whose coeffi-</u> cients lie in δ .

Proof. Using lemma 2,

 $\begin{array}{ccc} & & & & \\ &$

COROLLARY L3. sM lies in R₀.

LEMMA 4. Let $1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$ be a splitting extension of an abelian group A by a group C. If $b \in B$ is written canonically as b = (c,a), then the center of B consists just of those elements $b^* = (c^*,a^*)$ such that $c^* \in C^*$, the center of C, and $c^* \cdot a = a$ for all $a \in A$ and $c \cdot a^* = a^*$ for all $c \in C$, A being regarded as a left C-module whose action is determined by the extension.

The proof is straightforward and will therefore be omitted.

LEMMA 5. The annihilator in $J\Pi$ of f is s.

<u>Proof</u>. Plainly s < annihilator of <math>f. On the other hand $(\sum_{\alpha \in \Pi} k_{\alpha}^{\alpha})(1 - \gamma) = o, \quad k_{\alpha} \in J, \quad implies that \quad k_{\alpha} = k_{\alpha\gamma}^{-1}, \quad for all \quad \alpha \in \Pi.$

Denoting the center of E by E^* , we have

LEMMA 6. $E^* = sM$.

<u>Proof.</u> Elements of E can be represented canonically in the form $(\gamma, m), \gamma \in H, m \in M$ with multiplication

$$(\gamma, m)(\gamma', m') = (\gamma\gamma', m + \gamma m').$$

Since M is free, by lemma 4 $E^* \leq M$ and consists of those elements $m^* = \sum u_x s_x$, $u_x \in J\Pi$, $x \in X$, such that $\gamma m^* = m^*$ for all $\gamma \in \Pi$. Thus we demand that $\gamma u_x = u_x$. By lemma 5, $u_x \in \delta$. Since $\sum_{\alpha \in \Pi} \alpha s_x \in E^*$, the proof is complete.

Combining corollary L3 and lemma 6, we have

COROLLARY L6. $E^* \leqslant R_0$.

But E* consists precisely of those elements of R₀ left fixed by the action of π . Hence E* = D [1, corollary 1.4]. By lemma 3 TF = D.

The proof of theorem 2 will be complete if we can show that TR = P. However this follows easily from [5, p. 206, lemma 14.4.1] or we may compute directly, using the Magnus representation, that $\Delta tr \overline{tr}^{-1} = -\Delta \overline{tr} + \Psi t \Delta r + \Delta t$. Hence $\Delta \Pi tr \overline{tr}^{-1} = \sum_{\alpha \in \Pi} \alpha \Delta r$. But P is re $t \in T$ $\alpha \in \Pi$ presented in M by {(1, $\sum_{\alpha} \alpha \Delta r$), $r \in R$ }. Thus theorem 2 is proved.

If Π is finite and the rank of $F \ge 2$, theorem 1 follows from theorem 2 and lemma 1. If the rank of F is 1 and Π is finite, then the result is obvious; however, theorem 2 now holds only with the weaker conclusion that TF/TR \simeq K. If Π is infinite, then K = D = <1> [1, theorem 2] if the rank of F is greater than 1. This completes the proof of theorem 1.

3. Proof of theorem 3.

LEMMA 7. $\Delta F' \leqslant \delta M$, <u>i.e.</u>, $\Delta F'$ is contained in the submodule of M whose coefficients lie in δ .

Proof. First we notice that if f,g ε F', then

$$\Delta \mathbf{f} \mathbf{g} = \Psi \mathbf{f} \Delta \mathbf{g} + \Delta \mathbf{f} \in \mathbf{M}.$$

Thus it is sufficient to show that [f,g] ϵ {M, f,g ϵ F. But direct computation shows that

$$\Delta[f,g] = (1 - \Psi(fgf^{-1}))\Delta f + (\Psi f - \Psi[f,g])\Delta g$$

LEMMA 8. $f_0 \cap s = \langle o \rangle$.

To prove theorem 3 we first observe that $Z = R_0 \cap F'_0 \leq \Delta F'$ and then that the map $s_X \neq 1$ determines a Π -homomorphism $M \neq J\Pi$, where $J\Pi$ is regarded as a left Π -module. Under this homomorphism $\delta M \neq \delta$ and $\delta M \neq \delta$. Since $Z \leq \delta M$ (lemma 7) and $D = \delta M$ (lemma 6 and remark ff. lemma 6), by lemma 8 it follows that $\delta M \cap \delta M = \langle o \rangle$, and hence that $Z \cap D = \langle 1 \rangle$.

REFERENCES

- M. Auslander and R. Lyndon, Commutator subgroups of free groups. J. Amer. Math. Soc. 77 (1955) 929-931.
- R. Baer, Representations of groups as quotient groups, I. Trans. Amer. Math. Soc. 58 (1945) 295-347.
- 3. H. Cartan and S. Eilenberg, Homological algebra. (Princeton University Press, 1956).

- 4. H. Fox, Free differential calculus, I. Math. Ann. 57 (1953) 547-560.
- 5. M. Hall, The theory of groups. (Macmillan, 1959).
- H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe. Comment. Math. Helv. 14 (1941/42) 257-309.
- 7. W. Magnus, On a theorem of M. Hall. Math. Ann. 40 (1939) 764-768.
- 8. _____, A. Karrass, and D. Solitar, Combinatorial group theory. (Interscience, 1966).
- M. Ojanguren, Freie Präsentierungen endlicher Gruppen und zugehörige Darstellungen. Math. Zeitschr. 106 (1968) 293-311.

Adelphi University Garden City New York

and

York University Toronto