ON THE INVARIANCE OF A QUOTIENT GROUP OF THE CENTER OF $F /[R, R]$ Trueman MacHenry
(received January 21, 1969)

1. Let F be a free group of rank $\geqslant 2$, let $F / R \cong \Pi$, and let $F_{o}=F /[R, R]$. Auslander and Lyndon showed that the center F_{o}^{*} of F_{o} is a subgroup of $R /[R, R]=R_{o}$, and that it is non-trivial if and only if II is finite [1, corollary 1.3 and theorem 2]. In this paper it will be shown that there is a canonically defined (and not always trivial) quotient group of the center of F_{o} which depends only on π. This result provides a dual to the well-known result of Baer [2] and Hopf [6] that $H_{2}(\Pi, J) \cong R \cap F^{\prime} /[R, F]$, where J is the ring of integers and $F^{\prime}=[F, F] . \quad H_{2}(\Pi, J)$ is a quotient group of $Z=R_{o} \cap F_{o}^{\prime}$ while the group discussed here is a quotient group of $D=R_{o} \cap F_{o}^{*}=F_{o}^{*}$.

In order to state the main results we let π be a finite group and denote by P the subgroup of R_{o} whose elements are products of all conjugates of an element in R_{o} by distinct coset representatives of R_{o} in F_{o}. Thus, regarding R_{o} as a Π-module under the operation induced by the inner automorphisms of F_{o} acting on $R_{o}, P= \begin{cases}r & R_{o} \mid\end{cases}$ $\left.r=\sum_{\alpha \varepsilon \Pi} \alpha r_{o}, r_{o} \varepsilon R_{o}\right\}$. Clearly, $P \leqslant F_{o}^{*}$. For an arbitrary group π we define

Canad. Math. Bull. vol. 12, no. 5, 1969

$$
K= \begin{cases}D / P & \text { if } \pi \text { is finite } \\ D & \text { if } \pi \text { is infinite }\end{cases}
$$

THEOREM 1. $K \cong H_{1}(\Pi, J)$ if Π is finite;

$$
K=\langle 1\rangle \quad \underline{\text { if }} \pi \quad \text { is infinite and } \text { rank } F>1
$$

Thus, for finite $\pi, K \cong \pi / \Pi^{\prime}$.
Next, let π be finite and let $T: F \rightarrow R_{0}$ be the transfer map of F to $R_{o}[5, \mathrm{p} .201]$. If $T R$ is the image of the restriction of T to R, then

THEOREM 2. ${ }^{1)}$ i) $T \mathrm{~F}=\mathrm{D}$,
ii) $T R=P$,
iii) $T F / T R=K$.

Finally, with Z as defined above,

THEOREM 3. $Z \cap D=\langle 1\rangle$.
Thus no central element in F_{o} can be written as a non-trivial product of commutators.

Acknowledgements. I would like to express my deep appreciation to Professor W. Magnus for his encouragement and suggestions during the preparation of this paper. I would also like to acknowledge the debt I owe to Professor R. Heaton of Rutgers University. It was from an interest we jointly explored that the ideas for this paper grew.

1) That $T F=D$ has been proved independently by A. Karrass and D. Solitar, by H. Neumann, and by M. Ojanguren [9, Satz 6.2] using different methods from ours. The first two of these proofs have not been published.
2. Proofs of theorems 1 and 2. In the course of these proofs we use the following notation:
$\mathrm{J} \Pi \quad$ is the integral group ring of π;
6 the fundamental ideal of JII, i.e.,
$f=i d<1-\alpha, \alpha \varepsilon \Pi>$;
$s \quad$ the trace ideal, i.e., $\left.s=i d<\sum \alpha, \alpha \varepsilon \Pi\right\rangle$;
T is a right transversal of R in F with 1 representing
R. T is chosen to be a (two-sided) Schreier system
[8, p. 93].
For any group $G, G^{\prime}=[G, G]$ and $G^{*}=$ center of G.

LEMMA 1. $\mathrm{TF} / \mathrm{TR} \cong \Pi / \Pi^{\prime}$, where Π is a finite group.

Proof. We suppose Π finite and let $F=\left\langle x_{i}\right\rangle_{i \varepsilon I}=X$, where X is a free generating set of F of cardinality greater than 1 , and let T be a right Schreier transversal of R in F, then

$$
T x=\prod_{t \varepsilon T} t x \overline{t x}^{-1} \bmod R^{\prime}=\prod_{t \varepsilon T}(t, x) \quad, \quad x \varepsilon x,
$$

where $\overline{t x}$ is the representative in T of $t x$, and $(t, x)=t x \overline{t x}^{-1} \bmod R^{\prime}$, [see, e.g., 5, 14.2.4]. Since T is a homomorphism, $T x_{i}$ generates TF. Since R_{o} is free abelian, so is TF. Moreover, since exactly $|T|-1$ of the elements of $(t, x), t \varepsilon T, x \varepsilon X$, are the identity [8, theorem 2.10], $T x_{i} \neq 1$ for any $i \varepsilon I$. Because $\{(t, x) \mid t \varepsilon T, x \varepsilon X$, $(t, x) \neq 1\}$ is a free generating set for $R \quad\left[8\right.$, theorem 2.9], $\left\{T x_{i}\right\}{ }_{i} I$ is a free-abelian generating set for TF. Hence the free-abelian rank
of $T F$ is equal to the free rank of F and so $T F \cong F / F^{\prime}$. The mapping $T X_{i} \xrightarrow{\theta} \mathrm{X}_{\mathrm{i}}$ mod F^{\prime} determines such an isomorphism; call it θ also. θ sends R to RF'/F', and with the aid of the third isomorphism theorem we have finished the proof of the lemma.

Next let $\Psi: F \rightarrow \pi$ be an epimorphism with Kernel R. In order to prove theorem 2, it is convenient to choose a particular representation for F_{o}, namely, the Magnus representation: If M is the free π-module with a free generating set $\left\{s_{X} \mid x \in X\right\}$, then the set of matrices of the form $\left(\begin{array}{cc}\alpha & m \\ 0 & 1\end{array}\right), \alpha \varepsilon \Pi, m \varepsilon M$, form a group E which is the splitting extension of the π-module M by the group π. The matrices of the form $\left(\begin{array}{rr}\Psi x & S_{x} \\ 0 & 1\end{array}\right)$ generate a subgroup of E isomorphic to F_{o} [7]. The subgroup of E representing R_{o} belongs to M. With this representation of F_{o} in mind we have the following commutative diagram with exact rows and columns:

$$
\begin{aligned}
& \begin{array}{lll}
1 & 1 & 1 \\
\downarrow & \downarrow & \downarrow
\end{array} \\
& 1 \rightarrow \underset{\downarrow}{\mathrm{R}} \mathrm{O}_{\downarrow} \rightarrow \underset{\downarrow}{\mathrm{F}} \rightarrow \underset{\downarrow}{\mathrm{~K}} \rightarrow 1 \\
& 1 \rightarrow \mathrm{M} \rightarrow \mathrm{E} \rightarrow \underset{\downarrow}{\mathbb{I}} \rightarrow 1 \quad \text {. } \\
& 1
\end{aligned}
$$

> We shall abbreviate the matrices $\left(\begin{array}{cc}\alpha & m \\ 0 & 1\end{array}\right)$ to (α, m).
> Now M is a Π-derivation module for F (in fact, for $J F$) deter- mined by a Π-derivation Δ of F to M, i.e., a map $\Delta: F \rightarrow M$ such that $\Delta \mathrm{x}=\mathrm{s}_{\mathrm{x}}, \mathrm{x} \in \mathrm{X}$, and $\Delta(\mathrm{fg})=\Psi f \Delta \mathrm{~g}+\Delta \mathrm{f}, \mathrm{f}, \mathrm{g} \varepsilon \mathrm{F} \quad[\mathrm{cf}$.4 and 3 , chapter 14, problems 11-13]. Given an element $f \varepsilon F$, its Magnus representative ${ }^{2)}$ will be ($\left.\Psi f, \Delta f\right)$.
2) The element Δf is a homomorphic image of the Fox derivative of Δf, and the coefficient of s_{x} in f is a homomorphic image of the partial of f with respect to x^{x} (see [4]).

LEMMA 2. $\Delta t \mathrm{x} \overline{\mathrm{tx}}^{-1}=-\Delta \overline{\mathrm{tx}}+\psi \mathrm{t} \mathrm{s}_{\mathrm{x}}+\Delta \mathrm{t}, \mathrm{t} \varepsilon \mathrm{T}, \mathrm{x} \varepsilon \mathrm{X}$.

Thus the Magnus representation of R_{o} is generated by $\left\{\left(1,-\Delta t \mathrm{x}+\Psi \mathrm{t} \mathrm{s}_{\mathrm{x}}+\Delta \mathrm{t}\right) \mid \mathrm{x} \varepsilon \mathrm{X}, \mathrm{t} \varepsilon \mathrm{T}\right\}$.

LEMMA 3. TF is represented in M by elements of the form $(1, m)$ where $m \in s M$, i.e., m belongs to the submodule of M whose coefficients lie in s.

Proof. Using lemma 2,
$\Delta \prod_{t \in T} t x \overline{t x}^{-1}=\sum_{t \varepsilon T}\left(-\Delta \overline{t x}+\psi t s_{x}+\Delta t\right)=\sum_{\alpha \varepsilon \Pi} \alpha s_{x}$.
We have proved more, namely,

COROLLARY L3. sM lies in R_{o}.

LEMMA 4. Let $1 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C} \rightarrow 1$ be a splitting extension of an abelian group A by a group C. If $b \varepsilon B$ is written canonically as $b=(c, a)$ then the center of B consists just of those elements $b^{*}=\left(c^{*}, a^{*}\right)$ such that $c^{*} \varepsilon C^{*}$, the center of C, and $c^{*} \cdot a=a$ for all $a \in A$ and $c \cdot a^{*}=a^{*}$ for all $c \in C$, A being regarded as a left C-module whose action is determined by the extension.

The proof is straightforward and will therefore be omitted.

LEMMA 5. The annihilator in $J \Pi$ of b is s.

Proof. Plainly s < annihilator of f. On the other hand $\left(\sum_{\alpha \varepsilon \pi} \mathrm{k}_{\alpha} \alpha\right)(1-\gamma)=0, \mathrm{k}_{\alpha} \varepsilon \mathrm{J}$, implies that $\mathrm{k}_{\alpha}=\mathrm{k}_{\alpha \gamma}-1$, for all $\alpha \varepsilon \pi$. Denoting the center of E by E^{*}, we have

LEMMA 6. $E^{*}=s M$.

Proof. Elements of E can be represented canonically in the form $(\gamma, m), \gamma \varepsilon \Pi, m \varepsilon M$ with multiplication

$$
(\gamma, m)\left(\gamma^{\prime}, m^{\prime}\right)=\left(\gamma \gamma^{\prime}, m+\gamma m^{\prime}\right) .
$$

Since M is free, by lemma $4 E^{*} \leqslant M$ and consists of those elements $m^{*}=\sum u_{x} s_{x}, u_{x} \varepsilon J \Pi, x \in X$, such that $\gamma m^{*}=m^{*}$ for all $\gamma \in \Pi$. Thus we demand that $\gamma u_{x}=u_{x}$. By lemma $5, u_{x} \varepsilon s$. Since $\sum_{\alpha \in \Pi} \alpha s_{x} \varepsilon E^{*}$, the proof is complete.

Combining corollary L3 and lemma 6, we have

COROLLARY L6. $E^{*} \leqslant R_{o}$.

But E* consists precisely of those elements of R_{o} left fixed by the action of π. Hence $E^{*}=D$ [1, corollary 1.4]. By lemma 3 $T F=D$.

The proof of theorem 2 will be complete if we can show that
 we may compute directly, using the Magnus representation, that $\Delta \operatorname{tr} \overline{\operatorname{tr}}^{-1}=-\Delta \overline{\operatorname{tr}}+\Psi t \Delta r+\Delta t$. Hence $\quad \Delta \prod_{\operatorname{t\varepsilon T}} \operatorname{tr} \overline{\operatorname{tr}}^{-1}=\sum_{\alpha \varepsilon \Pi} \alpha \Delta r$. But p is represented in M by $\left\{\left(1, \sum_{\alpha \in \Pi} \alpha \Delta r\right), r \varepsilon R\right\}$. Thus theorem 2 is proved.

If Π is finite and the rank of $F \geqslant 2$, theorem 1 follows from theorem 2 and lemma 1. If the rank of F is 1 and $I I$ is finite, then the result is obvious; however, theorem 2 now holds only with the weaker conclusion that $T F / T R \simeq K$. If π is infinite, then $K=D=\langle 1\rangle[1$, theorem 2] if the rank of F is greater than 1 . This completes the proof of theorem 1.
3. Proof of theorem 3 .

LEMMA 7. $\Delta \mathrm{F}^{\prime} \leqslant 6 \mathrm{M}$, i.e., $\Delta \mathrm{F}^{\prime}$ is contained in the submodule of M whose coefficients lie in 6 .

Proof. First we notice that if $f, g \varepsilon F^{\prime}$, then

$$
\Delta \mathrm{fg}=\Psi \mathrm{f} \Delta \mathrm{~g}+\Delta \mathrm{f} \varepsilon \oint \mathrm{M} .
$$

Thus it is sufficient to show that $[f, g] \varepsilon\{M, f, g \varepsilon F$. But direct computation shows that

$$
\Delta[f, g]=\left(1-\Psi\left(f g f^{-1}\right)\right) \Delta f+(\Psi f-\Psi[f, g]) \Delta g .
$$

LEMMA 8. $f \cap s=\langle 0\rangle$.

To prove theorem 3 we first observe that $Z=R_{o} \cap F_{o}^{\prime} \leqslant \Delta F^{\prime}$ and then that the map $\mathrm{s}_{\mathrm{x}} \rightarrow 1$ determines a I-homomorphism $\mathrm{M} \rightarrow \mathrm{J} \Pi$, where J_{π} is regarded as a left π-module. Under this homomorphism $6 M \rightarrow 6$ and $s M \rightarrow s . \quad$ Since $Z \leqslant K M$ (lemma 7) and $D=s M$ (lemma 6 and remark ff. lemma 6), by lemma 8 it follows that $f \mathrm{M} \cap \mathrm{s} M=\langle 0\rangle$, and hence that $Z \cap D=\langle 1\rangle$.

REFERENCES

1. M. Auslander and R. Lyndon, Commutator subgroups of free groups. J. Amer. Math. Soc. 77 (1955) 929-931.
2. R. Baer, Representations of groups as quotient groups, I. Trans. Amer. Math. Soc. 58 (1945) 295-347.
3. H. Cartan and S. Eilenberg, Homological algebra. (Princeton University Press, 1956).
4. H. Fox, Free differential calculus, I. Math. Ann. 57 (1953) 547-560.
5. M. Hall, The theory of groups. (Macmillan, 1959).
6. H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe. Comment. Math. Helv. 14 (1941/42) 257-309.
7. W. Magnus, On a theorem of M. Hall. Math. Ann. 40 (1939) 764-768.
8. , A. Karrass, and D. Solitar, Combinatorial group theory. (Interscience, 1966).
9. M. Ojanguren, Freie Präsentierungen endlicher Gruppen und zugehörige Darstellungen. Math. Zeitschr. 106 (1968) 293-311.

Adelphi University Garden City
New York
and

York University
Toronto

