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A b s t r a c t . We present global dynamical models for bulge-disk systems. T h e phase-space s t ruc tu re 
is examined by means of two integral models. The models indicate t ha t in the format ion merger 
a rgument for ellipticals one cannot always assume tha t the m a x i m u m phase-space density occurs 
in the center of the system. 

1. Introduction 

In a disk, far from the center, stars travel on nearly circular orbits, while closer 
to the center the very nature of the bulge bring them out of the equatorial plane. 
As a consequence, one can distinguish two regions with different dynamics in a 
spiral galaxy. An adequate description of the dynamics of those two regions would 
require a three integral model. Yet, the construction of such a model is not well 
defined, because the distribution function is not unique. Therefore we will restrict 
the analysis to the (unique) two integral distribution function. We argue that a two 
integral approach is useful because a flat disk has a small extent in tJie z-direction 
and in the plane of the disk stars travel on nearly circular orbits and thus the 
velocity dispersion in the w and ζ direction are both small and from a dynamical 
point of view where velocities of the order of the circular velocities are relevant, 
almost equal. 

2. Method 

The orbits the stars travel on in a disk can bring them out of the disk up to a certain 
height. For a given angular momentum Lz, any orbit can be populated with binding 
energy less than the binding energy of the circular orbit with angular momentum 
Lz and corresponding radius r. However, we look for bulge-disk systems with a 
finite extent in the z-direction, say Hence, for any Lz one must introduce a 
lower limit S for the binding energy below which no motion is allowed. S is the 
binding energy of the orbit with angular momentum Lz that just can reach the 
height ZQ. Obviously, the farther from the center, the more the stars are confined to 
the equatorial plane and thus the more the orbits resemble nearly circular orbits, so 
the less S will differ from the binding energy of the circular orbit at that distance. 
Closer to the center, the stars must populate those orbits which can produce a 
bulge structure in configuration space. Hence, orbits different from circular orbits 
are populated. The energy S(LZ) is given by S(LZ) = Φ(Γ, ZQ) — L\/(2r2(Lz)). The 
two integral distribution function we propose has the following form: 

F(E,LZ)= Σ caitaaißnSa*(L,)e-tt[2S(L,)LW[E-S{Li)]'> (1) 

We introduce the exponential factor to obtain an exponential behaviour for the 
spatial density, as is observed in the light curves of most disks. To construct the 
distribution function (1) for a given bulge-disk system, we first select a large number 
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of those components which reveal roughly the features of a bulge-disk system. Those 
components are then fed to a Quadratic Programming routine (see Dejonghe 1989, 
hereafter QP), which will select in an iterative way a subset of components whose 
combined density will fit the Van der Kruit-density for that bulge-disk system. The 
latter density is given by 

p(R,z)=ex p ( - ^ . ) s e c h 2 ( - ) . (2) 
/to Zo 

Obviously, to obtain a physical model, one must add the constraint F > 0 to the 
QP-program. 

3. Results 

First of all we found that axisymmetric disks with a large variety of scale parameters 
Ro and zo, can be described by two integral models as given in (1). The density (2) 
is fitted extremely well. As an example, a model for the Galaxy was constructed 
(see Fig.l, with Ro = 2,zo = 0.25). Moreover, the QP-method which determines 
the Jbest components for the distribution function is suitable for this kind of work. 
The number of components is always small, at most 20. 

(A) (B) 

Fig. 1. (A): Plot of log[F(£, Lz)] vs. R along the locus of circular orbit. Notice the max-
imum phase-space density is not attained in the center and the 3 order of magnitude 
difference between the distribution function in the center and at its maximum. Notice also 
the exponential decline! (B): Contourmap of spatial density for the Galaxy model, where 
the solid line is the two integral density and the dashed line is the van der Kruit density 
with R0 = 2, zo = 0.25 
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