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FROBENIUS ACTIONS ON LOCAL COHOMOLOGY
MODULES AND DEFORMATION

LINQUAN MA and PHAM HUNG QUY

Abstract. Let (R,m) be a Noetherian local ring of characteristic p > 0. We

introduce and study F -full and F -anti-nilpotent singularities, both are defined

in terms of the Frobenius actions on the local cohomology modules of R

supported at the maximal ideal. We prove that if R/(x) is F -full or F -anti-

nilpotent for a nonzero divisor x ∈R, then so is R. We use these results to

obtain new cases on the deformation of F -injectivity.

§1. Introduction

Let (R,m) be a Noetherian local ring of prime characteristic p > 0. We

have the Frobenius endomorphism F :R→R, x 7→ xp. The F -singularities

are certain singularities defined via this Frobenius map. They appear

in the theory of tight closure (cf. [13] for its introduction), which was

systematically introduced by Hochster and Huneke [9] and developed by

many researchers, including Hara, Schwede, Smith, Takagi, Watanabe,

Yoshida and others. A recent active research of F -singularities is centered

around the correspondence with the singularities of the minimal model

program. We recommend [25] as an excellent survey for recent developments.

In this paper we study the deformation of F -singularities. That is,

we consider the problem: if R/(x) has certain property P for a regular

element x ∈R, then does R has the property P? The classical objects of

F -singularities are F -regularity, F -rationality, F -purity and F -injectivity

(cf. [13, 25]). It is well known that F -rationality always deforms while

F -regularity and F -purity do not deform in general [22, 23]. Whether
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F -injectivity deforms is a long- standing open problem [6] (for recent

developments, we refer to [11, 18]). Recall that the Frobenius endomorphism

induces a natural Frobenius action on every local cohomology module, F :

H i
m(R)→H i

m(R). The ring R is called F -injective if this Frobenius action

F is injective for every i> 0. The class of F -injective singularities contains

other classes of F -singularities. For an ideal-theoretic characterization of

F -injectivity, see [20, Main Theorem D]. We consider this paper as a step

toward a solution of the deformation of F -injectivity.

We introduce two conditions: F -full and F -anti-nilpotent singularities, in

terms of the Frobenius actions on local cohomology modules of R (we refer

to Section 2 for detailed definitions). The first condition is motivated by

recent results on Du Bois singularities [18]. The second condition has been

studied in [5, 16], and is known to be equivalent to stably FH-finite, which

means all local cohomology modules of R and R[[x1, . . . , xn]] supported at

the maximal ideals have only finitely many Frobenius stable submodules.

We prove that F -fullness and F -anti-nilpotency both deform, and we obtain

more evidence on deformation of F -injectivity. Our results largely generalize

earlier results of [11] in this direction. We list some of our main results here:

Theorem 1.1. (Theorem 4.2, Corollary 5.16) (R,m) be a Noetherian

local ring of characteristic p > 0 and x a regular element of R. Then we

have:

(1) if R/(x) is F -anti-nilpotent, then so is R;

(2) if R/(x) is F -full, then so is R;

(3) if R/(x) is F -full and F -injective, then so is R.

Theorem 1.2. (Theorem 5.11) Let (R,m) be a Noetherian local ring of

characteristic p > 0. Suppose the residue field k =R/m is perfect. Let x be

a regular element of R such that Coker(H i
m(R)

x→H i
m(R)) has finite length

for every i. If R/(x) is F -injective, then the map xp−1F : H i
m(R)→H i

m(R)

is injective for every i, in particular R is F -injective.

§2. Definitions and basic properties

2.1 Modules with Frobenius structure

Let (R,m) be a local ring of characteristic p > 0. A Frobenius action on

an R-module M , F : M →M , is an additive map such that for all u ∈M and

r ∈R, F (ru) = rpu. Such an action induces a natural R-linear map
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FR(M)→M ,1 where FR(−) denotes the Peskine–Szpiro’s Frobenius func-

tor. We say N is an F -stable submodule of M if F (N)⊆N . We say the

Frobenius action on M is nilpotent if F e(M) = 0 for some e.

We note that having a Frobenius action on M is the same as saying

that M is a left module over the ring R{F}, which may be viewed as

a noncommutative ring generated over R by the symbols 1, F, F 2, . . . by

requiring that Fr = rpF for r ∈R. Moreover, N is an F -stable submodule

of M equivalent to requiring that N is an R{F}-submodule of M . We will

not use this viewpoint in this article though.

Let M be an (typically Artinian) R-module with a Frobenius action F .

We say the Frobenius action on M is full (or simply M is full), if the map

F e
R(M)→M is surjective for some (equivalently, every) e> 1. This is the

same as saying that the R-span of all the elements of the form F e(u) is the

whole M for some (equivalently, every) e> 1. We say the Frobenius action

on M is anti-nilpotent (or simply M is anti-nilpotent), if for any F -stable

submodule N ⊆M , the induced Frobenius action F on M/N is injective

(note that this in particular implies that F acts injectively on M).

Lemma 2.1. The Frobenius action on M is anti-nilpotent if and only if

every F -stable submodule N ⊆M is full. In particular, if M anti-nilpotent,

then M is full.

Proof. Suppose M is anti-nilpotent. Let N ⊆M be an F -stable submod-

ule. Consider the R-span of F (N), call it N ′. Clearly, N ′ ⊆N is another

F -stable submodule of M and F (N)⊆N ′. But since M is anti-nilpotent,

F acts injectively on M/N ′. Thus we have N =N ′ and hence N is full.

Conversely, suppose every F -stable submodule of M is full. Suppose there

exists an F -stable submodule N ⊆M such that the Frobenius action on

M/N is not injective. Pick y /∈N such that F (y) ∈N . Let N ′′ =N +Ry. It

is clear that N ′′ is an F -stable submodule of M and the R-span of F (N ′′)

is contained in N (N ′′. This shows N ′′ is not full, a contradiction.

We also mention that whenever M is endowed with a Frobenius action

F , then F̃ = rF defines another Frobenius action on M for every r ∈R. It

is easy to check that if the action F̃ is full or anti-nilpotent, then so is F .

1It is not hard to see that an R-linear map FR(M)→M also determines a Frobenius
action on M .
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2.2 F -singularities

We collect some definitions about singularities in positive characteristic.

Let (R,m) be a Noetherian local ring of characteristic p > 0 with the

Frobenius endomorphism F :R→R; x 7→ xp. R is called F -finite if R is

a finitely generated as an R-module via the homomorphism F . R is called

F -pure if the Frobenius endomorphism is pure.2 It is worth to note that

if R is either F -finite or complete, then R being F -pure is equivalent to

the condition that the Frobenius endomorphism F :R→R is split [12].

Let I = (x1, . . . , xt) be an ideal of R. Then we denote by H i
I(R) the ith

local cohomology module with support at I (we refer to [3] for the general

theory of local cohomology modules). Recall that local cohomology may be

computed as the cohomology of the Čech complex

0→R→
t⊕
i=1

Rxi → · · · →
t⊕
i=1

Rx1···x̂i···xt →Rx1···xt → 0.

The Frobenius endomorphism F :R→R induces a natural Frobenius action

F :H i
I(R)→H i

I[p]
(R)∼=H i

I(R). A local ring (R,m) is called F -injective if

the Frobenius action on H i
m(R) is injective for all i> 0. This is the case if

R is F -pure [12, Lemma 2.2]. One can also characterize F -injectivity using

certain ideal closure operations (see [17, 20] for more details).

Example 2.2. Let I = (x1, . . . , xt)⊆R be an ideal generated by t

elements. By the above discussion we have

Ht
I(R)∼=Rx1···xt

/
Im

( t⊕
i=1

Rx1···x̂i···xt →Rx1···xt

)
and the natural Frobenius action on Ht

I(R) sends 1/(x1 · · · xt) to

1/(xp1 · · · x
p
t ). Therefore, it is easy to see the Frobenius action on Ht

I(R) is

full (in fact, FR(Ht
I(R))→Ht

I(R) is an isomorphism). On the other hand,

one cannot expect Ht
I(R) is always anti-nilpotent even when R is regular.

For example, let R= k[[x, y]] be a formal power series ring in two variables

and I = (x). We have

H1
(x)(R)∼= k[[y]]x−1 ⊕ · · · ⊕ k[[y]]x−n ⊕ · · · .

2A map of R-modules N →N ′ is pure if for every R-module M the map N ⊗R M →
N ′ ⊗R M is injective for every R-module M .
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Let N be the submodule of H1
(x)(R) generated by {y2x−n}∞n=1, then it is

easy to see N is an F -stable submodule of H1
(x)(R). However, F (yx−1) =

ypx−p ∈N while yx−1 /∈N . So the Frobenius action on H1
(x)(R)/N is not

injective and hence H1
(x)(R) is not anti-nilpotent.

We are mostly interested in the Frobenius actions on local cohomology

modules of R supported at the maximal ideal. We introduce two notions of

F -singularities.

Definition 2.3.

(1) We say that (R,m) is F -full, if the Frobenius action on H i
m(R) is full

for every i> 0. This means FR(H i
m(R))→H i

m(R) is surjective for every

i> 0.

(2) We say that (R,m) is F -anti-nilpotent, if the Frobenius action on

H i
m(R) is anti-nilpotent for every i> 0.

The concept of F -anti-nilpotency is not new, it was introduced and

studied in [5] and [16] under the name stably FH-finite: that is, all local

cohomology modules of R and R[[x1, . . . , xn]] supported at their maximal

ideals have only finitely many F -stable submodules. It is a nontrivial

result [5, Theorem 4.15] that this is equivalent to R being F -anti-nilpotent.

Remark 2.4.

(1) It is clear that F -anti-nilpotent implies F -injective and F -full (see

Lemma 2.1). Moreover, F -pure local rings are F -anti-nilpotent [16,

Theorem 1.1]. In particular, F -pure local rings are F -full.

(2) We can construct many F -anti-nilpotent (equivalently, stably FH-

finite) rings that are not F -pure [20, Sections 5 and 6].

(3) Cohen–Macaulay rings are automatically F -full, since FR(Hd
m(R))→

Hd
m(R) is an isomorphism. But even F -injective Cohen–Macaulay rings

are not necessarily F -anti-nilpotent [5, Example 2.16].

We give some simple examples of rings that are not F -full, we see a family

of such rings in Example 3.6.

Example 2.5.

(1) Let R= k[s4, s3t, st3, t4] where k is a field of characteristic p > 0. Then

R is a graded ring with s4, t4 a homogeneous system of parameters.
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A simple computation shows that the class[
(s3t)2

s4
,−(st3)2

t4

]
∈Rs4 ⊕Rt4

spans the local cohomology module H1
m(R). In particular, [H1

m(R)] sits

only in degree 2 and thus the natural Frobenius map kills H1
m(R). R is

not F -full.

(2) Let R= (k[x, y, z]/(x3 + y3 + z3))#k[s, t] be the Segre product of

A= (k[x, y, z]/(x3 + y3 + z3)) and B = k[s, t], where k is a field of

characteristic p > 0 with p≡ 2 mod 3. Then R is a normal domain,

since it is a direct summand of A⊗k B =A[s, t]. Moreover, a direct

computation (for example see [18, Examples 4.11 and 4.16]) shows that

H2
mR

(R) = [H2
mR

(R)]0 ∼= [H2
mA

(A)]0 = k.

Since p≡ 2 mod 3, we know the natural Frobenius map kills [H2
mA

(A)]0.

Hence R is not F -full. On the other hand, if p≡ 1 mod 3, then it is well

known that R is F -pure (since A is) and hence F -anti-nilpotent [16,

Theorem 1.1].

Remark 2.6.

(1) When R is a homomorphic image of a regular ring A, say R=A/I, R

is F -full if and only if H i
m(A/J)→H i

m(A/I) is surjective for every J ⊆
I ⊆
√
J . This is because by [15, Lemma 2.2], the R-span of F e(H i

m(R))

is the same as the image H i
m(A/I [p

e])→H i
m(A/I), and for every J ⊆

I ⊆
√
J , I [p

e] ⊆ J for e� 0. As an application, when R=A/I is F -

full, we have H i
m(A/I) = 0 provided H i

m(A/J) = 0. Hence depthA/I >
depthA/J for every J ⊆ I ⊆

√
J .

(2) Suppose R is a local ring essentially of finite type over C and R is Du

Bois (we refer to [21] or [18] for the definition and basic properties of

Du Bois singularities). In this case we do have H i
m(A/J)→H i

m(A/I)

is surjective for every J ⊆ I =
√
J [18, Lemma 3.3]. This is the main

ingredient in proving singularities of dense F -injective type deform [18,

Theorem C].

(3) Since F -injective singularity is the conjectured characteristic p > 0

analog of Du Bois singularity [1, 21], it is thus quite natural to ask

whether F -injective local rings are always F -full. It turns out that

this is false in general [18, Example 3.5]. However, constructing such
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examples seems hard. In fact, [5, Example 2.16] (or its variants like [18,

Example 3.5]) is the only example we know that is F -injective but not

F -anti-nilpotent.

The above remarks motivate us to introduce and study F -fullness and a

stronger notion of F -injectivity (see Section 5).

We end this subsection by proving that F -full rings localize. Note that it

is proved in [16, Theorem 5.10] that F -anti-nilpotent rings localize.

For convenience, we use R(1) to denote the target ring of the Frobenius

map R
F→R(1). If M is an R-module, then HomR(R(1), M) has a structure

of an R(1)-module. We can then identify R(1) with R, and HomR(R(1), M)

corresponds to an R-module which we call F [(M) (we refer to [2, Section 2.3]

for more details on this). When R is F -finite, we have HomR(R(1), ER)∼=
ER(1) and F [(E)∼= ER, where ER denotes the injective hull of the residue

field of (R,m).

Proposition 2.7. Let (R,m) be an F -finite and F -full local ring. Then

Rp is also F -full for every p ∈ SpecR.

Proof. By a result of Gabber [7, Remark 13.6], R is a homomorphic

image of a regular ring A. Let n= dimA. We have

HomR(1)(HomR(R(1), Extn−iA (R, A)), ER(1))

∼= HomR(1)(HomR(R(1), Extn−iA (R, A)),HomR(R(1), ER))

∼= HomR(HomR(R(1), Extn−iA (R, A)), ER)

∼=R(1) ⊗HomR(Extn−iA (R, A), ER)

∼=R(1) ⊗H i
m(R)

where the last isomorphism is by local duality. Thus after identifying R(1)

with R, we have FR(H i
m(R)) is the Matlis dual of F [(Extn−iA (R, A)). So

FR(H i
m(R))→H i

m(R) is surjective for every i if and only if Extn−iA (R, A)→
F [(Extn−iA (R, A)) is injective for every i. The latter condition clearly

localizes. So R is F -full implies Rp is F -full for every p ∈ SpecR.

§3. On surjective elements

The following definition was introduced in [11] and was the key tool

in [11].

Definition 3.1. Let (R,m) be a Noetherian local ring and x a regular

element of R. x is called a surjective element if the natural map on the local
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cohomology moduleH i
m(R/(xn))→H i

m(R/(x)) induced by R/(xn)→R/(x)

is surjective for all n > 0 and i> 0.

The next proposition is a restatement of [11, Lemma 3.2], so we omit the

proof.

Proposition 3.2. The following are equivalent:

(i) x is a surjective element.

(ii) For all 0< h6 k the multiplication map

R/(xh)
xk−h

→ R/(xk)

induces an injection

H i
m(R/(xh))→H i

m(R/(xk))

for each i> 0.

(iii) For all 0< h6 k the short exact sequence

0→R/(xh)
xk−h

→ R/(xk)→R/(xk−h)→ 0

induces a short exact sequence

0→H i
m(R/(xh))→H i

m(R/(xk))→H i
m(R/(xk−h))→ 0

for each i> 0.

Proposition 3.3. The following are equivalent:

(i) x is a surjective element.

(ii) The multiplication map H i
m(R)

x→H i
m(R) is surjective for all i> 0.

Proof. By Proposition 3.2, x is a surjective element if and only if all maps

in the direct limit system {H i
m(R/(xh))}h>1 are injective. This is equivalent

to the condition

φh :H i
m(R/(xh))→ lim−→

h

H i
m(R/(xh))∼=H i

m(H1
(x)(R))∼=H i+1

m (R)

is injective for all h> 1 and all i> 0 (the last isomorphism comes from

an easy computation using local cohomology spectral sequences and noting

that x is a nonzero divisor on R, see also [11, Lemma 2.2]).
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Claim 3.4. φh is exactly the connection maps in the long exact sequence

of local cohomology induced by 0→R
·xh−−→R→R/(xh)→ 0:

· · · →H i
m(R/(xh))

φh→H i+1
m (R)

xh→H i+1
m (R)→ · · · .

Proof of claim. Observe that by definition, φh is the natural map in the

long exact sequence of local cohomology

· · · →H i
m(R/(xh))

φh−→H i
m(Rx/R)

·x−→H i
m(Rx/R)→ · · ·

which is induced by 0→R/(xh)→Rx/R
·xh−−→Rx/R→ 0 (note that xh

is a nonzero divisor on R and H1
x(R)∼=Rx/R). However, it is easy to

see that the multiplication by xh map H i
m(Rx/R)

·xh−−→H i
m(Rx/R) can be

identified with the multiplication by xh map H i+1
m (R)

·xh−−→H i+1
m (R) because

we have a natural identification H i
m(Rx/R)∼=H i

m(H1
x(R))∼=H i+1

m (R) (see

for example [11, Lemma 2.2]). This finishes the proof of the claim.

From the claim it is immediate that x is a surjective element if and only

if the long exact sequence splits into short exact sequences:

0→H i
m(R/(xh))→H i+1

m (R)
xh→H i+1

m (R)→ 0.

But this is equivalent to saying that the multiplication map H i
m(R)

xh→
H i

m(R) is surjective for all h> 1 and i> 0, and also equivalent to H i
m(R)

x→
H i

m(R) is surjective for all i> 0.

We next link the notion of surjective element with F -fullness. This is

inspired by [18, 24].

Proposition 3.5. Let x be a regular element of (R,m). If R/(x) is

F -full, then x is a surjective element. In particular, if R/(x) is F -anti-

nilpotent, then x is a surjective element.

Proof. We have natural maps:

F e
R(H i

m(R/(x)))
αe−→ R/(x)⊗R F e

R(H i
m(R/(x)))∼= F e

R/(x)(H
i
m(R/(x)))

βe−→ H i
m(R/(x)).

If R/(x) is F -full, then βe is surjective for every e. Since αe is always

surjective, the natural map F e
R(H i

m(R/(x)))→H i
m(R/(x)) is surjective for
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every e. Now simply notice that for every e > 0, the map F e
R(H i

m(R/(x)))→
H i

m(R/(x)) factors through H i
m(R/(xp

e
))→H i

m(R/(x)), so H i
m(R/(xp

e
))→

H i
m(R/(x)) is surjective for every e > 0. This clearly implies that x is a

surjective element.

The above propositions allow us to construct a family of non F -full local

rings:

Example 3.6. Let (R,m) be a local ring with finite length cohomology,

that is, H i
m(R) has finite length for every i < dimR (under mild conditions,

this is equivalent to saying that R is Cohen–Macaulay on the punctured

spectrum). Let x be an arbitrary regular element in R. If R is not

Cohen–Macaulay, then we claim that R/(x) is not F -full (and hence

not F -anti-nilpotent). For suppose it is, then x is a surjective element

by Proposition 3.5, hence H i
m(R)

x→H i
m(R) is surjective for every i by

Proposition 3.3. But since R has finite length cohomology, we also know that

a power of x annihilates H i
m(R) for every i < dimR. This implies H i

m(R) = 0

for every i < dimR. So R is Cohen–Macaulay, a contradiction.

We learned the following argument from [11, Lemma A.1]. Since it is a

crucial technique of this paper, we provide a detailed proof.

Proposition 3.7. Let (R,m) be a local ring of prime characteristic p

and x a regular element of R. Let s be a positive integer such that the map

Hs−1
m (R)

x→Hs−1
m (R) is surjective and the Frobenius action on Hs−1

m (R/(x))

is injective, then the map

Hs
m(R)

xp−1F−→ Hs
m(R)

is injective.

Proof. The natural commutative diagram

0 −−−−→ R
x−−−−→ R −−−−→ R/(x) −−−−→ 0

xp−1F

y F

y F

y
0 −−−−→ R

x−−−−→ R −−−−→ R/(x) −−−−→ 0
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induces the following commutative diagram (the left most 0 comes from our

hypothesis that the map Hs−1
m (R)

x→Hs−1
m (R) is surjective):

0 −−−−→ Hs−1
m (R/(x))

α−−−−→ Hs
m(R)

x−−−−→ Hs
m(R) −−−−→ · · ·

F

y xp−1F

y F

y
0 −−−−→ Hs−1

m (R/(x))
α−−−−→ Hs

m(R)
x−−−−→ Hs

m(R) −−−−→ · · ·
Suppose y ∈Ker(xp−1F ) ∩ Soc(Hs

m(R)). Then we have x · y = 0 so there

exists z ∈Hs−1
m (R/(x)) such that α(z) = y. Following the above commu-

tative diagram we have

(α ◦ F )(z) = xp−1F (α(z)) = xp−1F (y) = 0.

However, since both F and α are injective, we have z = 0 and hence y = 0.

This shows xp−1F is injective and hence completes the proof.

Proposition 3.7 immediately generalizes the main result of [11]:

Corollary 3.8. (Compare with [11], Main Theorem) Let (R,m) be a

local ring of prime characteristic p and x a regular element of R. Suppose

R/(x) is F -injective. Then we have

(i) The map Ht
m(R)

xp−1F−→ Ht
m(R) is injective where t= depthR. In partic-

ular, the natural Frobenius action on Ht
m(R) is injective.

(ii) Suppose x is a surjective element. Then the map H i
m(R)

xp−1F−→ H i
m(R)

is injective for all i> 0. In particular, R is F -injective.

(iii) If R/(x) is F -full (e.g., R is F -anti-nilpotent or R is F -pure), then R

is F -injective.

Proof. (i) Follows from Proposition 3.7 applied to s= t, (ii) also follows

from Proposition 3.7 (because H i
m(R)

x→H i
m(R) is surjective for every i> 0

by Proposition 3.3), (iii) follows from (ii), because we know x is a surjective

element by Proposition 3.5.

In the next two sections, we show that F -full and F -anti-nilpotent singu-

larities both deform. We also prove new cases of deformation of F -injectivity.

These results are generalizations of Proposition 3.7 and Corollary 3.8.

§4. Deformation of F -full and F -anti-nilpotent singularities

In this section we prove that the condition F -full and F -anti-nilpotent

both deform. Throughout this section we assume that (R,m) is a local ring

of prime characteristic p. We begin with a crucial lemma.
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Lemma 4.1. Let x be a surjective element of R. Let N ⊆H i
m(R) be an

F -stable submodule. Let L=
⋂
t x

tN . Then L is an F -stable submodule of

H i
m(R) and we have the following commutative diagram (for every e> 1):

0 −−−−→ Hi−1
m (R/(x))/φ−1(L)

φ−−−−→ Hi
m(R)/L

x−−−−→ Hi
m(R)/L −−−−→ 0

F e

y xpe−1F e

y F e

y
0 −−−−→ Hi−1

m (R/(x))/φ−1(L)
φ−−−−→ Hi

m(R)/L
x−−−−→ Hi

m(R)/L −−−−→ 0

where φ is the map H i−1
m (R/(x))→H i

m(R).

Proof. Since x is a surjective element, by Proposition 3.3 we know that

the map

H i
m(R)

x→H i
m(R) is surjective for every i > 0. (?)

Applying the local cohomology functor to the following commutative

diagram:

0 −−−−→ R
x−−−−→ R −−−−→ R/(x) −−−−→ 0

xp
e−1F e

y F e

y F e

y
0 −−−−→ R

x−−−−→ R −−−−→ R/(x) −−−−→ 0

we have the following commutative diagram:

0 −−−−→ H i−1
m (R/(x))

φ−−−−→ H i
m(R)

x−−−−→ H i
m(R) −−−−→ 0

F e

y xp
e−1F e

y F e

y
0 −−−−→ H i−1

m (R/(x))
φ−−−−→ H i

m(R)
x−−−−→ H i

m(R) −−−−→ 0

for all i> 1 and e> 1, where the rows are short exact sequences by (?).

Therefore, to prove the lemma, it suffices to show that L is F -stable and

0→H i−1
m (R/(x))/φ−1(L)

φ→H i
m(R)/L

x→H i
m(R)/L→ 0

is exact. It is clear that L is F -stable since it is an intersection of F -stable

submodules of H i
m(R). To see the exactness of the above sequence, first

note that Im(φ) = 0 :Hi
m(R) x, so L+ Im(φ)⊆ L :Hi

m(R) x. Thus it is enough

to check that L :Hi
m(R) x⊆ L+ Im(φ). Let y be an element such that xy ∈ L.
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Since L= xL by the construction of L, there exists z ∈ L such that xy = xz.

So y − z ∈ Im(φ) and hence y ∈ L+ Im(φ), as desired.

We are ready to prove the main result of this section. This answers [20,

Problem 4] for stably FH-finiteness.

Theorem 4.2. (R,m) be a local ring of positive characteristic p and x

a regular element of R. Then we have:

(i) if R/(x) is F -anti-nilpotent, then so is R;

(ii) if R/(x) is F -full, then so is R.

Proof. We first prove (i). Let N be an F -stable submodule of H i
m(R). We

want to show that the induced Frobenius action on H i
m(R)/N is injective.

Since R/(x) is F -anti-nilpotent, x is a surjective element by Proposition 3.5.

Let L=
⋂
t x

tN . By Lemma 4.1, we have the following commutative

diagram:

0 −−−−→ Hi−1
m (R/(x))/φ−1(L)

φ−−−−→ Hi
m(R)/L

x−−−−→ Hi
m(R)/L −−−−→ 0

F e

y xpe−1F e

y F e

y
0 −−−−→ Hi−1

m (R/(x))/φ−1(L)
φ−−−−→ Hi

m(R)/L
x−−−−→ Hi

m(R)/L −−−−→ 0

We first claim that the middle map xp
e−1F e :H i

m(R)/L→H i
m(R)/L is

injective. Let y ∈Ker(xp
e−1F e) ∩ Soc(H i

m(R)/L). We have x · y = 0, so y =

φ(z) for some z ∈H i−1
m (R/(x))/φ−1(L). It is easy to see that φ−1(L) is an

F -stable submodule of H i−1
m (R/(x)) and F e(z) = 0. Since R/(x) is F -anti-

nilpotent, we know the Frobenius action F , and hence its iterate F e, on

H i−1
m (R/(x))/φ−1(L) is injective. Therefore, z = 0 and hence y = 0. This

proves that xp
e−1F e and hence F acts injectively on H i

m(R)/L.

Note that we have a descending chain N ⊇ xN ⊇ x2N ⊇ · · · . Since

H i
m(R) is Artinian, L=

⋂
t x

tN = xnN for all n� 0. We next claim that

L=N , this will finish the proof because we already showed F acts injectively

on H i
m(R)/L. We have xp

e−1F e(N)⊆ xpe−1N = L for e� 0, but the map

xp
e−1F e :H i

m(R)/L→H i
m(R)/L is injective by the above paragraph. So we

must have N ⊆ L and thus L=N . This completes the proof of (1).

Next we prove (ii). The method is similar to that of (i). Let N be the R-

span of F (H i
m(R)) in H i

m(R), this is the same as the image of FR(H i
m(R))→

H i
m(R). It is clear that N is an F -stable submodule. We want to show
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N =H i
m(R). Since R/(x) is F -full, x is a surjective element by Proposi-

tion 3.5. Let L=
⋂
t x

tN . By Lemma 4.1, we have the following commutative

diagram:

0 −−−−→ Hi−1
m (R/(x))/φ−1(L)

φ−−−−→ Hi
m(R)/L

x−−−−→ Hi
m(R)/L −−−−→ 0

F e

y xpe−1F e

y F e

y
0 −−−−→ Hi−1

m (R/(x))/φ−1(L)
φ−−−−→ Hi

m(R)/L
x−−−−→ Hi

m(R)/L −−−−→ 0

The descending chain N ⊇ xN ⊇ x2N ⊇ · · · stabilizes because H i
m(R)

is Artinian. So L=
⋂
t x

tN = xnN for n� 0. The key point is that in

the above diagram, the middle Frobenius action xp
e−1F e is the zero map

on H i
m(R)/L for e� 0, because for any y ∈H i

m(R), F e(y) ∈N and thus

xp
e−1F e(y) ∈ L for e� 0. But then since H i−1

m (R/(x))/φ−1(L) can be

viewed as a submodule of H i
m(R)/L by the above commutative diagram,

the natural Frobenius action F e on H i−1
m (R/(x))/φ−1(L) is zero, that is, F

is nilpotent on H i−1
m (R/(x))/φ−1(L).

Since F is nilpotent on H i−1
m (R/(x))/φ−1(L), we know that φ−1(L)

must contain all elements F e(H i
m(R/(x))), hence it contains the R-span

of F e(H i
m(R/(x))). But R/(x) is F -full, so we must have φ−1(L) =

H i−1
m (R/(x)). But this means the map

H i
m(R)/L

x−→H i
m(R)/L

is an isomorphism, which is impossible unless H i
m(R) = L (since otherwise

any nonzero socle element of H i
m(R)/L maps to zero). Therefore, we have

H i
m(R) =N = L. This proves R is F -full and hence finished the proof of

(2).

The following is a well-known counter-example of Fedder [6] and

Singh [22] for the deformation of F -purity.

Example 4.3. (Compare with [20, Lemma 6.1]) Let K be a perfect

field of characteristic p > 0 and let

R :=K[[U, V, Y, Z]]/(UV, UZ, Z(V − Y 2)).

Let u, v, y and z denote the image of U, V, Y and Z in R (and its

quotients), respectively. Then y is a regular element of R and R/(y)∼=
K[[U, V, Z]]/(UV, UZ, V Z) is F -pure by [12, Proposition 5.38]. So R/(y)

is F -anti-nilpotent by [16, Theorem 1.1]. By Theorem 4.2 we have R is also

F -anti-nilpotent, or equivalently, R is stably FH-finite.
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§5. F -injectivity

5.1 F -injectivity and depth

We start with the following definition.

Definition 5.1. (Cf. [3, Definition 9.1.3]) Let M be a finitely generated

module over a local ring (R,m). The finiteness dimension fm(M) of M with

respect to m is defined as follows:

fm(M) := inf{i |H i
m(M) is not finitely generated} ∈ Z>0 ∪ {∞}.

Remark 5.2.

(i) Assume that dimM = 0 or M = 0 (recall that a trivial module has

dimension −1). In this case, H i
m(M) is finitely generated for all i and

fm(M) is equal to ∞. It will be essential to know when the finiteness

dimension is a positive integer. We mention the following result. Let

(R,m) be a local ring and let M be a finitely generated R-module.

If d= dimM > 0, then the local cohomology module Hd
m(M) is not

finitely generated. For the proof of this result, see [3, Corollary 7.3.3].

(ii) Suppose (R,m) is an image of a Cohen–Macaulay local ring. By the

Grothendieck finiteness theorem (cf. [3, Theorem 9.5.2]) we have

fm(M) = min{depthMp + dimR/p : p ∈ Supp(M) \ {m}}.

(iii) M is generalized Cohen–Macaulay if and only if dimM = fm(M).

It is clear that depthR6 fm(R) 6 dimR. The following result says that

if R/(x) is F -injective, then R has ‘good’ depth.

Theorem 5.3. If R/(x) is F -injective, then depthR= fm(R).

Proof. Suppose t= depthR< fm(R). The commutative diagram

0 −−−−→ R
x−−−−→ R −−−−→ R/(x) −−−−→ 0

xp−1F

y F

y F

y
0 −−−−→ R

x−−−−→ R −−−−→ R/(x) −−−−→ 0

induces the following commutative diagram

0 −−−−→ Ht−1
m (R/(x))

α−−−−→ Ht
m(R) −−−−→ · · ·

F e

y xp
e−1F e

y
0 −−−−→ Ht−1

m (R/(x))
α−−−−→ Ht

m(R) −−−−→ · · ·
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where both α and the left vertical map are injective. But Ht
m(R) has

finite length, xp
e−1F e :Ht

m(R)→Ht
m(R) vanishes for e� 0, which is a

contradiction.

Remark 5.4. The assertion of Theorem 5.3 also holds true if R/(x) is

F -full. Indeed, by Proposition 3.5 we have x is a surjective element. Hence

there is no nonzero H i
m(R) of finite length. Thus depthR= fm(R).

Remark 5.5. The above result is closely related to the work of Schwede

and Singh in [11, Appendix]. In the proof of [11, Lemma A.2, Theorem

A.3], it is claimed that if Rp satisfies the Serre condition (Sk) for all p in

Spec◦(R), the punctured spectrum of R, and depthR= t < k, then Ht
m(R) is

finitely generated. But this fact may not be true if R is not equidimensional.

For instance, let R=K[[a, b, c, d]]/(a) ∩ (b, c, d) with K a field. We have

depthR= 1 and Rp satisfies (S2) for all p ∈ Spec◦(R). However, H1
m(R) is

not finitely generated.

The assertion of [11, Lemma A.2] (and hence [11, Theorem A.3]) is still

true. In fact, we can reduce it to the case that R is equidimensional. We fill

this gap below.

Corollary 5.6. [11, Lemma A.2] Let (R,m) be an F -finite local ring.

Suppose there exists a regular element x such that R/(x) is F -injective. If

Rp satisfies the Serre condition (Sk) for all p ∈ Spec◦(R), then R is (Sk).

Proof. We can assume that k 6 d= dimR. In fact, we need only to

prove that t := depthR> k. The case k = 1 is trivial since R contains a

regular element x. For k > 2, since R/(x) is F -injective we have R/(x) is

reduced (cf. [21, Proposition 4.3]). Hence depth(R/(x)) > 1, so depthR> 2.

Thus R satisfies the Serre condition (S2). On the other hand, since R is F -

finite, R is a homomorphic image of a regular ring by a result of Gabber [7,

Remark 13.6]. In particular, R is universally catenary.3 But if a universally

catenary ring satisfies (S2), then it is equidimensional (see [10, Remark

2.2(h)]). By Theorem 5.3 and Remark 5.2(ii), there exists a prime ideal

p ∈ Spec◦(R) such that depthR= depthRp + dimR/p. It is then easy to

see that depthR> min{d, k + 1}> k. The proof is complete.

3Another way to see this is to use the fact that F -finite rings are excellent [14] and
hence universally catenary.
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Remark 5.7. In the above argument, we actually proved that if k < d,

then depthR> k + 1.

5.2 Deformation of F -injectivity

We begin with the following generalization of the notion of surjective

elements.

Definition 5.8. (Cf. [4]) A regular element x is called a strictly filter

regular element if

Coker(H i
m(R)

x→H i
m(R))

has finite length for all i> 0.

Lemma 5.9. Let (R,m) be a local ring of characteristic p > 0. Suppose

the residue field k =R/m is perfect. Let M be an R-module with an injective

Frobenius action F . Suppose L is an F -stable submodule of M of finite

length. Then the induced Frobenius action on M/L is injective.

Proof. First we note that L is killed by m: suppose x ∈ L, then F e(m ·
x) = m[pe] · x= 0 for e� 0 since L has finite length. But then m · x= 0 since

F acts injectively. Now we have a Frobenius action F on a k-vector space

L. Call the image of L′ ⊆ L (which is a kp-vector subspace of L). Since F

is injective, the kp-vector space dimension of L′ is equal to the k-vector

space dimension of L. But since kp = k, this implies L′ = L and thus F is

surjective, hence F is bijective. Now by the injectivity of F again we have

F (x) /∈ L for all x /∈ L. Thus F :M/L→M/L is injective.

Example 5.10. The perfectness of the residue field in Lemma 5.9 is

necessary. Let A= Fp[t] and R= k = Fp(t), where t is an indeterminate. We

consider the Frobenius action on the A-module Ae1 ⊕Ae2 defined by

F (f(t), g(t)) = (f(t)p + tg(t)p, 0).

It is clear that F is injective. Moreover, Ae1 ⊕ 0 is an F -stable submodule of

Ae1 ⊕Ae2. Since F (Ae1 ⊕Ae2)⊆Ae1 ⊕ 0, the induced Frobenius action on

(Ae1 ⊕Ae2)/(Ae1 ⊕ 0) is the zero map. By localizing, we obtain an injective

Frobenius action on M = k · e1 ⊕ k · e2 with L= k · e1 ⊕ 0 is an F -stable

submodule of finite length, but the induced Frobenius action on M/L is not

injective.

The following is a generalization of the main result of [11] when R/m is

perfect.
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Theorem 5.11. Let (R,m) be a Noetherian local ring of characteristic

p > 0. Suppose the residue field k =R/m is perfect. Let x be a strictly filter

regular element. If R/(x) is F -injective, then the map xp−1F : H i
m(R)→

H i
m(R) is injective for every i, in particular R is F -injective.

Proof. Let Li := Coker(H i
m(R)

x→H i
m(R)), we have Li has finite length

for all i> 0. The commutative diagram

0 −−−−→ R
x−−−−→ R −−−−→ R/(x) −−−−→ 0

xp−1F

y F

y F

y
0 −−−−→ R

x−−−−→ R −−−−→ R/(x) −−−−→ 0

induces the following commutative diagram

0 −−−−−→ Li−1 −−−−−→ Hi−1
m (R/(x))

φ−−−−−→ Hi
m(R)

x−−−−−→ Hi
m(R) −−−−−→ · · ·

F

y F

y xp−1F

y F

y
0 −−−−−→ Li−1 −−−−−→ Hi−1

m (R/(x))
φ−−−−−→ Hi

m(R)
x−−−−−→ Hi

m(R) −−−−−→ · · ·

Therefore, we have the following commutative diagram

0 −−−−→ H i−1
m (R/(x))/Li−1

α−−−−→ H i
m(R)

x−−−−→ H i
m(R) −−−−→ · · ·

F

y xp−1F

y F

y
0 −−−−→ H i−1

m (R/(x))/Li−1
α−−−−→ H i

m(R)
x−−−−→ H i

m(R) −−−−→ · · ·

with the Frobenius action F :H i−1
m (R/(x))/Li−1→H i−1

m (R/(x))/Li−1 is

injective by Lemma 5.9. Now by the same method as in the proof of

Proposition 3.7 or Theorem 4.2(i), we conclude that the map xp−1F :

H i
m(R)→H i

m(R) is injective for all i> 0.

Similarly, we have the following:

Proposition 5.12. Let (R,m) be a Noetherian local ring of character-

istic p > 0. Suppose the residue field k =R/m is perfect. Let x be a regular

element such that R/(x) is F -injective. Let s be a positive integer such that

Hs−1
m (R/(x)) has finite length. Then the map xp−1F :Hs+1

m (R)→Hs+1
m (R)

is injective.

Proof. The short exact sequence

0→R
x→R→R/(x)→ 0
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induces the exact sequence

· · · →Hs−1
m (R/(x))→Hs

m(R)
x→Hs

m(R)→Hs
m(R/(x))→Hs+1

m (R)→ · · · .

Since Hs−1
m (R/(x)) has finite length, so is Ker(Hs

m(R)
x→Hs

m(R)). We claim

that

Ls := Coker(Hs
m(R)

x→Hs
m(R))

also has finite length: to see this we may assume R is complete, since

Ker(Hs
m(R)

x→Hs
m(R)) has finite length, this means Hs

m(R)∨
x→Hs

m(R)∨ is

surjective when localizing at any p 6= m. But by [19, Theorem 2.4] this

implies Hs
m(R)∨

x→Hs
m(R)∨ is an isomorphism when localizing at any p 6= m.

Thus Ker(Hs
m(R)∨

x→Hs
m(R)∨) has finite length which, after dualizing,

shows that Coker(Hs
m(R)

x→Hs
m(R)) has finite length.

We have proved Ls = Coker(Hs
m(R)

x→Hs
m(R)) has finite length. Now the

map xp−1F :Hs+1
m (R)→Hs+1

m (R) is injective by the same argument as in

Theorem 5.11.

The following immediate corollary of the above proposition recovers (and

in fact generalizes) results in [11].

Corollary 5.13. [11, Corollary 4.7] Let (R,m) be a Noetherian local

ring of characteristic p > 0. Suppose the residue field k =R/m is perfect. Let

x be a regular element such that R/(x) is F -injective. Then the map xp−1F :

H i
m(R)→H i

m(R) is injective for all i6 fm(R/(x)) + 1. In particular, if

R/(x) is generalized Cohen–Macaulay, then R is F -injective.

Because of the deep connections between F -injective and Du Bois

singularities [1, 21] and Remark 2.6, we believe that it is rarely the case

that an F -injective ring fails to be F -full (again, the only example we know

this happens is [18, Example 3.5], which is based on the construction of [5,

Example 2.16]). Therefore, we introduce:

Definition 5.14. We say (R,m) is strongly F -injective if R is F -

injective and F -full.

Remark 5.15. In general we have: F -anti-nilpotent ⇒ strongly F -

injective ⇒ F -injective. Moreover, when R is Cohen–Macaulay, strongly

F -injective is equivalent to F -injective.

We can prove that strong F -injectivity deform.

Corollary 5.16. Let x be a regular element on (R,m). If R/(x) is

strongly F -injective, then R is strongly F -injective.
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Proof. We know R is F -injective by Corollary 3.8(iii). But we also know

R is F -full by Theorem 4.2(ii). This shows that R is strongly F -injective.

References

[1] B. Bhatt, K. Schwede and S. Takagi, The weak ordinarity conjecture and F -
singularities, Adv. Stud. Pure Math. (Kawamata’s 60th volume) (to appear).
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