FROBENIUS ACTIONS ON LOCAL COHOMOLOGY MODULES AND DEFORMATION

LINQUAN MA AND PHAM HUNG QUY

Abstract. Let (R, \mathfrak{m}) be a Noetherian local ring of characteristic p > 0. We introduce and study *F*-full and *F*-anti-nilpotent singularities, both are defined in terms of the Frobenius actions on the local cohomology modules of *R* supported at the maximal ideal. We prove that if R/(x) is *F*-full or *F*-anti-nilpotent for a nonzero divisor $x \in R$, then so is *R*. We use these results to obtain new cases on the deformation of *F*-injectivity.

§1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local ring of prime characteristic p > 0. We have the Frobenius endomorphism $F: R \to R, x \mapsto x^p$. The *F*-singularities are certain singularities defined via this Frobenius map. They appear in the theory of *tight closure* (cf. [13] for its introduction), which was systematically introduced by Hochster and Huneke [9] and developed by many researchers, including Hara, Schwede, Smith, Takagi, Watanabe, Yoshida and others. A recent active research of *F*-singularities is centered around the correspondence with the singularities of the minimal model program. We recommend [25] as an excellent survey for recent developments.

In this paper we study the deformation of F-singularities. That is, we consider the problem: if R/(x) has certain property **P** for a regular element $x \in R$, then does R has the property **P**? The classical objects of F-singularities are F-regularity, F-rationality, F-purity and F-injectivity (cf. [13, 25]). It is well known that F-rationality always deforms while F-regularity and F-purity do not deform in general [22, 23]. Whether

© 2017 Foundation Nagoya Mathematical Journal

Received June 7, 2016. Revised May 5, 2017. Accepted May 6, 2017.

²⁰¹⁰ Mathematics subject classification. 13A35, 13D45, 14B05.

L. Ma is supported in part by the NSF grant DMS #1600198 and NSF CAREER grant DMS #1252860/1501102, and was partially supported by a Simons Travel grant when preparing this article. P. H. Quy is partially supported by a fund of Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2017.10. This paper was written while Pham Hung Quy was visiting Vietnam Institute for Advanced Study in Mathematics. He would like to thank the VIASM for hospitality and financial support.

F-injectivity deforms is a long- standing open problem [6] (for recent developments, we refer to [11, 18]). Recall that the Frobenius endomorphism induces a natural Frobenius action on every local cohomology module, F: $H^i_{\mathfrak{m}}(R) \to H^i_{\mathfrak{m}}(R)$. The ring R is called *F*-injective if this Frobenius action F is injective for every $i \ge 0$. The class of *F*-injective singularities contains other classes of *F*-singularities. For an ideal-theoretic characterization of *F*-injectivity, see [20, Main Theorem D]. We consider this paper as a step toward a solution of the deformation of *F*-injectivity.

We introduce two conditions: F-full and F-anti-nilpotent singularities, in terms of the Frobenius actions on local cohomology modules of R (we refer to Section 2 for detailed definitions). The first condition is motivated by recent results on Du Bois singularities [18]. The second condition has been studied in [5, 16], and is known to be equivalent to stably FH-finite, which means all local cohomology modules of R and $R[[x_1, \ldots, x_n]]$ supported at the maximal ideals have only finitely many Frobenius stable submodules. We prove that F-fullness and F-anti-nilpotency both deform, and we obtain more evidence on deformation of F-injectivity. Our results largely generalize earlier results of [11] in this direction. We list some of our main results here:

THEOREM 1.1. (Theorem 4.2, Corollary 5.16) (R, \mathfrak{m}) be a Noetherian local ring of characteristic p > 0 and x a regular element of R. Then we have:

- (1) if R/(x) is F-anti-nilpotent, then so is R;
- (2) if R/(x) is F-full, then so is R;
- (3) if R/(x) is F-full and F-injective, then so is R.

THEOREM 1.2. (Theorem 5.11) Let (R, \mathfrak{m}) be a Noetherian local ring of characteristic p > 0. Suppose the residue field $k = R/\mathfrak{m}$ is perfect. Let x be a regular element of R such that $\operatorname{Coker}(H^i_{\mathfrak{m}}(R) \xrightarrow{x} H^i_{\mathfrak{m}}(R))$ has finite length for every i. If R/(x) is F-injective, then the map $x^{p-1}F$: $H^i_{\mathfrak{m}}(R) \to H^i_{\mathfrak{m}}(R)$ is injective for every i, in particular R is F-injective.

$\S 2$. Definitions and basic properties

2.1 Modules with Frobenius structure

Let (R, \mathfrak{m}) be a local ring of characteristic p > 0. A Frobenius action on an *R*-module $M, F: M \to M$, is an additive map such that for all $u \in M$ and $r \in R, F(ru) = r^p u$. Such an action induces a natural *R*-linear map $\mathscr{F}_R(M) \to M$ ¹, where $\mathscr{F}_R(-)$ denotes the Peskine–Szpiro's Frobenius functor. We say N is an *F*-stable submodule of M if $F(N) \subseteq N$. We say the Frobenius action on M is *nilpotent* if $F^e(M) = 0$ for some e.

We note that having a Frobenius action on M is the same as saying that M is a left module over the ring $R\{F\}$, which may be viewed as a noncommutative ring generated over R by the symbols $1, F, F^2, \ldots$ by requiring that $Fr = r^p F$ for $r \in R$. Moreover, N is an F-stable submodule of M equivalent to requiring that N is an $R\{F\}$ -submodule of M. We will not use this viewpoint in this article though.

Let M be an (typically Artinian) R-module with a Frobenius action F. We say the Frobenius action on M is *full* (or simply M is full), if the map $\mathscr{F}_R^e(M) \to M$ is surjective for some (equivalently, every) $e \ge 1$. This is the same as saying that the R-span of all the elements of the form $F^e(u)$ is the whole M for some (equivalently, every) $e \ge 1$. We say the Frobenius action on M is *anti-nilpotent* (or simply M is anti-nilpotent), if for any F-stable submodule $N \subseteq M$, the induced Frobenius action F on M/N is injective (note that this in particular implies that F acts injectively on M).

LEMMA 2.1. The Frobenius action on M is anti-nilpotent if and only if every F-stable submodule $N \subseteq M$ is full. In particular, if M anti-nilpotent, then M is full.

Proof. Suppose M is anti-nilpotent. Let $N \subseteq M$ be an F-stable submodule. Consider the R-span of F(N), call it N'. Clearly, $N' \subseteq N$ is another F-stable submodule of M and $F(N) \subseteq N'$. But since M is anti-nilpotent, F acts injectively on M/N'. Thus we have N = N' and hence N is full.

Conversely, suppose every F-stable submodule of M is full. Suppose there exists an F-stable submodule $N \subseteq M$ such that the Frobenius action on M/N is not injective. Pick $y \notin N$ such that $F(y) \in N$. Let N'' = N + Ry. It is clear that N'' is an F-stable submodule of M and the R-span of F(N'') is contained in $N \subsetneq N''$. This shows N'' is not full, a contradiction.

We also mention that whenever M is endowed with a Frobenius action F, then $\tilde{F} = rF$ defines another Frobenius action on M for every $r \in R$. It is easy to check that if the action \tilde{F} is full or anti-nilpotent, then so is F.

¹It is not hard to see that an *R*-linear map $\mathscr{F}_R(M) \to M$ also determines a Frobenius action on *M*.

2.2 F-singularities

We collect some definitions about singularities in positive characteristic. Let (R, \mathfrak{m}) be a Noetherian local ring of characteristic p > 0 with the Frobenius endomorphism $F: R \to R; x \mapsto x^p$. R is called F-finite if R is a finitely generated as an R-module via the homomorphism F. R is called F-pure if the Frobenius endomorphism is pure.² It is worth to note that if R is either F-finite or complete, then R being F-pure is equivalent to the condition that the Frobenius endomorphism $F: R \to R$ is split [12]. Let $I = (x_1, \ldots, x_t)$ be an ideal of R. Then we denote by $H_I^i(R)$ the *i*th local cohomology module with support at I (we refer to [3] for the general theory of local cohomology modules). Recall that local cohomology may be computed as the cohomology of the Čech complex

$$0 \to R \to \bigoplus_{i=1}^{t} R_{x_i} \to \dots \to \bigoplus_{i=1}^{t} R_{x_1 \cdots \widehat{x}_i \cdots x_t} \to R_{x_1 \cdots x_t} \to 0.$$

The Frobenius endomorphism $F: R \to R$ induces a natural Frobenius action $F: H^i_I(R) \to H^i_{I^{[p]}}(R) \cong H^i_I(R)$. A local ring (R, \mathfrak{m}) is called *F*-injective if the Frobenius action on $H^i_{\mathfrak{m}}(R)$ is injective for all $i \ge 0$. This is the case if R is *F*-pure [12, Lemma 2.2]. One can also characterize *F*-injectivity using certain ideal closure operations (see [17, 20] for more details).

EXAMPLE 2.2. Let $I = (x_1, \ldots, x_t) \subseteq R$ be an ideal generated by t elements. By the above discussion we have

$$H_I^t(R) \cong R_{x_1 \cdots x_t} / \operatorname{Im}\left(\bigoplus_{i=1}^t R_{x_1 \cdots \widehat{x}_i \cdots x_t} \to R_{x_1 \cdots x_t}\right)$$

and the natural Frobenius action on $H_I^t(R)$ sends $1/(x_1 \cdots x_t)$ to $1/(x_1^p \cdots x_t^p)$. Therefore, it is easy to see the Frobenius action on $H_I^t(R)$ is full (in fact, $\mathscr{F}_R(H_I^t(R)) \to H_I^t(R)$ is an isomorphism). On the other hand, one cannot expect $H_I^t(R)$ is always anti-nilpotent even when R is regular. For example, let R = k[[x, y]] be a formal power series ring in two variables and I = (x). We have

$$H^1_{(x)}(R) \cong k[[y]]x^{-1} \oplus \cdots \oplus k[[y]]x^{-n} \oplus \cdots$$
.

²A map of *R*-modules $N \to N'$ is *pure* if for every *R*-module *M* the map $N \otimes_R M \to N' \otimes_R M$ is injective for every *R*-module *M*.

Let N be the submodule of $H^1_{(x)}(R)$ generated by $\{y^2x^{-n}\}_{n=1}^{\infty}$, then it is easy to see N is an F-stable submodule of $H^1_{(x)}(R)$. However, $F(yx^{-1}) = y^p x^{-p} \in N$ while $yx^{-1} \notin N$. So the Frobenius action on $H^1_{(x)}(R)/N$ is not injective and hence $H^1_{(x)}(R)$ is not anti-nilpotent.

We are mostly interested in the Frobenius actions on local cohomology modules of R supported at the maximal ideal. We introduce two notions of F-singularities.

Definition 2.3.

- (1) We say that (R, \mathfrak{m}) is *F*-full, if the Frobenius action on $H^i_{\mathfrak{m}}(R)$ is full for every $i \ge 0$. This means $\mathscr{F}_R(H^i_{\mathfrak{m}}(R)) \to H^i_{\mathfrak{m}}(R)$ is surjective for every $i \ge 0$.
- (2) We say that (R, \mathfrak{m}) is *F*-anti-nilpotent, if the Frobenius action on $H^i_{\mathfrak{m}}(R)$ is anti-nilpotent for every $i \ge 0$.

The concept of F-anti-nilpotency is not new, it was introduced and studied in [5] and [16] under the name stably FH-finite: that is, all local cohomology modules of R and $R[[x_1, \ldots, x_n]]$ supported at their maximal ideals have only finitely many F-stable submodules. It is a nontrivial result [5, Theorem 4.15] that this is equivalent to R being F-anti-nilpotent.

Remark 2.4.

- It is clear that F-anti-nilpotent implies F-injective and F-full (see Lemma 2.1). Moreover, F-pure local rings are F-anti-nilpotent [16, Theorem 1.1]. In particular, F-pure local rings are F-full.
- (2) We can construct many *F*-anti-nilpotent (equivalently, stably FH-finite) rings that are not *F*-pure [20, Sections 5 and 6].
- (3) Cohen–Macaulay rings are automatically F-full, since $\mathscr{F}_R(H^d_\mathfrak{m}(R)) \to H^d_\mathfrak{m}(R)$ is an isomorphism. But even F-injective Cohen–Macaulay rings are not necessarily F-anti-nilpotent [5, Example 2.16].

We give some simple examples of rings that are not F-full, we see a family of such rings in Example 3.6.

Example 2.5.

(1) Let $R = k[s^4, s^3t, st^3, t^4]$ where k is a field of characteristic p > 0. Then R is a graded ring with s^4, t^4 a homogeneous system of parameters.

A simple computation shows that the class

$$\left[\frac{(s^3t)^2}{s^4}, -\frac{(st^3)^2}{t^4}\right] \in R_{s^4} \oplus R_{t^4}$$

spans the local cohomology module $H^1_{\mathfrak{m}}(R)$. In particular, $[H^1_{\mathfrak{m}}(R)]$ sits only in degree 2 and thus the natural Frobenius map kills $H^1_{\mathfrak{m}}(R)$. R is not F-full.

(2) Let $R = (k[x, y, z]/(x^3 + y^3 + z^3)) \# k[s, t]$ be the Segre product of $A = (k[x, y, z]/(x^3 + y^3 + z^3))$ and B = k[s, t], where k is a field of characteristic p > 0 with $p \equiv 2 \mod 3$. Then R is a normal domain, since it is a direct summand of $A \otimes_k B = A[s, t]$. Moreover, a direct computation (for example see [18, Examples 4.11 and 4.16]) shows that

$$H^{2}_{\mathfrak{m}_{R}}(R) = [H^{2}_{\mathfrak{m}_{R}}(R)]_{0} \cong [H^{2}_{\mathfrak{m}_{A}}(A)]_{0} = k.$$

Since $p \equiv 2 \mod 3$, we know the natural Frobenius map kills $[H^2_{\mathfrak{m}_A}(A)]_0$. Hence R is not F-full. On the other hand, if $p \equiv 1 \mod 3$, then it is well known that R is F-pure (since A is) and hence F-anti-nilpotent [16, Theorem 1.1].

Remark 2.6.

- (1) When R is a homomorphic image of a regular ring A, say R = A/I, R is F-full if and only if $H^i_{\mathfrak{m}}(A/J) \to H^i_{\mathfrak{m}}(A/I)$ is surjective for every $J \subseteq I \subseteq \sqrt{J}$. This is because by [15, Lemma 2.2], the R-span of $F^e(H^i_{\mathfrak{m}}(R))$ is the same as the image $H^i_{\mathfrak{m}}(A/I^{[p^e]}) \to H^i_{\mathfrak{m}}(A/I)$, and for every $J \subseteq I \subseteq \sqrt{J}$, $I^{[p^e]} \subseteq J$ for $e \gg 0$. As an application, when R = A/I is F-full, we have $H^i_{\mathfrak{m}}(A/I) = 0$ provided $H^i_{\mathfrak{m}}(A/J) = 0$. Hence depth $A/I \ge$ depth A/J for every $J \subseteq I \subseteq \sqrt{J}$.
- (2) Suppose R is a local ring essentially of finite type over \mathbb{C} and R is Du Bois (we refer to [21] or [18] for the definition and basic properties of Du Bois singularities). In this case we do have $H^i_{\mathfrak{m}}(A/J) \to H^i_{\mathfrak{m}}(A/I)$ is surjective for every $J \subseteq I = \sqrt{J}$ [18, Lemma 3.3]. This is the main ingredient in proving singularities of dense F-injective type deform [18, Theorem C].
- (3) Since *F*-injective singularity is the conjectured characteristic p > 0analog of Du Bois singularity [1, 21], it is thus quite natural to ask whether *F*-injective local rings are always *F*-full. It turns out that this is false in general [18, Example 3.5]. However, constructing such

examples seems hard. In fact, [5, Example 2.16] (or its variants like [18, Example 3.5]) is the only example we know that is F-injective but not F-anti-nilpotent.

The above remarks motivate us to introduce and study F-fullness and a stronger notion of F-injectivity (see Section 5).

We end this subsection by proving that F-full rings localize. Note that it is proved in [16, Theorem 5.10] that F-anti-nilpotent rings localize.

For convenience, we use $R^{(1)}$ to denote the target ring of the Frobenius map $R \xrightarrow{F} R^{(1)}$. If M is an R-module, then $\operatorname{Hom}_R(R^{(1)}, M)$ has a structure of an $R^{(1)}$ -module. We can then identify $R^{(1)}$ with R, and $\operatorname{Hom}_R(R^{(1)}, M)$ corresponds to an R-module which we call $F^{\flat}(M)$ (we refer to [2, Section 2.3] for more details on this). When R is F-finite, we have $\operatorname{Hom}_R(R^{(1)}, E_R) \cong E_{R^{(1)}}$ and $F^{\flat}(E) \cong E_R$, where E_R denotes the injective hull of the residue field of (R, \mathfrak{m}) .

PROPOSITION 2.7. Let (R, \mathfrak{m}) be an *F*-finite and *F*-full local ring. Then $R_{\mathfrak{p}}$ is also *F*-full for every $\mathfrak{p} \in \operatorname{Spec} R$.

Proof. By a result of Gabber [7, Remark 13.6], R is a homomorphic image of a regular ring A. Let $n = \dim A$. We have

$$\operatorname{Hom}_{R^{(1)}}(\operatorname{Hom}_{R}(R^{(1)}, \operatorname{Ext}_{A}^{n-i}(R, A)), E_{R^{(1)}})$$

$$\cong \operatorname{Hom}_{R^{(1)}}(\operatorname{Hom}_{R}(R^{(1)}, \operatorname{Ext}_{A}^{n-i}(R, A)), \operatorname{Hom}_{R}(R^{(1)}, E_{R}))$$

$$\cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(R^{(1)}, \operatorname{Ext}_{A}^{n-i}(R, A)), E_{R})$$

$$\cong R^{(1)} \otimes \operatorname{Hom}_{R}(\operatorname{Ext}_{A}^{n-i}(R, A), E_{R})$$

$$\cong R^{(1)} \otimes H_{\mathfrak{m}}^{i}(R)$$

where the last isomorphism is by local duality. Thus after identifying $R^{(1)}$ with R, we have $\mathscr{F}_R(H^i_{\mathfrak{m}}(R))$ is the Matlis dual of $F^{\flat}(\operatorname{Ext}_A^{n-i}(R,A))$. So $\mathscr{F}_R(H^i_{\mathfrak{m}}(R)) \to H^i_{\mathfrak{m}}(R)$ is surjective for every i if and only if $\operatorname{Ext}_A^{n-i}(R,A) \to$ $F^{\flat}(\operatorname{Ext}_A^{n-i}(R,A))$ is injective for every i. The latter condition clearly localizes. So R is F-full implies $R_{\mathfrak{p}}$ is F-full for every $\mathfrak{p} \in \operatorname{Spec} R$.

§3. On surjective elements

The following definition was introduced in [11] and was the key tool in [11].

DEFINITION 3.1. Let (R, \mathfrak{m}) be a Noetherian local ring and x a regular element of R. x is called a *surjective element* if the natural map on the local

cohomology module $H^i_{\mathfrak{m}}(R/(x^n)) \to H^i_{\mathfrak{m}}(R/(x))$ induced by $R/(x^n) \to R/(x)$ is surjective for all n > 0 and $i \ge 0$.

The next proposition is a restatement of [11, Lemma 3.2], so we omit the proof.

PROPOSITION 3.2. The following are equivalent:

- (i) x is a surjective element.
- (ii) For all $0 < h \leq k$ the multiplication map

$$R/(x^h) \xrightarrow{x^{k-h}} R/(x^k)$$

induces an injection

$$H^i_{\mathfrak{m}}(R/(x^h)) \to H^i_{\mathfrak{m}}(R/(x^k))$$

for each $i \ge 0$.

(iii) For all $0 < h \leq k$ the short exact sequence

$$0 \to R/(x^h) \stackrel{x^{k-h}}{\to} R/(x^k) \to R/(x^{k-h}) \to 0$$

induces a short exact sequence

$$0 \to H^i_{\mathfrak{m}}(R/(x^h)) \to H^i_{\mathfrak{m}}(R/(x^k)) \to H^i_{\mathfrak{m}}(R/(x^{k-h})) \to 0$$

for each $i \ge 0$.

PROPOSITION 3.3. The following are equivalent:

- (i) x is a surjective element.
- (ii) The multiplication map $H^i_{\mathfrak{m}}(R) \xrightarrow{x} H^i_{\mathfrak{m}}(R)$ is surjective for all $i \ge 0$.

Proof. By Proposition 3.2, x is a surjective element if and only if all maps in the direct limit system $\{H^i_{\mathfrak{m}}(R/(x^h))\}_{h\geq 1}$ are injective. This is equivalent to the condition

$$\phi_h: H^i_{\mathfrak{m}}(R/(x^h)) \to \varinjlim_h H^i_{\mathfrak{m}}(R/(x^h)) \cong H^i_{\mathfrak{m}}(H^1_{(x)}(R)) \cong H^{i+1}_{\mathfrak{m}}(R)$$

is injective for all $h \ge 1$ and all $i \ge 0$ (the last isomorphism comes from an easy computation using local cohomology spectral sequences and noting that x is a nonzero divisor on R, see also [11, Lemma 2.2]).

Claim 3.4. ϕ_h is exactly the connection maps in the long exact sequence of local cohomology induced by $0 \to R \xrightarrow{\cdot x^h} R \to R/(x^h) \to 0$:

$$\cdots \to H^{i}_{\mathfrak{m}}(R/(x^{h})) \xrightarrow{\phi_{h}} H^{i+1}_{\mathfrak{m}}(R) \xrightarrow{x^{h}} H^{i+1}_{\mathfrak{m}}(R) \to \cdots$$

Proof of claim. Observe that by definition, ϕ_h is the natural map in the long exact sequence of local cohomology

$$\cdots \to H^i_{\mathfrak{m}}(R/(x^h)) \xrightarrow{\phi_h} H^i_{\mathfrak{m}}(R_x/R) \xrightarrow{\cdot x} H^i_{\mathfrak{m}}(R_x/R) \to \cdots$$

which is induced by $0 \to R/(x^h) \to R_x/R \xrightarrow{\cdot x^h} R_x/R \to 0$ (note that x^h is a nonzero divisor on R and $H^1_x(R) \cong R_x/R$). However, it is easy to see that the multiplication by x^h map $H^i_\mathfrak{m}(R_x/R) \xrightarrow{\cdot x^h} H^i_\mathfrak{m}(R_x/R)$ can be identified with the multiplication by x^h map $H^{i+1}_\mathfrak{m}(R) \xrightarrow{\cdot x^h} H^{i+1}_\mathfrak{m}(R)$ because we have a natural identification $H^i_\mathfrak{m}(R_x/R) \cong H^i_\mathfrak{m}(H^1_x(R)) \cong H^{i+1}_\mathfrak{m}(R)$ (see for example [11, Lemma 2.2]). This finishes the proof of the claim.

From the claim it is immediate that x is a surjective element if and only if the long exact sequence splits into short exact sequences:

$$0 \to H^i_{\mathfrak{m}}(R/(x^h)) \to H^{i+1}_{\mathfrak{m}}(R) \xrightarrow{x^h} H^{i+1}_{\mathfrak{m}}(R) \to 0.$$

But this is equivalent to saying that the multiplication map $H^i_{\mathfrak{m}}(R) \xrightarrow{x^n} H^i_{\mathfrak{m}}(R)$ is surjective for all $h \ge 1$ and $i \ge 0$, and also equivalent to $H^i_{\mathfrak{m}}(R) \xrightarrow{x} H^i_{\mathfrak{m}}(R)$ is surjective for all $i \ge 0$.

We next link the notion of surjective element with F-fullness. This is inspired by [18, 24].

PROPOSITION 3.5. Let x be a regular element of (R, \mathfrak{m}) . If R/(x) is F-full, then x is a surjective element. In particular, if R/(x) is F-antinilpotent, then x is a surjective element.

Proof. We have natural maps:

$$\begin{aligned} \mathscr{F}^e_R(H^i_{\mathfrak{m}}(R/(x))) &\xrightarrow{\alpha_e} R/(x) \otimes_R \mathscr{F}^e_R(H^i_{\mathfrak{m}}(R/(x))) \cong \mathscr{F}^e_{R/(x)}(H^i_{\mathfrak{m}}(R/(x))) \\ &\xrightarrow{\beta_e} H^i_{\mathfrak{m}}(R/(x)). \end{aligned}$$

If R/(x) is *F*-full, then β_e is surjective for every *e*. Since α_e is always surjective, the natural map $\mathscr{F}^e_R(H^i_{\mathfrak{m}}(R/(x))) \to H^i_{\mathfrak{m}}(R/(x))$ is surjective for

every e. Now simply notice that for every e > 0, the map $\mathscr{F}_{R}^{e}(H_{\mathfrak{m}}^{i}(R/(x))) \rightarrow H_{\mathfrak{m}}^{i}(R/(x))$ factors through $H_{\mathfrak{m}}^{i}(R/(x^{p^{e}})) \rightarrow H_{\mathfrak{m}}^{i}(R/(x))$, so $H_{\mathfrak{m}}^{i}(R/(x^{p^{e}})) \rightarrow H_{\mathfrak{m}}^{i}(R/(x))$ is surjective for every e > 0. This clearly implies that x is a surjective element.

The above propositions allow us to construct a family of non F-full local rings:

EXAMPLE 3.6. Let (R, \mathfrak{m}) be a local ring with finite length cohomology, that is, $H^i_{\mathfrak{m}}(R)$ has finite length for every $i < \dim R$ (under mild conditions, this is equivalent to saying that R is Cohen–Macaulay on the punctured spectrum). Let x be an arbitrary regular element in R. If R is not Cohen–Macaulay, then we claim that R/(x) is not F-full (and hence not F-anti-nilpotent). For suppose it is, then x is a surjective element by Proposition 3.5, hence $H^i_{\mathfrak{m}}(R) \xrightarrow{x} H^i_{\mathfrak{m}}(R)$ is surjective for every i by Proposition 3.3. But since R has finite length cohomology, we also know that a power of x annihilates $H^i_{\mathfrak{m}}(R)$ for every $i < \dim R$. This implies $H^i_{\mathfrak{m}}(R) = 0$ for every $i < \dim R$. So R is Cohen–Macaulay, a contradiction.

We learned the following argument from [11, Lemma A.1]. Since it is a crucial technique of this paper, we provide a detailed proof.

PROPOSITION 3.7. Let (R, \mathfrak{m}) be a local ring of prime characteristic pand x a regular element of R. Let s be a positive integer such that the map $H^{s-1}_{\mathfrak{m}}(R) \xrightarrow{x} H^{s-1}_{\mathfrak{m}}(R)$ is surjective and the Frobenius action on $H^{s-1}_{\mathfrak{m}}(R/(x))$ is injective, then the map

$$H^s_{\mathfrak{m}}(R) \xrightarrow{x^{p-1}F} H^s_{\mathfrak{m}}(R)$$

is injective.

Proof. The natural commutative diagram

induces the following commutative diagram (the left most 0 comes from our hypothesis that the map $H^{s-1}_{\mathfrak{m}}(R) \xrightarrow{x} H^{s-1}_{\mathfrak{m}}(R)$ is surjective):

Suppose $y \in \operatorname{Ker}(x^{p-1}F) \cap \operatorname{Soc}(H^s_{\mathfrak{m}}(R))$. Then we have $x \cdot y = 0$ so there exists $z \in H^{s-1}_{\mathfrak{m}}(R/(x))$ such that $\alpha(z) = y$. Following the above commutative diagram we have

$$(\alpha \circ F)(z) = x^{p-1}F(\alpha(z)) = x^{p-1}F(y) = 0.$$

However, since both F and α are injective, we have z = 0 and hence y = 0. This shows $x^{p-1}F$ is injective and hence completes the proof.

Proposition 3.7 immediately generalizes the main result of [11]:

COROLLARY 3.8. (Compare with [11], Main Theorem) Let (R, \mathfrak{m}) be a local ring of prime characteristic p and x a regular element of R. Suppose R/(x) is F-injective. Then we have

- (i) The map $H^t_{\mathfrak{m}}(R) \xrightarrow{x^{p-1}F} H^t_{\mathfrak{m}}(R)$ is injective where $t = \operatorname{depth} R$. In particular, the natural Frobenius action on $H^t_{\mathfrak{m}}(R)$ is injective.
- (ii) Suppose x is a surjective element. Then the map $H^i_{\mathfrak{m}}(R) \xrightarrow{x^{p-1}F} H^i_{\mathfrak{m}}(R)$ is injective for all $i \ge 0$. In particular, R is F-injective.
- (iii) If R/(x) is F-full (e.g., R is F-anti-nilpotent or R is F-pure), then R is F-injective.

Proof. (i) Follows from Proposition 3.7 applied to s = t, (ii) also follows from Proposition 3.7 (because $H^i_{\mathfrak{m}}(R) \xrightarrow{x} H^i_{\mathfrak{m}}(R)$ is surjective for every $i \ge 0$ by Proposition 3.3), (iii) follows from (ii), because we know x is a surjective element by Proposition 3.5.

In the next two sections, we show that F-full and F-anti-nilpotent singularities both deform. We also prove new cases of deformation of F-injectivity. These results are generalizations of Proposition 3.7 and Corollary 3.8.

§4. Deformation of *F*-full and *F*-anti-nilpotent singularities

In this section we prove that the condition F-full and F-anti-nilpotent both deform. Throughout this section we assume that (R, \mathfrak{m}) is a local ring of prime characteristic p. We begin with a crucial lemma. LEMMA 4.1. Let x be a surjective element of R. Let $N \subseteq H^i_{\mathfrak{m}}(R)$ be an F-stable submodule. Let $L = \bigcap_t x^t N$. Then L is an F-stable submodule of $H^i_{\mathfrak{m}}(R)$ and we have the following commutative diagram (for every $e \ge 1$):

where ϕ is the map $H^{i-1}_{\mathfrak{m}}(R/(x)) \to H^{i}_{\mathfrak{m}}(R)$.

Proof. Since x is a surjective element, by Proposition 3.3 we know that the map

 $H^i_{\mathfrak{m}}(R) \xrightarrow{x} H^i_{\mathfrak{m}}(R)$ is surjective for every i > 0. (\star)

Applying the local cohomology functor to the following commutative diagram:

we have the following commutative diagram:

for all $i \ge 1$ and $e \ge 1$, where the rows are short exact sequences by (\star) .

Therefore, to prove the lemma, it suffices to show that L is F-stable and

$$0 \to H^{i-1}_{\mathfrak{m}}(R/(x))/\phi^{-1}(L) \xrightarrow{\phi} H^{i}_{\mathfrak{m}}(R)/L \xrightarrow{x} H^{i}_{\mathfrak{m}}(R)/L \to 0$$

is exact. It is clear that L is F-stable since it is an intersection of F-stable submodules of $H^i_{\mathfrak{m}}(R)$. To see the exactness of the above sequence, first note that $\operatorname{Im}(\phi) = 0:_{H^i_{\mathfrak{m}}(R)} x$, so $L + \operatorname{Im}(\phi) \subseteq L:_{H^i_{\mathfrak{m}}(R)} x$. Thus it is enough to check that $L:_{H^i_{\mathfrak{m}}(R)} x \subseteq L + \operatorname{Im}(\phi)$. Let y be an element such that $xy \in L$. Since L = xL by the construction of L, there exists $z \in L$ such that xy = xz. So $y - z \in \text{Im}(\phi)$ and hence $y \in L + \text{Im}(\phi)$, as desired.

We are ready to prove the main result of this section. This answers [20, Problem 4] for stably FH-finiteness.

THEOREM 4.2. (R, \mathfrak{m}) be a local ring of positive characteristic p and x a regular element of R. Then we have:

- (i) if R/(x) is F-anti-nilpotent, then so is R;
- (ii) if R/(x) is F-full, then so is R.

Proof. We first prove (i). Let N be an F-stable submodule of $H^i_{\mathfrak{m}}(R)$. We want to show that the induced Frobenius action on $H^i_{\mathfrak{m}}(R)/N$ is injective. Since R/(x) is F-anti-nilpotent, x is a surjective element by Proposition 3.5. Let $L = \bigcap_t x^t N$. By Lemma 4.1, we have the following commutative diagram:

We first claim that the middle map $x^{p^e-1}F^e: H^i_{\mathfrak{m}}(R)/L \to H^i_{\mathfrak{m}}(R)/L$ is injective. Let $y \in \operatorname{Ker}(x^{p^e-1}F^e) \cap \operatorname{Soc}(H^i_{\mathfrak{m}}(R)/L)$. We have $x \cdot y = 0$, so $y = \phi(z)$ for some $z \in H^{i-1}_{\mathfrak{m}}(R/(x))/\phi^{-1}(L)$. It is easy to see that $\phi^{-1}(L)$ is an *F*-stable submodule of $H^{i-1}_{\mathfrak{m}}(R/(x))$ and $F^e(z) = 0$. Since R/(x) is *F*-antinilpotent, we know the Frobenius action *F*, and hence its iterate F^e , on $H^{i-1}_{\mathfrak{m}}(R/(x))/\phi^{-1}(L)$ is injective. Therefore, z = 0 and hence y = 0. This proves that $x^{p^e-1}F^e$ and hence *F* acts injectively on $H^i_{\mathfrak{m}}(R)/L$.

Note that we have a descending chain $N \supseteq xN \supseteq x^2N \supseteq \cdots$. Since $H^i_{\mathfrak{m}}(R)$ is Artinian, $L = \bigcap_t x^t N = x^n N$ for all $n \gg 0$. We next claim that L = N, this will finish the proof because we already showed F acts injectively on $H^i_{\mathfrak{m}}(R)/L$. We have $x^{p^e-1}F^e(N) \subseteq x^{p^e-1}N = L$ for $e \gg 0$, but the map $x^{p^e-1}F^e: H^i_{\mathfrak{m}}(R)/L \to H^i_{\mathfrak{m}}(R)/L$ is injective by the above paragraph. So we must have $N \subseteq L$ and thus L = N. This completes the proof of (1).

Next we prove (ii). The method is similar to that of (i). Let N be the Rspan of $F(H^i_{\mathfrak{m}}(R))$ in $H^i_{\mathfrak{m}}(R)$, this is the same as the image of $\mathscr{F}_R(H^i_{\mathfrak{m}}(R)) \to H^i_{\mathfrak{m}}(R)$. It is clear that N is an F-stable submodule. We want to show $N = H^i_{\mathfrak{m}}(R)$. Since R/(x) is *F*-full, *x* is a surjective element by Proposition 3.5. Let $L = \bigcap_t x^t N$. By Lemma 4.1, we have the following commutative diagram:

The descending chain $N \supseteq xN \supseteq x^2N \supseteq \cdots$ stabilizes because $H^i_{\mathfrak{m}}(R)$ is Artinian. So $L = \bigcap_t x^t N = x^n N$ for $n \gg 0$. The key point is that in the above diagram, the middle Frobenius action $x^{p^e-1}F^e$ is the zero map on $H^i_{\mathfrak{m}}(R)/L$ for $e \gg 0$, because for any $y \in H^i_{\mathfrak{m}}(R)$, $F^e(y) \in N$ and thus $x^{p^e-1}F^e(y) \in L$ for $e \gg 0$. But then since $H^{i-1}_{\mathfrak{m}}(R/(x))/\phi^{-1}(L)$ can be viewed as a submodule of $H^i_{\mathfrak{m}}(R)/L$ by the above commutative diagram, the natural Frobenius action F^e on $H^{i-1}_{\mathfrak{m}}(R/(x))/\phi^{-1}(L)$ is zero, that is, F is nilpotent on $H^{i-1}_{\mathfrak{m}}(R/(x))/\phi^{-1}(L)$.

Since F is nilpotent on $H^{i-1}_{\mathfrak{m}}(R/(x))/\phi^{-1}(L)$, we know that $\phi^{-1}(L)$ must contain all elements $F^e(H^i_{\mathfrak{m}}(R/(x)))$, hence it contains the R-span of $F^e(H^i_{\mathfrak{m}}(R/(x)))$. But R/(x) is F-full, so we must have $\phi^{-1}(L) = H^{i-1}_{\mathfrak{m}}(R/(x))$. But this means the map

$$H^i_{\mathfrak{m}}(R)/L \xrightarrow{x} H^i_{\mathfrak{m}}(R)/L$$

is an isomorphism, which is impossible unless $H^i_{\mathfrak{m}}(R) = L$ (since otherwise any nonzero socle element of $H^i_{\mathfrak{m}}(R)/L$ maps to zero). Therefore, we have $H^i_{\mathfrak{m}}(R) = N = L$. This proves R is F-full and hence finished the proof of (2).

The following is a well-known counter-example of Fedder [6] and Singh [22] for the deformation of F-purity.

EXAMPLE 4.3. (Compare with [20, Lemma 6.1]) Let K be a perfect field of characteristic p > 0 and let

$$R := K[[U, V, Y, Z]]/(UV, UZ, Z(V - Y^{2}))$$

Let u, v, y and z denote the image of U, V, Y and Z in R (and its quotients), respectively. Then y is a regular element of R and $R/(y) \cong K[[U, V, Z]]/(UV, UZ, VZ)$ is F-pure by [12, Proposition 5.38]. So R/(y) is F-anti-nilpotent by [16, Theorem 1.1]. By Theorem 4.2 we have R is also F-anti-nilpotent, or equivalently, R is stably FH-finite.

§5. *F*-injectivity

5.1 *F*-injectivity and depth

We start with the following definition.

DEFINITION 5.1. (Cf. [3, Definition 9.1.3]) Let M be a finitely generated module over a local ring (R, \mathfrak{m}) . The finiteness dimension $f_{\mathfrak{m}}(M)$ of M with respect to \mathfrak{m} is defined as follows:

 $f_{\mathfrak{m}}(M) := \inf\{i \mid H^{i}_{\mathfrak{m}}(M) \text{ is not finitely generated}\} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}.$

Remark 5.2.

- (i) Assume that dim M = 0 or M = 0 (recall that a trivial module has dimension -1). In this case, Hⁱ_m(M) is finitely generated for all i and f_m(M) is equal to ∞. It will be essential to know when the finiteness dimension is a positive integer. We mention the following result. Let (R, m) be a local ring and let M be a finitely generated R-module. If d = dim M > 0, then the local cohomology module H^d_m(M) is not finitely generated. For the proof of this result, see [3, Corollary 7.3.3].
- (ii) Suppose (R, \mathfrak{m}) is an image of a Cohen–Macaulay local ring. By the Grothendieck finiteness theorem (cf. [3, Theorem 9.5.2]) we have

$$f_{\mathfrak{m}}(M) = \min\{\operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} : \mathfrak{p} \in \operatorname{Supp}(M) \setminus \{\mathfrak{m}\}\}.$$

(iii) M is generalized Cohen-Macaulay if and only if dim $M = f_{\mathfrak{m}}(M)$.

It is clear that depth $R \leq f_{\mathfrak{m}}(R) \leq \dim R$. The following result says that if R/(x) is *F*-injective, then *R* has 'good' depth.

THEOREM 5.3. If R/(x) is F-injective, then depth $R = f_{\mathfrak{m}}(R)$.

Proof. Suppose $t = \operatorname{depth} R < f_{\mathfrak{m}}(R)$. The commutative diagram

induces the following commutative diagram

where both α and the left vertical map are injective. But $H^t_{\mathfrak{m}}(R)$ has finite length, $x^{p^e-1}F^e: H^t_{\mathfrak{m}}(R) \to H^t_{\mathfrak{m}}(R)$ vanishes for $e \gg 0$, which is a contradiction.

REMARK 5.4. The assertion of Theorem 5.3 also holds true if R/(x) is F-full. Indeed, by Proposition 3.5 we have x is a surjective element. Hence there is no nonzero $H^i_{\mathfrak{m}}(R)$ of finite length. Thus depth $R = f_{\mathfrak{m}}(R)$.

REMARK 5.5. The above result is closely related to the work of Schwede and Singh in [11, Appendix]. In the proof of [11, Lemma A.2, Theorem A.3], it is claimed that if $R_{\mathfrak{p}}$ satisfies the Serre condition (S_k) for all \mathfrak{p} in Spec[°](R), the punctured spectrum of R, and depth R = t < k, then $H^t_{\mathfrak{m}}(R)$ is finitely generated. But this fact may not be true if R is not equidimensional. For instance, let $R = K[[a, b, c, d]]/(a) \cap (b, c, d)$ with K a field. We have depth R = 1 and $R_{\mathfrak{p}}$ satisfies (S_2) for all $\mathfrak{p} \in \operatorname{Spec}^{\circ}(R)$. However, $H^1_{\mathfrak{m}}(R)$ is not finitely generated.

The assertion of [11, Lemma A.2] (and hence [11, Theorem A.3]) is still true. In fact, we can reduce it to the case that R is equidimensional. We fill this gap below.

COROLLARY 5.6. [11, Lemma A.2] Let (R, \mathfrak{m}) be an *F*-finite local ring. Suppose there exists a regular element x such that R/(x) is *F*-injective. If $R_{\mathfrak{p}}$ satisfies the Serre condition (S_k) for all $\mathfrak{p} \in \operatorname{Spec}^{\circ}(R)$, then R is (S_k) .

Proof. We can assume that $k \leq d = \dim R$. In fact, we need only to prove that $t := \operatorname{depth} R \geq k$. The case k = 1 is trivial since R contains a regular element x. For $k \geq 2$, since R/(x) is F-injective we have R/(x) is reduced (cf. [21, Proposition 4.3]). Hence $\operatorname{depth}(R/(x)) \geq 1$, so $\operatorname{depth} R \geq 2$. Thus R satisfies the Serre condition (S_2) . On the other hand, since R is Ffinite, R is a homomorphic image of a regular ring by a result of Gabber [7, Remark 13.6]. In particular, R is universally catenary.³ But if a universally catenary ring satisfies (S_2) , then it is equidimensional (see [10, Remark 2.2(h)]). By Theorem 5.3 and Remark 5.2(ii), there exists a prime ideal $\mathfrak{p} \in \operatorname{Spec}^{\circ}(R)$ such that depth $R = \operatorname{depth} R_{\mathfrak{p}} + \dim R/\mathfrak{p}$. It is then easy to see that depth $R \geq \min\{d, k+1\} \geq k$. The proof is complete. □

³Another way to see this is to use the fact that F-finite rings are excellent [14] and hence universally catenary.

REMARK 5.7. In the above argument, we actually proved that if k < d, then depth $R \ge k + 1$.

5.2 Deformation of *F*-injectivity

We begin with the following generalization of the notion of surjective elements.

DEFINITION 5.8. (Cf. [4]) A regular element x is called a *strictly filter* regular element if

$$\operatorname{Coker}(H^{i}_{\mathfrak{m}}(R) \xrightarrow{x} H^{i}_{\mathfrak{m}}(R))$$

has finite length for all $i \ge 0$.

LEMMA 5.9. Let (R, \mathfrak{m}) be a local ring of characteristic p > 0. Suppose the residue field $k = R/\mathfrak{m}$ is perfect. Let M be an R-module with an injective Frobenius action F. Suppose L is an F-stable submodule of M of finite length. Then the induced Frobenius action on M/L is injective.

Proof. First we note that L is killed by \mathfrak{m} : suppose $x \in L$, then $F^e(\mathfrak{m} \cdot x) = \mathfrak{m}^{[p^e]} \cdot x = 0$ for $e \gg 0$ since L has finite length. But then $\mathfrak{m} \cdot x = 0$ since F acts injectively. Now we have a Frobenius action F on a k-vector space L. Call the image of $L' \subseteq L$ (which is a k^p -vector subspace of L). Since F is injective, the k^p -vector space dimension of L' is equal to the k-vector space dimension of L. But since $k^p = k$, this implies L' = L and thus F is surjective, hence F is bijective. Now by the injectivity of F again we have $F(x) \notin L$ for all $x \notin L$. Thus $F: M/L \to M/L$ is injective.

EXAMPLE 5.10. The perfectness of the residue field in Lemma 5.9 is necessary. Let $A = \mathbb{F}_p[t]$ and $R = k = \mathbb{F}_p(t)$, where t is an indeterminate. We consider the Frobenius action on the A-module $Ae_1 \oplus Ae_2$ defined by

$$F(f(t), g(t)) = (f(t)^p + tg(t)^p, 0).$$

It is clear that F is injective. Moreover, $Ae_1 \oplus 0$ is an F-stable submodule of $Ae_1 \oplus Ae_2$. Since $F(Ae_1 \oplus Ae_2) \subseteq Ae_1 \oplus 0$, the induced Frobenius action on $(Ae_1 \oplus Ae_2)/(Ae_1 \oplus 0)$ is the zero map. By localizing, we obtain an injective Frobenius action on $M = k \cdot e_1 \oplus k \cdot e_2$ with $L = k \cdot e_1 \oplus 0$ is an F-stable submodule of finite length, but the induced Frobenius action on M/L is not injective.

The following is a generalization of the main result of [11] when R/\mathfrak{m} is perfect.

THEOREM 5.11. Let (R, \mathfrak{m}) be a Noetherian local ring of characteristic p > 0. Suppose the residue field $k = R/\mathfrak{m}$ is perfect. Let x be a strictly filter regular element. If R/(x) is F-injective, then the map $x^{p-1}F$: $H^i_{\mathfrak{m}}(R) \to H^i_{\mathfrak{m}}(R)$ is injective for every i, in particular R is F-injective.

Proof. Let $L_i := \operatorname{Coker}(H^i_{\mathfrak{m}}(R) \xrightarrow{x} H^i_{\mathfrak{m}}(R))$, we have L_i has finite length for all $i \ge 0$. The commutative diagram

induces the following commutative diagram

$$0 \longrightarrow L_{i-1} \longrightarrow H^{i-1}_{\mathfrak{m}}(R/(x)) \xrightarrow{\phi} H^{i}_{\mathfrak{m}}(R) \xrightarrow{x} H^{i}_{\mathfrak{m}}(R) \longrightarrow \cdots$$

$$F \downarrow \qquad F \downarrow$$

Therefore, we have the following commutative diagram

with the Frobenius action $F: H^{i-1}_{\mathfrak{m}}(R/(x))/L_{i-1} \to H^{i-1}_{\mathfrak{m}}(R/(x))/L_{i-1}$ is injective by Lemma 5.9. Now by the same method as in the proof of Proposition 3.7 or Theorem 4.2(i), we conclude that the map $x^{p-1}F:$ $H^{i}_{\mathfrak{m}}(R) \to H^{i}_{\mathfrak{m}}(R)$ is injective for all $i \ge 0$.

Similarly, we have the following:

PROPOSITION 5.12. Let (R, \mathfrak{m}) be a Noetherian local ring of characteristic p > 0. Suppose the residue field $k = R/\mathfrak{m}$ is perfect. Let x be a regular element such that R/(x) is F-injective. Let s be a positive integer such that $H^{s-1}_{\mathfrak{m}}(R/(x))$ has finite length. Then the map $x^{p-1}F: H^{s+1}_{\mathfrak{m}}(R) \to H^{s+1}_{\mathfrak{m}}(R)$ is injective.

Proof. The short exact sequence

$$0 \to R \xrightarrow{x} R \to R/(x) \to 0$$

induces the exact sequence

 $\cdots \to H^{s-1}_{\mathfrak{m}}(R/(x)) \to H^{s}_{\mathfrak{m}}(R) \xrightarrow{x} H^{s}_{\mathfrak{m}}(R) \to H^{s}_{\mathfrak{m}}(R/(x)) \to H^{s+1}_{\mathfrak{m}}(R) \to \cdots$

Since $H^{s-1}_{\mathfrak{m}}(R/(x))$ has finite length, so is $\operatorname{Ker}(H^s_{\mathfrak{m}}(R) \xrightarrow{x} H^s_{\mathfrak{m}}(R))$. We claim that

$$L_s := \operatorname{Coker}(H^s_{\mathfrak{m}}(R) \xrightarrow{x} H^s_{\mathfrak{m}}(R))$$

also has finite length: to see this we may assume R is complete, since $\operatorname{Ker}(H^s_{\mathfrak{m}}(R) \xrightarrow{x} H^s_{\mathfrak{m}}(R))$ has finite length, this means $H^s_{\mathfrak{m}}(R)^{\vee} \xrightarrow{x} H^s_{\mathfrak{m}}(R)^{\vee}$ is surjective when localizing at any $\mathfrak{p} \neq \mathfrak{m}$. But by [19, Theorem 2.4] this implies $H^s_{\mathfrak{m}}(R)^{\vee} \xrightarrow{x} H^s_{\mathfrak{m}}(R)^{\vee}$ is an isomorphism when localizing at any $\mathfrak{p} \neq \mathfrak{m}$. Thus $\operatorname{Ker}(H^s_{\mathfrak{m}}(R)^{\vee} \xrightarrow{x} H^s_{\mathfrak{m}}(R)^{\vee})$ has finite length which, after dualizing, shows that $\operatorname{Coker}(H^s_{\mathfrak{m}}(R) \xrightarrow{x} H^s_{\mathfrak{m}}(R))$ has finite length.

We have proved $L_s = \operatorname{Coker}(H^s_{\mathfrak{m}}(R) \xrightarrow{x} H^s_{\mathfrak{m}}(R))$ has finite length. Now the map $x^{p-1}F : H^{s+1}_{\mathfrak{m}}(R) \to H^{s+1}_{\mathfrak{m}}(R)$ is injective by the same argument as in Theorem 5.11.

The following immediate corollary of the above proposition recovers (and in fact generalizes) results in [11].

COROLLARY 5.13. [11, Corollary 4.7] Let (R, \mathfrak{m}) be a Noetherian local ring of characteristic p > 0. Suppose the residue field $k = R/\mathfrak{m}$ is perfect. Let x be a regular element such that R/(x) is F-injective. Then the map $x^{p-1}F$: $H^i_{\mathfrak{m}}(R) \to H^i_{\mathfrak{m}}(R)$ is injective for all $i \leq f_{\mathfrak{m}}(R/(x)) + 1$. In particular, if R/(x) is generalized Cohen-Macaulay, then R is F-injective.

Because of the deep connections between F-injective and Du Bois singularities [1, 21] and Remark 2.6, we believe that it is rarely the case that an F-injective ring fails to be F-full (again, the only example we know this happens is [18, Example 3.5], which is based on the construction of [5, Example 2.16]). Therefore, we introduce:

DEFINITION 5.14. We say (R, \mathfrak{m}) is strongly *F*-injective if *R* is *F*-injective and *F*-full.

REMARK 5.15. In general we have: F-anti-nilpotent \Rightarrow strongly F-injective \Rightarrow F-injective. Moreover, when R is Cohen–Macaulay, strongly F-injective is equivalent to F-injective.

We can prove that strong *F*-injectivity deform.

COROLLARY 5.16. Let x be a regular element on (R, \mathfrak{m}) . If R/(x) is strongly F-injective, then R is strongly F-injective.

Proof. We know R is F-injective by Corollary 3.8(iii). But we also know R is F-full by Theorem 4.2(ii). This shows that R is strongly F-injective.

References

- [1] B. Bhatt, K. Schwede and S. Takagi, *The weak ordinarity conjecture and F-singularities*, Adv. Stud. Pure Math. (Kawamata's 60th volume) (to appear).
- [2] M. Blickle and G. Böckle, *Cartier modules: finiteness results*, J. Reine Angew. Math. 661 (2011), 85–123.
- [3] M. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Vol. 60, Cambridge University Press, Cambridge, 1998.
- [4] N. T. Cuong, M. Morales and L. T. Nhan, The finiteness of certain sets of attached prime ideals and the length of generalized fractions, J. Pure Appl. Algebra 189 (2004), 109–121.
- [5] F. Enescu and M. Hochster, The Frobenius structure of local cohomology, Algebra Number Theory 2 (2008), 721–754.
- [6] R. Fedder, F-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), 461–480.
- [7] O. Gabber, Notes on Some t-Structures, Geometric Aspects of Dwork Theory II, 711–734. Walter de Gruyter GmbH & Co, KG, Berlin, 2004.
- [8] M. Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), 463–488.
- [9] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31–116.
- [10] M. Hochster and C. Huneke, "Indecomposable canonical modules and connectedness", in Commutative Algebra: Syzygies, Multiplicities and Birational Algebra, Contemporary Mathematics 159, 1994, 197–208.
- [11] J. Horiuchi, L. E. Miller and K. Shimomoto, *Deformation of F-injectivity and local cohomology*, Indiana Univ. Math. J. **63** (2014), 1139–1157; appendix by Karl Schwede and Anurag K. Singh.
- [12] M. Hochster and J. Roberts, The purity of the Frobenius and local cohomology, Adv. Math. 21 (1976), 117–172.
- [13] C. Huneke, *Tight Closure and its Applications*, CBMS Lecture Notes in Mathematics 88, American Mathematical Society, Providence, 1996.
- [14] E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math. 98(4) (1976), 999–1013.
- [15] G. Lyubeznik, On the vanishing of local cohomology in characteristic p > 0, Compos. Math. 142 (2006), 207–221.
- [16] L. Ma, Finiteness property of local cohomology for F-pure local rings, Int. Math. Res. Not. IMRN 20 (2014), 5489–5509.
- [17] L. Ma, F-injectivity and Buchsbaum singularities, Math. Ann. 362 (2015), 25-42.
- [18] L. Ma, K. Schwede and K. Shimomoto, Local cohomology of Du Bois singularities and applications to families, preprint, 2014, arXiv:1605.02755.
- [19] H. Matsumura, Commutative Ring Theory, Vol. 8, Cambridge University Press, Cambridge, 1986.
- [20] P. H. Quy and K. Shimomoto, *F*-injectivity and Frobenius closure of ideals in Noetherian rings of characteristic p > 0, Adv. Math. **313** (2017), 127–166.
- [21] K. Schwede, F-injective singularities are Du Bois, Amer. J. Math. 131 (2009), 445–473.

DEFORMATION PROBLEM

- [22] A. K. Singh, Deformation of F-purity and F-regularity, J. Pure Appl. Algebra 140 (1999), 137–148.
- [23] A. K. Singh, F-regularity does not deform, Amer. J. Math. 121 (1999), 919–929.
- [24] A. K. Singh and U. Walther, Local cohomology and pure morphisms, Illinos J. Math. 51 (2007), 287–298.
- [25] S. Takagi and K. Watanabe, F-singularities: applications of characteristic p methods to singularity theory, Sugaku Exposition (2014).

Linquan Ma Department of Mathematics University of Utah Salt Lake City UT 84102 USA

lquanma@math.utah.edu

Pham Hung Quy Department of Mathematics FPT University, and Thang Long Institute of Mathematics and Applied Sciences Ha Noi Vietnam quyph@fe.edu.vn