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Abstract. We show that, for certain types of rigid analytic varietiesX and constructiblè -adic
sheaves(Fn)n onX, one hasHp

c (X; (Fn)n)
�
�! lim

 �
n

Hp
c (X;Fn). As an application we obtain that,

for an algebraic varietyX and associated rigid analytic varietyX rig, the`-adic cohomology ofX
andX rig agree.
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Imitating the definition of compactly supported cohomology of`-adic sheaves
on algebraic varieties [J], [E], one can define compactly supported cohomology
of `-adic sheaves on rigid analytic varieties over an algebraically closed non-
archimedean fieldk.

In this paper we are interested in the following question

LetX be a separated rigid analytic variety overk and let(Fn)n2N be a constructible
`-adic sheaf onX with ` 6= char(k�=k��). Is the natural mapping

':Hp
c (X; (Fn)n2N) �! lim

 �
n

Hp
c (X;Fn)

bijective?

If X is quasi-compact then' is bijective. (This can be shown by the same arguments
as in the algebraic case). But ifX is not quasi-compact then' is not bijective in
general. In this paper we give some examples of non quasi-compact rigid analytic
varietiesX for which' is bijective. Namely we will show

Suppose thatX is an open subvariety of some quasi-compact separated rigid
analytic varietyY such thatX is Zariski-open inY or X = fy 2 Y j jf1(y)j <
1; : : : ; jfn(y)j < 1g with f1; : : : ; fn 2 OY (Y ). Furthermore suppose that the
constructiblè -adic sheaf(Fn)n onX extends to a constructiblè-adic sheaf on
Y . Assume char(k) = 0 and char(k�=k��) 6= `. Then' is bijective.

As a consequence of this result we will obtain the following comparison theorem:
Let X be a separated scheme of finite type overk and letX rig be the associated
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218 R. HUBER

rigid analytic variety overk. Let (Fn)n2N be a constructiblè-adic sheaf onX
and let(F rig

n )n2N be the associated̀-adic sheaf onX rig. Assume char(k) = 0 and
char(k�=k��) 6= `. ThenHp

c (X; (Fn)n)
�= Hp

c (X
rig; (F rig

n )n).
In [H1] we defined a certain type of analytic spaces which we call analytic adic

spaces. The category of rigid analytic varieties is naturally isomorphic to a full sub-
category of the category of analytic adic spaces. For many definitions, constructions
and arguments of this paper it is more natural and sometimes even indispensable
to use analytic adic spaces. Therefore we will apply theétale cohomology of adic
spaces ([H]).

In Section 1 we will define compactly supported cohomology of`-adic sheaves
on rigid analytic varieties and analytic adic spaces. In Section 2 we will note
some properties of this cohomology. In Sections 3 and 4 we will prove the results
mentioned above.

For the whole paper we fix an algebraically closed non-archimedean fieldkand a
complete discrete valuation ringRwith maximal idealm such that char(R=m) > 0.

1. Definition of cohomology with compact support forR:-modules

Let X be a rigid analytic variety or an adic space. By anR:-module on théetale
siteX�et of X we mean a projective system

! Fn+1! Fn ! � � � ! F1

ofR-modules onX�et with mn �Fn = 0 for everyn 2 N. Let mod(X�et�R:) denote
the category ofR:-modules onX�et.

In [H] the compactly supported cohomology forR=mn-modules on analytic
adic spaces is defined. In this paragraph we will define the compactly supported
cohomology forR:-modules on analytic adic spaces. More precisely, we will
define, for every taut separated adic space locally of+weakly finite type over
Spa(k; k�) ([H, 1.2.1, 1.3.1, 5.1.2]) and everyR:-moduleF = (Fn)n2N onX�et and
everyp 2 N0, the compactly supported cohomologyHp

c (X;F ) of X with values
in F which is anR-module. (Instead of adic spaces over Spa(k; k�) one could
consider, more generally, pseudo-adic spaces over analytic geometric points [H,
1.10.3, 2.5.1]).

Once one has defined the compactly supported cohomology forR:-modules
on analytic adic spaces one can define the compactly supported cohomology for
R:-modules(Fn)n2N on taut separated rigid analytic varietiesX overk as follows:
WithX one can associate a taut separated adic spaceXad locally of finite type over
Spa(k; k�) ([H, 1.1.11]). Théetale toposes ofX andXad are naturally isomorphic
([H, 2.1.4]). PutHp

c (X; (Fn)n) := Hp
c (X

ad; (F ad
n )n).

The definition of compactly supported cohomology forR:-modules on analytic
adic spaces follows the algebraic pattern [J], [E].
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A COMPARISON THEOREM FOR̀-ADIC COHOMOLOGY 219

Recall that for a quasi-compact schemeX the global section functor forR:-
modules is defined by

�: mod(X�et�R:) �! mod(R)

(Fn)n 7�! �(X; lim
 �
n

Fn)
(1.1)

and theR-adic cohomology

Hp(X; (Fn)n) = Rp�(X; (Fn)n) (1.2)

is the derived functor of�. For a separated schemeX of finite type overk one puts

Hp
c (X; (Fn)n) := Hp( �X; (j!Fn)n); (1.3)

wherej:X ,! �X is a compactification ofX.
Now we come to the analytic adic situation. A separated adic spaceX locally

of +weakly finite type over Spa(k; k�) is called complete ifX is quasi-compact
and the structure morphismX ! Spa(k; k�) is universally closed ([H, 1.3.2])
and it is called partially complete if, for every quasi-compact subsetT of X, the
closure�T of T inX is complete ([H, 1.3.3, 1.3.4, 1.3.13]). For every taut separated
adic spaceX locally of +weakly finite type over Spa(k; k�) there exists an open
embeddingj:X ! �X where �X is an adic space which is partially complete over
Spa(k; k�) ([H, 5.1.5]). j can be chosen to be quasi-compact. Moreover, ifX is
quasi-compact then�X can be chosen to be complete. Therefore for quasi-compact
X one can defineHp

c (X; (Fn)n2N) analogously to (1.1)–(1.3). But one can also
defineHp

c (X; (Fn)n2N), more generally, for tautX. For this one only has to replace
the global section functor forR:-modules on complete adic spaces by the global
section functor with compact support forR:-modules on partially complete adic
spaces. To be precise, the definition is as follows. First letX be a partially complete
adic space over Spa(k; k�). The global section functor with compact support for
R:-modules onX�et is defined according to (1.1) by

�c: mod(X�et�R:) �! mod(R)

(Fn)n 7�! �c

 
X; lim
 �
n

Fn

!
;

where�c(X; lim
 �
n

Fn) denotes theR-module of all global sectionss 2 �(X; lim
 �
n

Fn)

whose support supp(s) � X is complete over Spa(k; k�) ([H, 5.2.1]). According
to (1.2), the compactly support cohomology

Hp
c (X; (Fn)n) := Rp�c(X; (Fn)n)
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220 R. HUBER

is defined as the derived functor of�c. Now letX be a taut separated adic space
locally of +weakly finite type over Spa(k; k�). Then we choose a quasi-compact
open embeddingj:X ! �X where �X is partially complete over Spa(k; k�), and
we put according to (1.3)

Hp
c (X; (Fn)n) := Hp

c ( �X; (j!Fn)n):

Up to natural isomorphism, this definition is independent of the choice of the quasi-
compact open embeddingj:X ! �X , see Lemma (1.4) below. (But in order to get
this independence we have to restrict ourselves to quasi-compactj, see Example
(2.7.v) below). At the end of this paragraph we will compare the above definition
of compactly supported cohomology forR:-modules with Berkovich’s definition
in [B1].

LEMMA 1.4. Let X;P;Q be adic spaces over Spa(k; k�) with P;Q partially
complete, leta:X ,! P andb:X ,! Q be quasi-compact open embeddings, and
let (Fn)n be anR:-module onX�et. Then for everym 2 N0 there is a natural
isomorphism

Hm
c (P; (a!Fn)n) �= Hm

c (Q; (b!Fn)n):

Proof. We may assume thata:X ,! P is a universal partial compactification
of X ([H, 5.1.5]). So there is a unique morphismg:P ! Q of adic spaces over
Spa(k; k�) with b = g � a. We have

(I) g induces a homeomorphism fromP onto the closureb(X) of b(X) in Q. For
everyp 2 P the mapping between the residue fieldsk(g(p)) ! k(p) induces
an isomorphism between the completionsk(g(p))^ ! k(p)^.

Proof of (I): First we show thatg is quasi-compact and injective. LetU be a
quasi-compactopen subset ofQ. Since every point ofP is a specialization of a point
of a(X), we obtaing�1(U) � a(b�1(U)). Sinceb is quasi-compact,a(b�1(U))

is quasi-compact and then by [H, 1.3.13]a(b�1(U)) is quasi-compact. LetV be
a quasi-compact open subset ofX which containsa(b�1(U)). By [H, 1.3.14.ii]
the restrictiongjV :V ! g(V ) is a homeomorphism.g(V ) is a pro-constructible
subset ofQ and henceU \ g(V ) is quasi-compact. Thus we obtain thatg�1(U) is
quasi-compact and thatg is injective.

SinceP is partially complete andQ is separated,g is partially proper ([H,
1.10.17.vi]). Every quasi-compact partially proper morphism is proper ([H, 1.3.4]).
Henceg is proper, in particularg is closed. Thus we see thatg(P ) = b(X) and that
g:P ! g(P ) is a homeomorphism.

Let p be a point ofP . There is a pointp0 2 a(X) which specializes top. Then
g(p0) specializes tog(p) and so we havek(p)^ �

�! k(p0)^ andk(g(p))^ �

�!
k(g(p0))^ ([H, 1.1.10.iii]). Hencek(g(p))^ �

�! k(p)^. This completes the proof
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of (I).

PutZ := g(P ). Let mod(Z�et� R:) denote the category ofR:-modules on the
étale site of the pseudo-adic spaceZ = (Q;Z), and letHm

c (Z;�) be them-th
derived functor of the functor mod(Z�et�R:)! mod(R); (Ln)n 7! �c(Z; lim

 �
n

Ln).

Let r:P ! Z be the morphism of pseudo-adic spaces given byg. From (I)
and [H, 2.3.7] we obtain that the morphism of toposes(r�; r�):P��et ! Z�

�et is an
equivalence. A subsetS ofP (resp.Z) is complete if and only ifS is quasi-compact
and closed inP (resp.Z), becauseP;Q are partially complete andZ is closed in
Q. Sincer is a homeomorphism, we obtain that a subsetT � P is complete if and
only if r(T ) � Z is complete. Hence, for everyR:-module(En)n onP�et and every
m 2 N0, we have

(II ) Hm
c (P; (En)n) = Hm

c (Z; (r�En)n):

Let i:Z ! Q be the inclusion. SinceZ is closed inQ, we have for everyR:-module
(Ln)n2N onZ�et and everym 2 N0,

(III ) Hm
c (Z; (Ln)n) = Hm

c (Q; (i�Ln)n):

From (II) and (III) we obtain

Hm
c (P; (En)n) = Hm

c (Q; (g�En)n):

In particular we have

Hm
c (P; (a!Fn)n) = Hm

c (Q; (b!Fn)n):

2

In [B] Berkovich definesk-analytic spaces and a functorX 7! X0 from the
category of hausdorff strictlyk-analytic spaces to the category of rigid analytic
varieties overk. With everyétale sheafF onX one can associate anétale sheaf
F0 onX0. In [B1] Berkovich defines cohomology with compact support forR:-
modules onk-analytic spaces. LetX be a hausdorff strictlyk-analytic space and
let (Fn)n be anR:-module onX�et. Then we get the rigid analytic varietyX0 and
theR:-module(Fn;0)n on (X0)�et. In general,Hp

c (X; (Fn)n) andHp
c (X0; (Fn;0)n)

are not isomorphic ([H, 0.7.16]). But ifX is closed ([B, 1.5.3.iii]) then there is
a natural isomorphismHp

c (X; (Fn)n)
�

�! Hp
c (X0; (Fn;0)n) as is shown in the

following proposition.

PROPOSITION 1.5.LetX be a hausdorff strictlyk-analytic space which is closed
and let(Fn)n be anR:-module onX�et. Then for everyp 2 N0,

Hp
c (X; (Fn)n) = Hp

c (X0; (Fn;0)n):

comp4187.tex; 27/04/1998; 8:29; v.7; p.5

https://doi.org/10.1023/A:1000345530725 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000345530725


222 R. HUBER

Proof. The rigid analytic varietyX0 associated withX is partially complete.
LetU be the set of all open subsetsU of X such that the closure�U is compact and
the morphism of rigid analytic varietiesU0! X0 is an open embedding. By [B1],
Hp
c (X;�) is thep-th derived functor of

(I)
�c: mod(X�et �R:) �! mod(R)

(Fn)n 7�! lim
�!

U2U

lim
 �

n2N

�c(U;Fn):

For everyU 2 U we have�c(U;Fn)
�

�! �c(U0; Fn;0) ([H, 8.3.6]). Therefore
�c(X; (Fn)n)

�

�! �c(X0; (Fn;0)n) (see (2.2.2) below). Hence if" denotes the
functor mod(X�et � R:) ! mod(X0)�et � R:); (Fn)n 7! (Fn;0)n then the functor
�c from (I) is naturally isomorphic to the functor�c � ". Thus Proposition (1.5)
is proved once we have seen thatR+(�c � ")

�

�! R+�c � R
+" = R+�c � ".

For everyR:-module(Fn)n onX�et, there is a monomorphism from(Fn)n to an
R:-module(In)n such that there exists a family(Jn; n 2 N) such that eachJn is
an injectiveR=mn-module,In =

Qn
s=1Js andIn ! In�1 is the projection. For

everyp; n 2 N andU 2 U, Hp
c (U; In) = 0. Then by [H, 8.3.6]Hp

c (U0; In;0) = 0.
Hence by Corollary (2.4.iii) below,"((In)n) = (In;0)n is �c-acyclic. 2

2. Some general properties of the compactly supported cohomology of
R:-modules

In the following proposition we describe some functorial properties.

PROPOSITION 2.1.LetX andY be taut separated adic spaces locally of+weakly
finite type over Spa(k; k�).

(i) If f :X ! Y is a proper morphism then, for everyR:-module(Fn)n onY�et and
everyp 2 N0, there is a natural morphismHp

c (Y; (Fn)n)! Hp
c (X; (f

�Fn)n).
(ii) If f :X ! Y is an open embedding then, for everyR:-module(Fn)n onY�et and

everyp 2 N0, there is a natural morphismHp
c (X; (f

�Fn)n)! Hp
c (Y; (Fn)n).

(iii) If f :X ! Y is an open embedding then, for everyR:-module(Fn)n onX�etand
everyp 2 N0, there is a natural morphismHp

c (X; (Fn)n)! Hp
c (Y; (f!Fn)n).

(iv) LetU be an open covering ofX such that everyU 2 U is taut and for every
U; V 2 U there exists aW 2 U withU [ V �W . Then, for everyR:-module
(Fn)n onX�et and everyp 2 N0, the mapping induced by (ii)

lim
�!

U2U

Hp
c (U; (FnjU)n) �! Hp

c (X; (Fn)n)

is bijective.
Proof. (i) is obvious ifY is partially complete. For generalY , use universal

partial compactifications ofX andY .
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The mapping in (ii) can easily be constructed if eitherf is quasi-compact or
X is partially complete. Obviously assertion (iv) holds ifX and allU 2 U are
partially complete.

Now we prove (iv) under the assumption that everyU 2 U is quasi-compact.
Let j:X ,! �X be a partial compactification ofX such thatj is quasi-compact, and
put(Gn)n := (j!Fn)n. LetV be the set of all quasi-compact open subsets ofX. For
everyV 2 V, V \X is quasi-compact and we haveHp

c (V \X; (FnjV \X)n) =
Hp
c (V; (GnjV )n). Therefore, we have to show that

lim
�!

V 2V

Hp
c (V; (GnjV )n) �! Hp

c (X; (Gn)n)

is bijective. LetW be the set of all partially complete open subsets ofX which are
contained in a quasi-compact open subset ofX . Then for everyV 2 V there is a
W 2 W with V � W ([H, 5.3.3.ii]). Since we already know (iv) in the partially
complete case, the mapping

lim
�!

W2W

Hp
c (W; (GnjW )n) �! Hp

c (X; (Gn)n)

is bijective. Hence lim
�!

V 2V

Hp
c (V; (GnjV )n) ! Hp

c (X; (Gn)n) is bijective. Thus we

have proved that (iv) holds if everyU 2 U is quasi-compact.
Now we can construct, for an arbitrary open embeddingf :X ! Y , the map-

ping of (ii). Let (Xi)i2I be the family of all quasi-compact open subsets of
X. Since the morphismsf jXi:Xi ! Y are quasi-compact, we have the map-
pingsHp

c (Xi; (f
�FnjXi)n) ! Hp

c (Y; (Fn)n) which induce a mappingHp
c (X,

(f�Fn)n) = lim
�!

i2I

Hp
c (Xi; (f

�FnjXi)n) ! Hp
c (Y; (Fn)n). With this construction,

obviously (iv) holds.
The mapping in (iii) can easily be constructed ifX (and hencef ) is quasi-

compact. For generalX, coverX by quasi-compact open subsets and apply (iv).2

2.2. LetX be a partially complete adic space over Spa(k; k�) and let�c: mod(X�et�
R:)!mod(R) be the global section functor with compact support forR:-modules
onX�et as defined in Paragraph 1. This functor can be factorized as follows: First we
introduce some categories and functors. Let mod(R:) =mod(Spa(k; k�)�et�R:) be
the category of projective systems ofR-modulesF1  F2  : : : with mnFn = 0
for everyn 2 N, let Ind(mod(R:)) be theInd-category of mod(R:), and letU be
an open covering ofX such that everyU 2 U is taut and is contained in a quasi-
compact open subset ofX and such that for everyU; V 2 U there is aW 2 U with
U [ V �W (thusU gives a filtered category). We have the functors
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�� = (�X)�: mod(X�et�R:) �! mod(X�et�R); (Fn)n 7�! lim
 �
n

Fn

% := (�Spa(k;k�))�: mod(R:) �! mod(R); (Fn)n 7�! lim
 �
n

Fn

Ind(%): Ind (mod(R:)) �! Ind(mod(R))

lim
!

: Ind(mod(R)) �! mod(R); (Fi)i2I 7�! lim
�!

i

Fi

�: mod(X�et�R:) �! Ind(mod(R:)); (Fn)n 7�! (�c(U;Fn)n)U2U

�! = �c: mod(X�et�R) �! mod(R); F 7�! �c(X;F ):

The functor�c: mod(X�et�R:)!mod(R) has the following two factorizations,

�c = �! � �� (2.2.1)

�c = lim
�!

�Ind(%) � �: (2.2.2)

LEMMA 2.3. In the situation of (2.2) we have

(i) R+�c = R+�! � R
+�� andR+�c = R+ lim

�!

�R+Ind (%) � R+�.

(ii) For everyR:-moduleF = (Fn)n onX�et and everyp 2 N0, we haveRp�(F ) =
(Hp

c (U;Fn)n)U2U.
(iii) For everyp 2 N0; R

p(Ind(%)) = Ind (Rp%).

Proof. (iii) is a general fact onInd-functors.
(ii) For everyp 2 N0, let T p denote the functor mod(X�et� R:) ! Ind (mod

(R:)); (Fn)n 7! (Hp
c (U;Fn)n)U2U. The family of functors(T p)p2N0 is an exact

�-functor. For every object(Fn)n of mod(X�et� R:), there is a monomorphism
(Fn)n ! (In)n from (Fn)n to an object(In)n of mod(X�et�R:) of the following
type: There is a family(Jn; n 2 N) where eachJn is an injectiveR=mn-module
onX�et such thatIn =

Qn
s=1Js andIn ! In�1 is the projection.

For everyU 2 U there is aU 0 2 U and a partially complete open subspace
V of X with U � V � U 0 ([H, 5.3.3.ii]). For everyp 2 N andn 2 N, we have
Hp
c (V; In) = 0. ThereforeT p((In)n) = 0 for everyp 2 N. This shows thatT p is

thep-th derived functor ofT 0 = �.
(i) Let (In)n with In =

Qn
s=1Js be as in the proof of (ii). Then(In)n is

an injective object of mod(X�et� R:). Furthermore,��((In)n) =
Q

s2N Js is �! -
acyclic ([H, 5.3.6]) and�((In)n) is Ind(%)-acyclic (by (iii)). This shows that
R+(�! � ��) = R+�! �R

+�� andR+(Ind(%) � �) = R+ Ind(%) �R+�. 2

COROLLARY 2.4.LetX be a taut separated adic space locally of+weakly finite
type over Spa(k; k�) and let(Fn)n be anR:-module onX�et.

(i) If X is quasi-compact then, for everyp 2 N0, there is an exact sequence

0�! lim
 �
n

(1) Hp�1
c (X;Fn) �! Hp

c (X; (Fn)n) �! lim
 �
n

Hp
c (X;Fn) �! 0:
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In particular, if Hp�1
c (X;Fn) is a finitely generatedR-module for everyn 2 N

then

Hp
c (X; (Fn)n)

�

�! lim
 �
n

Hp
c (X;Fn)

(cf. (3.1)).
(ii) For everyp > 2 � dim :tr(X=k) + 1; Hp

c (X; (Fn)n) = 0. If, for every quasi-
compact open subsetU of X and everyn 2 N, theR-moduleHr

c (U;Fn) with
r = 2 � dim :tr(X=k) is finitely generated, thenHp

c (X; (Fn)n) = 0 for every
p > 2 � dim :tr(X=k).
(iii) Suppose there exists an open coveringU ofX such that, for everyU; V 2 U,
there is aW 2 U with U [ V � W and, for everyU 2 U, U is taut and is
contained in a quasi-compact open subset ofX andHp

c (U;Fn) = 0 for every
p; n 2 N andH0

c (U;Fn+1) ! H0
c (U;Fn) is surjective for everyn 2 N. Then

Hp
c (X; (Fn)n) = 0 for everyp 2 N.

Proof. (i) We choose a compactificationj:X ,! �X of X such thatj is quasi-
compact. Applying Lemma (2.3) to theR:-module(j!Fn)n on �X�et and the covering
U = f �Xg, we obtain the assertion.

(ii) For every taut open subsetU of X and everyn 2 N and everyp >
2 � dim :tr(X=k), we haveHp

c (U;Fn) = 0 ([H, 5.5.8]). Hence for quasi-compact
X the assertion follows from (i). For arbitraryX, apply Proposition (2.1.iv).

(iii) We choose a dense quasi-compact open embeddingj:X ,! �X where
�X is partially complete. There is an open coveringV of �X such that, for every
U; V 2 V, there is aW 2 V with U [ V � W and, for everyV 2 V, V is
taut and is contained in a quasi-compact open subset of�X andV \X 2 U. Put
Gn := j!Fn. ThenHp

c (V;Gn) = Hp
c (V \ X;Fn) for everyV 2 V, n 2 N,

p 2 N0. Hence, for everyV 2 V, Hp
c (V;Gn) = 0 for everyp; n 2 N and

H0
c (V;Gn+1) ! H0

c (V;Gn) is surjective for everyn 2 N. Then Lemma (2.3)
implies 0= Hp

c ( �X; (Gn)n) = Hp
c (X; (Fn)n) for everyp 2 N. 2

PROPOSITION 2.5.LetX be a taut separated adic space locally of+weakly finite
type over Spa(k; k�) with dim :tr(X=k) < 1, let (Ui)i2I be a covering ofX by
taut open subsets, and letF = (Fn)n be anR:-module onX�et. For every finite
subsetJ of I, putUJ :=

T
i2J Ui and leteJ :UJ ! X be the inclusion.

(i) There is a spectral sequence(p 6 0; q > 0)

E
pq
1 =

M
J�I

jJj=�p+1

Hq
c (UJ ; F jUJ )) Hp+q

c (X;F ):

(ii) If (Ui)i2I is locally finite then there is a spectral sequence(p 6 0; q > 0)

E
pq
1 =

M
J�I

jJj=�p+1

Hq
c (X; (eJ !(FnjUJ ))n2N)) Hp+q

c (X;F ):
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Proof. (i) We choose a total ordering on the index setI. LetV = (Vi)i2I be a
family of subsets ofX such that eachVi is a quasi-compact open subset ofUi and
Vi 6= ; for only finitely manyi 2 I. By the arguments of [SGA 4, XVII.6.2.10]
there is a spectral sequence

E
pq
1 =

M
J�I

jJj=�p+1

Hq
c (V; dJ !(F jVJ ))) Hp+q

c (V; F jV );

whereV :=
S
i2I Vi; VJ :=

T
i2J Vi; dJ denotes the open embeddingVJ !

V and dJ !(F jVJ ) denotes theR:-module (dJ !(FnjVJ))n2N on V�et. Since the
open embeddingdJ :VJ ! V is quasi-compact, we haveHq

c (VJ ; F jVJ )
�

�!
Hq
c (V; dJ !(F jVJ )). So we get a spectral sequence

E
pq
1 =

M
J�I

jJj=�p+1

Hq
c (VJ ; F jVJ )) Hp+q

c (V; F jV ): (SV)

By Proposition (2.1.iv) the inductive limit lim
�!

V

SV is the desired spectral sequence.

(ii) For every finite subsetJ of I putFJ := (eJ !(FnjUJ))n2N 2 mod(X�et� R:).
Then for every quasi-compact open subsetV of X we have a spectral sequence

E
pq
1 =

M
J�I

jJj=�p+1

Hq
c (V; FJ jV )) Hp+q

c (V; F jV ): (SV )

Again take the inductive limit lim
�!

V

SV . 2

PROPOSITION 2.6.Let X be a taut separated adic space locally of+weakly
finite type over Spa(k; k�), let (Fn)n be anR:-module onX�et, letU be a taut open
subspace ofX and putZ := X � U .
(i) Letj:U ! X andi:Z ! X be the inclusions. Then there is an exact sequence

� � � ! Hp
c (X; (j!j

�Fn)n)! Hp
c (X; (Fn)n)! Hp

c (X; (i�i
�Fn)n)

! Hp+1
c (X; (j!j

�Fn)n)! � � �

(In Section 1 we defined the compactly supported cohomology forR:-modules on
adic spaces. Analogously one can define the compactly supported cohomology for
R:-modules on pseudo-adic spaces. ThenHp

c(X; (i�i
�Fn)n)

�

�! Hp
c (Z; (i

�Fn)n).)
(ii) Assume thatX andU are partially complete. LetR+�� be the derived functor
of ��: mod(X�et � R:) ! mod (X�et � R); (Fn)n 7! lim

 �

Fn, let Hp
c (Z;�) be

the compactly supported cohomology forR-modules onZ�et ([H, 5.3.1]) and let
i:Z ! X be the inclusion. Then we have an exact sequence

� � � ! Hp
c (U; (FnjU)n)! Hp

c (X; (Fn)n)! Hp
c (Z; i

�R+��(Fn)n)

! Hp+1
c (U; (FnjU)n)! � � �
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Proof. (i) follows from the exact sequence ofR:-modules onX�et

0! (j!j
�Fn)n ! (Fn)n ! (i�i

�Fn)n ! 0:

(iii) We have the exact sequence

� � � ! Hp
c (U; (R

+��F )jU)! Hp
c (X;R

+��F )! Hp
c (Z; i

�R+��F )

! Hp+1
c (U; (R+��F )jU)! � � �

and by Lemma (2.3.i) we haveHp
c (X;R

+��F ) = Hp
c (X;F ) and

Hp
c (U; (R

+��F )jU) =Hp
c (U;F jU). 2

EXAMPLE 2.7. We apply Proposition (2.6) to compute some cohomology groups.
LetK be a local field and letk be the algebraic closure ofK. With the schemeP1

over SpecZ we can associate the adic space(P1)ad := P
1�SpecZSpa(k; k�) over

Spa(k; k�) ([H1, 3.8]). The setP1(K) ofK-rational points ofP1 can be considered
as a subset of(P1)ad. This subset is closed in(P1)ad and the subspace topology of
(P1)ad onP1(K) agrees with the topology onP1(K) induced by the absolute value
of K. The open subspace
 := (P1)ad� P1(K) equals the adic space associated
with Drinfeld’s upper half plane(P1

k)
rig � P

1(K). (P1)ad is complete and
 is
partially complete.

Let c(R) denote theR-module of all constant mappings fromP1(K) to R,
let `c(R) denote theR-module of all locally constant mappings fromP1(K) to
R whereP1(K) is equipped with the subspace topology of(P1)ad, and lets(R)
denote theR-module of all continuous mappings fromP1(K) toR whereP1(K) is
equipped with the subspace topology of(P1)ad andR is equipped with them-adic
topology.

Let j:
! (P1)ad be the inclusion. We consider theR:-moduleF := (Fn)n :=
(R=mn)n on
�et. Assume that char(R=m) 6= char(K�=K��). Then we have

(i) The natural mappingH1
c ((P

1)ad; (j!Fn)n)! lim
 �
n

H1
c (
; Fn) is bijective.

(ii) There is a natural isomorphisms(R)=c(R) �

�! lim
 �
n

H1
c (
; Fn).

(iii) There is a natural isomorphism̀c(R)=c(R) �

�! H1
c (
; (Fn)n).

In particular, we obtain

(iv) The natural mappingH1
c (
; (Fn)n)! lim

 �
n

H1
c (
; Fn) is not bijective.

(v) The natural mappingH1
c (
; (Fn)n)! H1

c ((P
1)ad; (j!Fn)n) is not bijective.

(vi) TheR-moduleH1
c (
; (Fn)n) is not finitely generated.

Proof. First we remark that by [H, 5.7.2], for every torsion groupL and every
p 2 N0, we haveHp((P1)ad; L) = Hp(P1

k; L), and thusH1((P1)ad; L) = 0.
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(i) SinceH0
c ((P

1)ad; j!Fn) = �c(
; Fn) = 0, we obtain from Corollary (2.4.i),
H1
c ((P

1)ad; (j!Fn)n)
�

�! lim
 �
n

H1
c ((P

1)ad; j!Fn) = lim
 �
n

H1
c (
; Fn).

(ii) SinceH1
c ((P

1)ad; R=mn) = 0, we have the exact sequence

H0((P1)ad; R=mn)! H0(P1(K); R=mn)! H1
c (
; Fn)! 0;

i.e. `c(R=mn)=c(R=mn) �

�! H1
c (
; Fn). Then s(R)=c(R) = lim

 �
n

[`c(R=mn)=

c(R=mn)]
�

�! lim
 �
n

H1
c (
; Fn).

(iii) Let ��: mod((P1)ad
�et �R:)!mod((P1)ad

�et �R) be the functor from (2.6.ii)
and letG = (Gn)n denote theR:-module(R=mn)n on (P1)ad

�et . By [E], Rq��G is
the sheaf on(P1)ad

�et associated with the presheafU 7! Hq(��U;G), and there is an
exact sequence

0! lim
 �
n

(1)Hq�1(U;Gn)! Hq(��U;G)! lim
 �
n

Hq(U;Gn)! 0:

For everyx 2 P
1(K) � (P1)ad, the set of all open disks of(P1)ad containingx

is a fundamental system ofétale neighbourhoods ofx. For every diskU we have
H0(U;Gn) = R=mn andHq(U;Gn) = 0 for q > 0 ([H, 3.2.4]). Hence the natural
morphism��G ! R+��G induces an isomorphismi���G ! i�R+��G wherei
denotes the inclusionP1(K)! (P1)ad. SinceH1((P1)ad; Gn) = 0, we obtain from
Corollary (2.4.i)

H1
c ((P

1)ad; G) = 0:

Hence Proposition (2.6.ii) gives the exact sequence

H0
c ((P

1)ad; G)! H0
c (P

1(K); i���G)! H1
c (
; F )! 0:

Since��G is the constant sheaf on(P1)ad
�et to the groupR, we obtain

`c(R)=c(R)
�

�! H1
c (
; F ): 2

3. Finiteness

First we introduce constructible sheaves.

Let X be an analytic adic space, letA be a noetherian ring and letF be an
A-module onX�et. We callF constructible if for everyx 2 X there is a locally
closed locally constructible subsetL of X such thatx 2 L and the restriction of
F to L is locally constant of finite type ([H, 2.7]). We callF quasi-constructible
if for every x 2 X there exist ańetale morphism of adic spacesg:Y ! X
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and a locally closed constructible subsetL of Y and a decreasing sequence
Y = Y0 � Y1 � : : : � Y` = ; of closed adic subspaces ofY such thatx 2 g(L)
and, for everyi 2 f0; : : : ; `� 1g, the restriction ofF toL\ (Yi � Yi+1) is locally
constant of finite type ([H2]).

We call anR:-module(Fn)n on theétale site of an analytic adic spaceX con-
structible (resp. quasi-constructible) if the following three conditions are satisfied

(1) For everyn 2 N, the morphismFn+1! Fn is surjective with kernelmnFn+1.
(2) For everyn 2 N, theR=mn-moduleFn onX�et is constructible (resp. quasi-

constructible).
(3) The ascending chain(Kn; n 2 N) of sub-R-modules ofF1 is locally stationary

(i.e., there is an open covering(Xi)i2I of X such that, for everyi 2 I, the
chain (KnjXi; n 2 N) is stationary), whereKn is defined as follows: Let
a be a generating element of the maximal ideal ofR. By (1) the morphism
 n:Fn ! Fn; x 7! an�1x factors through a morphism'n:F1 ! Fn. Then
Kn := ker('n).

We call an adic spaceX over Spa(k; k�) locally algebraic if for everyx 2 X there
exist an open neighbourhoodU of x in X and a schemeY of finite type overk
such thatU is over Spa(k; k�) isomorphic to an open subspace of the adic space
Y�Speck Spa(k; k�) associated withY .

THEOREM 3.1.LetX be a separated adic space of finite type over Spa(k; k�) and
let (Fn)n be anR:-module onX�et. Suppose that one of the following conditions
(a),(b) is satisfied

(a) X is locally algebraic,char(R=m) 6= char(k�=k��) and (Fn)n is con-
structible

(b) char(k) = 0; char(R=m) 6= char(k�=k��); R=m is finite and(Fn)n is
quasi-constructible.

Then, for everyp 2 N0, the natural mapping

Hp
c (X; (Fn)n) �! lim

 �
n

Hp
c (X;Fn)

is bijective. Furthermore, the projective system ofR-modules(Hp
c (X;Fn))n2N is

AR�m-adic and, for everyn 2 N, theR-moduleHp
c (X;Fn) is finitely generated.

(Hence also theR-moduleHp
c (X; (Fn)n) is finitely generated.)

Proof. For everyn 2 N and everyp 2 N0 the R-moduleHp
c (X;Fn) is

finitely generated (in case (a) see [H, 6.2.1], in case (b) see [H2, 2.3]). Hence
Hp
c (X; (Fn)n)

�

�! lim
 �
n

Hp
c (X;Fn) by Corollary (2.4.i). It remains to show that

(Hp
c (X;Fn))n isAR � m-adic. For this we follow the proof of [FK, 12.15].
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By (1) above, the image of the morphism n+1 in (3) equals the kernel of the
morphismFn+1! Fn. Hence we have an exact sequence

0�! F1=Kn+1 �! Fn+1 �! Fn �! 0:

Since the sequence(Kn; n 2 N) is stationary, we obtain that there exist locally
closed constructible subsetsS1; : : : ; Sm of X such thatX =

Sm
i=1Si and such

that, for everyi 2 f1; : : : ;mg, there exist a quasi-compact quasi-separatedétale
morphism of adic spacesf :Y ! X and a decreasing sequenceY = Y0 � Y1 �
: : : � Y` = ; of closed adic subspaces ofY such thatSi � f(Y ) and, for every
j 2 f0; : : : ; `�1g and everyn 2 N, the restriction ofFn to f�1(Si)\ (Yj �Yj+1)
is a locally constantR-module of finite type. In case that(Fn)n is a constructible
R:-module we may assume thatY1 = ;.

LetC denote the full subcategoryof the category ofR-modules onX�et consisting
of thoseR-modulesF on X�et such thatmpF = 0 for somep 2 N and, for
every i 2 f1; : : : ;mg and everyj 2 f0; : : : ; ` � 1g, the restriction ofF to
f�1(Si) \ (Yj � Yj+1) is locally constant of finite type.C is an abelian category.
By [H2, 3.5], f�1(Si) \ (Yj � Yj+1) has finitely many connected components.
Therefore every object of the categoryC is noetherian.

Considering the ascending chain of sub-R:-modules(Pk; k 2 N) of (Fn)n with

Pk := ker((Fn)n
ak:
�!(Fn)n) wherea is a generating element of the maximal ideal

of R, we can conclude from [SGA 5, V. 5.2.1 and 5.2.2] that there exists an exact
sequence ofR:-modules onX�et

0�! (Ln)n �! (Fn)n �! (Gn)n �! 0

with the following properties:Ln andGn are objects ofC for everyn 2 N, the
projective systems(Ln)n and(Gn)n in C areAR�m-adic ([SGA 5, V. 3.2.2]), there
exists ak 2 N such thatmkLn = 0 for everyn 2 N, the kernel of((Gn)n

a�
�!(Gn)n)

isAR-null.
It suffices to show that, for everyp 2 N0, the projective systems ofR-modules

(Hp
c (X;Ln))n and(Hp

c (X;Gn))n areAR�m-adic ([FK, 12.4]). Since(Ln)n and
(Gn)n areAR-isomorphic tom-adic projective systems inC, we may assume that
(Ln)n and(Gn)n arem-adic.

SincemkLn = 0 for everyn 2 N, we haveLn+1
�

�! Ln for everyn > k. Then
obviously the projective system(Hp

c (X;Ln))n isAR� m-adic.
We show that(Hp

c (X;Gn))n is AR � m-adic. Let j:X ,! �X be a com-
pactification ofX with dim :tr ( �X=k) < 1 ([ H, 5.1.14]). ThenHp

c (X;Gn) =
Hp( �X; j!Gn). For everyn 2 N, letC(j!Gn) be the Godement resolution ofj!Gn

on �X ([SGA 4, XVII. 4.2.2]). We consider the truncation�6d(C(j!Gn)) with
d := 2 � dim :tr ( �X=k) + 2. The morphismsGn+1 ! Gn induce morphisms of
complexes ofR-modules�( �X; �6d(C(j!Gn+1))) ! �( �X; �6d(C(j!Gn))). By
construction of(Gn)n above, the kernel of(Gn)n

a:
�!(Gn)n is AR-null. This
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implies that, for everyn 2 N, Gn is a flatR=mn-module. Then alsoj!Gn is a
flatR=mn-module. From this together with the fact thatHp( �X;F ) = 0 for every
p > 2�dim :tr ( �X=k)and every torsion sheafF on �X�et ([H, 2.8.3]), one can conclude
that every component of the complex�( �X; �6d(C(j!Gn))) is a flatR=mn-module
and that�( �X; �6d(C(j!Gn+1))) 
R=mn+1 R=mn ! �( �X; �6d(C(j!Gn))) is an
isomorphism. Now by [FK, 12.5], for everyp 2 N0, the projective system ofR-
modules(Hp

c (X;Gn))n isAR� m-adic. 2

In the following we will consider closed constructible subsetsL of adic spacesX
and their interiorsL�. For example, iff1; : : : ; fn 2 OX(X) then the set

L = fx 2 Xjjf1(x)j < 1; : : : ; jfn(x)j < 1g

is closed and constructible inX, and for the interiorL� of L in X we have (here
we assume thatX is an adic space over Spa(k; k�))

L� =
[
a2k�

jaj<1

fx 2 Xjjf1(x)j 6 ja(x)j; : : : ; jfn(x)j 6 ja(x)jg

([H2, 1.3]).

3.2. LetX be a separated adic space of finite type over Spa(k; k�), letU be a taut
open subset ofX, let j:U ,! X be the inclusion and let(Fn)n be anR:-module
onU�et such that there exists a quasi-constructibleR:-module(Gn)n onX�et with
(Fn)n = (GnjU)n. Assume that char(k) = 0, char(R=m) 6= char(k�=k��) and
R=m is finite. We are interested in the following two statements

(a) For everyp 2 N0, the natural mappingHp
c (U; (Fn)n) ! lim

 �
n

Hp
c (U;Fn) is

bijective and the projective system(Hp
c (U;Fn))n2N isAR�m-adic and every

Hp
c (U;Fn) is a finitely generatedR-module.

(b) For everyp 2 N0, the natural mappingHp
c (U; (Fn)n) ! Hp

c (X; (j!Fn)n) is
bijective.

For example, (a) and (b) hold ifU is quasi-compact ((a) follows from (3.1) and
(b) follows immediately from the definition of compactly supported cohomology
for R:-modules). But ifU is not quasi-compact then in general neither (a) nor (b)
holds (see Example (2.7.iv,v)). In the following theorem we describe two types of
open subsetsU ofX which in general are not quasi-compact and for which (a) and
(b) hold.

THEOREM 3.3.In the situation of (3.2) assume that one of the following condi-
tions is satisfied

(i) There is a closed adic subspaceZ ofX withU = X � Z.
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(ii) There is a locally closed constructible subsetL ofX withU = L�.

Then(a)and(b) hold.
(Remark.In Theorem (3.3), statement (b) also holds ifX is only locally of finite

type over Spa(k; k�). Indeed, if(Xi)i2I is the family of all quasi-compact open
subsets ofX then by Proposition (2.1.iv),Hp

c (U;F ) = lim
�!

i2I

Hp
c (U \Xi; F jU \Xi)

andHp
c (X; j!F ) = lim

�!

i2I

Hp
c (Xi; j!F jXi)).

Proof. We need a result of [H2] which says

(I) Let X be a separated adic space of finite type over Spa(k; k�) and letU be an
open subset ofX which satisfies (i) or (ii). LetA be a finite ring whose order
is prime to char(k�=k��). Assume that char(k) = 0. Then there is a sequence
(Uiji 2 N) of open subsets ofX such that the following holds

(�) EveryUi is quasi-compact andUi � Ui+1 andU =
S
i2N Ui.

(�) For every quasi-constructibleA-moduleQ onX�et there is ai0 2 N such
that, for everyi > i0 and everyp 2 N0, the natural mappingHp

c (Ui; Q) !
Hp
c (U;Q) is bijective. ([H2, 2.7 and 2.9])

Proposition (2.1.iv) and Theorem (3.1) imply that in order to show that under
the assumptions of Theorem (3.3) the statement (a) holds it suffices to show the
following

(II) There is an open covering(Uiji 2 N) ofU such that everyUi is quasi-compact,
Ui � Ui+1 for everyi 2 N, and for everyi; n 2 N andp 2 N0 the natural
mappingHp

c (Ui; Fn)! Hp
c (U;Fn) is bijective.

We show (II): Let(Kn; n 2 N) be the ascending chain of sub-R-modules ofF1

which occurs in condition (3) of the definition of quasi-constructibleR:-modules.
Then, for everyn 2 N, we have an exact sequence onU�et

0�! F1=Kn+1 �! Fn+1 �! Fn �! 0:

Since(Kn; n 2 N) is stationary, there is am 2 N with Kn = Km for every
n > m. It suffices to show that there is an open covering(Uiji 2 N) of U
such that everyUi is quasi-compact,Ui � Ui+1 for everyi 2 N, and for every
n 2 f1; : : : ;m � 1g; i 2 N andp 2 N0 the mappingsHp

c (Ui; Fn) ! Hp
c (U;Fn)

andHp
c (Ui; F1=Km) ! Hp

c (U;F1=Km) are bijective. But this follows from (I)
above.

Thus we have proved that (a) holds. By the following Lemma (3.4), (a) implies
(b). 2

LEMMA 3.4. LetX be a separated adic space of+weakly finite type over Spa(k; k�),
let U be a taut open subset ofX with inclusionj:U ,! X and let(Fn)n be an
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R:-module onU�et. Letp be an element ofN0 such thatlim
 �
n

(1)Hp�1
c (U;Fn) = 0 (for

example, this is satisfied if for everyn 2 N theR-moduleHp�1
c (U;Fn) is finitely

generated). Then the following two statements are equivalent

(i) The natural mappingHp
c (U; (Fn)n)! lim

 �
n

Hp
c (U;Fn) is bijective.

(ii) The natural mappingHp
c (U; (Fn)n)! Hp

c (X; (j!Fn)n) is bijective.
Proof. We consider the commutative diagram

Hp
c (U; (Fn)n)

�
- Hp

c (X; (j!Fn)n)

lim
 �
n

Hp
c (U;Fn)

�

?



- lim
 �
n

Hp
c (X; j!Fn):
?

�

The mapping
 is bijective. Since lim
 �
n

(1)Hp�1
c (X; j!Fn) = lim

 �
n

(1)Hp�1
c (U;Fn) =

0, we obtain from Corollary (2.4.i) that the mapping� is bijective. Hence� is
bijective if and only if� is bijective. 2

4. A comparison theorem

With every schemeX locally of finite type overk one can associate an adic space
Xad over Spa(k; k�) ([H1, 3.8]),

Xad := X �Speck Spa(k; k�):

The functorÉt=X ! Ét=Xad; Y=X 7! Y ad=Xad is a morphism of sites

%: (Xad)�et �! X�et:

For every sheafF onX�et put

F ad := %�F:

If X is separated and quasi-compact then, for everyp 2 N0 and everyA-module
F onX�et whereA is a torsion ring, there is a natural isomorphism ([H, 5.7.2])

Hp
c (X;F )

�

�! Hp
c (X

ad; F ad): (4.1)

In the following theorem we extend this isomorphism toR:-modulesF .
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THEOREM 4.2.Assume thatchar(k) = 0, char(R=m) 6= char(k�=k��) andR=m
is finite. Then, for every separated schemeX of finite type overk and every
constructibleR:-module(Fn)n onX�et and everyp 2 N0, there is a natural iso-
morphism

Hp
c (X; (Fn)n)

�

�! Hp
c (X

ad; (F ad
n )n):

(Remark.The main ingredient of the proof of Thoerem (4.2) is the result [H2,
2.7] (cf. proof of Theorem (3.3)). It was already remarked by Berkovich [B1] that
one gets the comparison theorem (4.2) once one has a result like [H2, 2.7]).

Proof. Let X � �X be a compactification ofX. There is a constructibleR:-
module(Gn)n on �X�et with (Fn)n = (GnjX)n. The associatedR:-module(Gad

n )n
on ( �Xad)�et is quasi-constructible. (Indeed, condition (3) in the definition of quasi-
constructibleR:-modules is satisfied, since theR-moduleG1 on �X�et is noetherian).
The adic space�Xad is of finite type over Spa(k; k�) andXad is a Zariski-open subset
of �Xad. Hence by Theorem (3.3) we have

(I) Hp
c (X

ad; (F ad
n )n)

�

�! lim
 �
n

Hp
c (X

ad; F ad
n ):

We also have

(II ) Hp
c (X; (Fn)n)

�

�! lim
 �
n

Hp
c (X;Fn):

The isomorphisms (I) and (II) together with the comparison isomorphisms (4.1)
induce an isomorphismHp

c (X; (Fn)n)
�

�! Hp
c (X

ad; (F ad
n )n). 2
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