Compositio Mathematica 12: 217-235, 1998. 217
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

A comparison theorem fai-adic cohomology

R. HUBER
Fachbereich Mathematik, Bergische UniveasitGaul3str. 20, 42097 Wuppertal, Germany
e-mail: huber@math.uni-wuppertal.de

Received 23 December 1996; accepted in final form 21 April 1997

Abstract. We show that, for certain types of rigid analytic varieti&sand constructible/-adic
sheave$F, ), on X, one hasd? (X, (F)n) — lim H (X, F). As an application we obtain that,

for an algebraic varietyX' and associated rigid analytic variel?, the ¢-adic cohomology ofX
and X" agree.
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Imitating the definition of compactly supported cohomology/eddic sheaves
on algebraic varieties [J], [E], one can define compactly supported cohomology
of /-adic sheaves on rigid analytic varieties over an algebraically closed non-
archimedean field.

In this paper we are interested in the following question

Let X be a separated rigid analytic variety oeand let( F,, ), cx be a constructible
¢-adic sheaf orX with ¢ # char(k° /k°°). Is the natural mapping

- HY (X, (Fo)nen) — lim HY (X, Fy,)

n
bijective?

If X is quasi-compactthepis bijective. (This can be shown by the same arguments
as in the algebraic case). ButXf is not quasi-compact thep is not bijective in
general. In this paper we give some examples of non quasi-compact rigid analytic
varietiesX for which ¢ is bijective. Namely we will show

Suppose thatX is an open subvariety of some quasi-compact separated rigid
analytic varietyY such thatX is Zariski-open inY or X = {y € Y ||f1(y)| <
L...,0fn(y)| < 1} with f1,..., f, € Oy(Y). Furthermore suppose that the
constructible/-adic sheaf F},),, on X extends to a constructibkadic sheaf on

Y. Assume chak) = 0 and chafk° /k°°) # £. Theny is bijective.

As a consequence of this result we will obtain the following comparison theorem:
Let X be a separated scheme of finite type dvand letX"9 be the associated
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rigid analytic variety ovek. Let (F},),en be a constructiblé-adic sheaf onX
and let(F,,%),.cn be the associatedadic sheaf onX"9. Assume chdik) = 0 and
char(k®/k°°) # £. ThenHP(X, (Fy,),) = HP(X"9, (F39),,).

In [H4] we defined a certain type of analytic spaces which we call analytic adic
spaces. The category of rigid analytic varieties is naturally isomorphic to a full sub-
category of the category of analytic adic spaces. For many definitions, constructions
and arguments of this paper it is more natural and sometimes even indispensable
to use analytic adic spaces. Therefore we will applyétede cohomology of adic
spaces ([H]).

In Section 1 we will define compactly supported cohomologé-atlic sheaves
on rigid analytic varieties and analytic adic spaces. In Section 2 we will note
some properties of this conomology. In Sections 3 and 4 we will prove the results
mentioned above.

Forthe whole paper we fix an algebraically closed non-archimedeat: field a
complete discrete valuation rifgwith maximal ideam such that chg? /m) > 0.

1. Definition of cohomology with compact support forR.-modules

Let X be a rigid analytic variety or an adic space. ByRnamodule on thettale
site Xgt of X we mean a projective system

- F1—-F = =N

of R-modules onXg with m™ - F;, = 0 for everyn € N. Let mod X — R.) denote
the category ofR.-modules onX.

In [H] the compactly supported cohomology f&/m™-modules on analytic
adic spaces is defined. In this paragraph we will define the compactly supported
cohomology for R.-modules on analytic adic spaces. More precisely, we will
define, for every taut separated adic space locallywéakly finite type over
Spdk, k°) (H, 1.2.1,1.3.1, 5.1.2]) and eveR.-moduleF' = (F},)nen 0N Xgand
everyp € Np, the compactly supported cohomologly (X, F') of X with values
in £ which is anR-module. (Instead of adic spaces over @pa°) one could
consider, more generally, pseudo-adic spaces over analytic geometric points [H,
1.10.3, 2.5.1]).

Once one has defined the compactly supported cohomologi.fonodules
on analytic adic spaces one can define the compactly supported cohomology for
R.-moduleq F),),cx ON taut separated rigid analytic varieti€overk as follows:
With X one can associate a taut separated adic spatcally of finite type over
Spdk, k°) ([H, 1.1.11]). Theétale toposes ok andX 29 are naturally isomorphic
(H, 2.1.4]). PUtH? (X, (F,),) := H2(X%, (Fad),).

The definition of compactly supported cohomology formodules on analytic
adic spaces follows the algebraic pattern [J], [E].
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Recall that for a quasi-compact schetXethe global section functor foR.-
modules is defined by

I':mod X¢ — R.) — modR)

(F)w — D(X,lim F,) (1)
and theR-adic cohomology
HP(X, (Fp)n) = RPT(X, (Fy)n) (1.2)

is the derived functor of . For a separated schen¥eof finite type ovelk one puts

wherej: X — X is a compactification ok .

Now we come to the analytic adic situation. A separated adic sFalceally
of Tweakly finite type over Sga, k°) is called complete ifX is quasi-compact
and the structure morphistd — Spdk, k°) is universally closed ([H, 1.3.2])
and it is called partially complete if, for every quasi-compact sudset X, the
closureT of T'in X is complete ([H, 1.3.3, 1.3.4, 1.3.13]). For every taut separated
adic spaceX locally of "weakly finite type over Sf#, k°) there exists an open
embedding: X — X whereX is an adic space which is partially complete over
Spdk, k°) ([H, 5.1.5]). 7 can be chosen to be quasi-compact. Moreovek i
quasi-compact theX can be chosen to be complete. Therefore for quasi-compact
X one can defindf? (X, (F,)nen) analogously to (1.1)—(1.3). But one can also
defineH?(X, (F,)nen), more generally, for tauX . For this one only has to replace
the global section functor foR.-modules on complete adic spaces by the global
section functor with compact support fé&.-modules on partially complete adic
spaces. To be precise, the definition is as follows. Firstlbe a partially complete
adic space over Spi, k°). The global section functor with compact support for
R.-modules onX is defined according to (1.1) by

I'e:mod Xe— R.) — mod(R)

(Fn)n — ¢ (Xalj_an)a

n
wherel'. (X, L@ F,) denotes thé&-module of all global sectionse T'( X, I(@ F,)

whose support sugp) C X is complete over Sg&, £°) ([H, 5.2.1]). According
to (1.2), the compactly support cohomology

HE(X, (Fp)n) = RPT (X, (Fn)n)

c
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is defined as the derived functor Bf. Now let X be a taut separated adic space
locally of Tweakly finite type over S, k°). Then we choose a quasi-compact
open embedding: X — X whereX is partially complete over Spa, k°), and
we put according to (1.3)

HP (X, (Fy)n) = HY (X, (i Fy)n).
Up to natural isomorphism, this definition is independent of the choice of the quasi-
compact open embeddingX — X, see Lemma (1.4) below. (But in order to get
this independence we have to restrict ourselves to quasi-compset Example
(2.7.v) below). At the end of this paragraph we will compare the above definition
of compactly supported cohomology f&.-modules with Berkovich’s definition

in [B4].

LEMMA 1.4. Let X, P, be adic spaces over S@ak°) with P, partially
complete, let:: X — P andb: X — (Q be quasi-compact open embeddings, and
let (F,,), be anR.-module onXg. Then for everyn € Ny there is a natural
isomorphism

Hgn(P, (a!Fn)n) = Hgn(Q’ (b!Fn)n)'

Proof. We may assume that X — P is a universal partial compactification
of X ([H, 5.1.5]). So there is a unique morphigmP — (@ of adic spaces over
Spdk, k°) with b = g o a. We have

(I) g induces a homeomorphism frafhonto the closuré(X) of b(X) in Q. For
everyp € P the mapping between the residue fields(p)) — k(p) induces
an isomorphism between the completidiig(p))" — k(p)".

Proof of (I). First we show thay is quasi-compact and injective. L&t be a
guasi-compactopen subsetpfSince every point oP is a specialization of a point
of a(X), we obtaing=1(U) C a(b=1(U)). Sinceb is quasi-compact,(b—1(U))
is quasi-compact and then by [H, 1.3.18p~1(U)) is quasi-compact. Lell” be
a quasi-compact open subsetXfwhich contains:(b-1(U)). By [H, 1.3.14.ii]
the restrictiony|V:V — ¢(V') is a homeomorphisng (V') is a pro-constructible
subset of and hencé’ N g(V) is quasi-compact. Thus we obtain that () is
guasi-compact and thatis injective.

Since P is partially complete and) is separatedy is partially proper ([H,
1.10.17.vi]). Every quasi-compact partially proper morphismis proper ([H, 1.3.4]).
Hencey is proper, in particulag is closed. Thus we see thatP) = b(X) and that
g: P — g(P) is a homeomorphism.

Letp be a point ofP. There is a poinp’ € a(X) which specializes tp. Then
g(p') specializes tgj(p) and so we havé(p)" — k(p')" andk(g(p))" —
k(g(»))" (H, 1.1.10.iii]). Hencek(g(p))" — k(p)". This completes the proof
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of (I).

PutZ := g(P). Let mod Zg — R.) denote the category d@t.-modules on the
étale site of the pseudo-adic spate= (Q, Z), and letH"(Z,—) be them-th
derived functor of the functor m@dei— R.) — mod(R), (L), — T(Z, Im L,).

Letr: P — Z be the morphism of pseudo-adic spaces giverg.bl}?om ()
and [H, 2.3.7] we obtain that the morphism of topoéesr,): P5, — Z is an
equivalence. A subsgtof P (resp.Z) is complete if and only if is quasi-compact
and closed inP (resp.Z), becauseP, () are partially complete and is closed in
Q. Sincer is a homeomorphism, we obtain that a sulid€t P is complete if and
only if »(T") C Z is complete. Hence, for eveily.-module(E,, ),, on P and every
m € Np, we have

(1) Hgn(Pa (En)n) = Hgn(Za (r«Ep)n)-

Leti: Z — @ betheinclusion. Sincg is closed iR, we have for everyz.-module
(Lp)nen ON Zgs and evenym € Np,

(”I) Hcm(Za (Ln)n) = Hcm(Qa (Z*Ln)n)
From (II) and (111) we obtain
H"(P,(En)n) = H"(Q, (9+Fn)n)-
In particular we have
H"(P, (a1 Fr)n) = H"(Q, (b Fn)n)-

|
In [B] Berkovich definesk-analytic spaces and a functéf — Xp from the
category of hausdorff strictly-analytic spaces to the category of rigid analytic
varieties overk. With everyétale sheaf# on X one can associate @ale sheaf
Fy on Xg. In [B1] Berkovich defines cohomology with compact support for
modules ork-analytic spaces. LeX be a hausdorff strictly:-analytic space and
let (F},), be anR.-module onXg. Then we get the rigid analytic variefy, and
the R.-module(F}, o), on (Xo)et. In general HP (X, (F7,),) andH? (Xo, (Fr0)n)
are not isomorphic ([H, 0.7.16]). But iX is closed ([B, 1.5.3.iii]) then there is
a natural isomorphisnt? (X, (F,,),) — HP?(Xo, (Fn0)s) as is shown in the
following proposition.

PROPOSITION 1.5Let X be a hausdorff strictlj-analytic space which is closed
and let(F,), be anR.-module onX;. Then for every € Ny,

Hg(Xv (Fn)n) = Hg(XOa (Fn,O)n)'
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Proof. The rigid analytic varietyXy associated withX is partially complete.
Let U be the set of all open subséfsof X such that the closur@ is compact and
the morphism of rigid analytic varietiéd — Xo is an open embedding. By {B
HP(X,—) is thep-th derived functor of

I'e:mod Xg — R.) — modR)

(1) (Fn)n — “LT} ||<_m Lo(U, Fy).
U€UneN

For everyU € U we havel' (U, F,,) — T'¢(Ug, Fy0) ([H, 8.3.6]). Therefore
Lo(X, (Fn)n) — T(Xo, (Fro)n) (see (2.2.2) below). Hence if denotes the
functor mod Xy — R.) — mod(Xo)& — R.), (Fy)n = (Fn0)n then the functor
I'. from (1) is naturally isomorphic to the functdt, o e. Thus Proposition (1.5)
is proved once we have seen that (T. o) — R™T'.o R*e = R™T.oe.
For everyR.-module(F},), on Xg, there is a monomorphism froiff},),, to an
R.-module(I,,),, such that there exists a family/,,, » € N) such that eacli,, is
an injectiveR/m™-module,I,, = [[;—, Js andl, — I,,_1 is the projection. For
everyp,n € NandU € U, H?(U, I,,) = 0. Then by [H, 8.3.6H? (U, I,,,0) = O.
Hence by Corollary (2.4.iii) belov((1,,),) = (In,0)n is T'c-acyclic. 0

2. Some general properties of the compactly supported cohomology of
R.-modules

In the following proposition we describe some functorial properties.

PROPOSITION 2.1Let X andY be taut separated adic spaces locally'ofeakly
finite type over Sp&;, k°).

() If f: X — Y isaproper morphism then, for eveRy-module( F,,),, onYg and
everyp € Ny, there is a natural morphisi? (Y, (F.)n) = HP(X, (f*Fn)n).
(i) If f: X — Y isanopen embedding then, for evé&ymoduleF},),, onYgand
everyp € Ny, there is a natural morphisi? (X, (f*Fy)n) — HE(Y, (Fn)n).
(i) If f: X — Y isanopenembedding then, for ev&ymodule F,,),, on X and
everyp € Np, there is a natural morphisti? (X, (Fy,),) — HP(Y, (fiFy)n).
(iv) LetU be an open covering oX such that every/ € U is taut and for every
U,V € Uthere exists &V € UwithU UV C W. Then, for everyk.-module
(Fy)n on Xgrand everyp € Ny, the mapping induced by (ii)

lim HY(U, (Fu|U)n) — HEZ(X, (Fo)n)
Ueu

is bijective.
Proof. (i) is obvious ifY is partially complete. For general, use universal
partial compactifications ok andY'.
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The mapping in (ii) can easily be constructed if eitlfeis quasi-compact or
X is partially complete. Obviously assertion (iv) holdsXfand allU € U are
partially complete.

Now we prove (iv) under the assumption that evEne U is quasi-compact.
Letj: X — X be a partial compactification df such thay is quasi-compact, and
put(Gy)n := (i Fy),. LetV be the set of all quasi-compact open subsef§.dfor
everyV €V, V N X is quasi-compact and we hat®(V N X, (F,|V N X),) =
H?(V,(G,|V),). Therefore, we have to show that

lim HE(V, (Gu|V)n) — HZ(X, (Gn)n)
vev

is bijective. LetW be the set of all partially complete open subsetXofhich are
contained in a quasi-compact open subseXofThen for everyl” € V there is a
W e wwith V C W ([H, 5.3.3.ii]). Since we already know (iv) in the partially
complete case, the mapping

Wew

is bijective. HenceLmHg’(V, (Gn|V)n) — HP(X,(Gy)y) is bijective. Thus we

Vev
have proved that (ive) holds if evely € U is quasi-compact.

Now we can construct, for an arbitrary open embedding — Y, the map-
ping of (ii). Let (X;);c; be the family of all quasi-compact open subsets of
X. Since the morphismg|X;: X; — Y are quasi-compact, we have the map-
pings H?(X;, (f*F,|Xi)n) — HP(Y,(F,),) which induce a mappindf?(X,
(f*Fp)n) = IimHg’(Xi, (f*Fun|Xi)n) — HP(Y,(F,),). With this construction,

icl
obviously (iv) holds.

The mapping in (iii) can easily be constructedXf (and hencef) is quasi-
compact. For generd, coverX by quasi-compact open subsets and apply (iv).

2.2. LetX be a partially complete adic space over @p&°) and letl".: mod X &—

R.) — mod R) be the global section functor with compact supportfoimodules

on Xgtas defined in Paragraph 1. This functor can be factorized as follows: First we
introduce some categories and functors. Let (@3l = mod(Spék, k°)& — R.) be

the category of projective systems BfmodulesF; < F» «+ ... withm"F,, =0

for everyn € N, letind(mod(R.)) be theInd-category of mo¢R.), and letU be

an open covering ok such that every/ € U is taut and is contained in a quasi-
compact open subset &f and such that for evefy, V' € U there is dV € U with
UuV CW (thusU gives a filtered category). We have the functors
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Ty = (7x)s: MO Xgt — R.) — mod X¢t — R), (F)n — L@Fn
0 = (Tspgk ko))« MOA R.) — mod(R), (Fy)n — |I<_m F,

n
Ind(p): Ind (mod R.)) — Ind (mod(R))
IiLn: Ind (mod R)) — mod(R), (F;)icr — Ian> F;
o:Mod Xet — R.) — Ind(MOd(R.)), (Fp)n — (Te(U, Fn)n)veu
I' =T.modXg— R) — modR),F — T'.(X, F).
The functorT’.: mod(Xg — R.) — mod(R) has the following two factorizations,
I.=Tiom, (2.2.1)
.= th) olnd(p) o o. (2.2.2)

LEMMA 2.3. In the situation of (2.2) we have
() R'T, = Rl o R*m, andR*T'. = R* lim oR"Ind(p)o R"o.
(i) ForeveryR.-moduleF’ = (F,), onXg andevery € Ny, we haveRPo(F') =

(Hg(U, Fn)n)UGU-
(iii) Foreveryp € No, RP(Ind(p)) = Ind (RPp).

Proof. (iii) is a general fact odnd-functors.

(i) For everyp € Ny, let T? denote the functor md¢ — R.) — Ind (mod
(R.), (Fn)n — (HP(U, Fy)n)ueu. The family of functors(T?),cy, iS an exact
d-functor. For every objectF),), of mod(Xe — R.), there is a monomorphism
(Fn)n — (In)n from (F,), to an objec(1,,),, of mod X — R.) of the following
type: There is a family(.J,,,» € N) where eacly, is an injectiveR/m™-module
on X such thatl,, = [T,—4 Js andI,, — I,,_1 is the projection.

For everyU € U there is all' € U and a partially complete open subspace
V of X with U C V C U’ ([H, 5.3.3.ii]). For everyp € N andn € N, we have
HP?(V,I,) = 0. Thereforel?((1,),) = 0 for everyp € N. This shows thaf? is
thep-th derived functor o © = o.

() Let (I,,), with I, = T]%_, Js be as in the proof of (ii). Thedr,), is
an injective object of modXe; — R.). Furthermores, ((In)n) = [lsen Js iIST1-
acyclic ([H, 5.3.6]) ando((I,,),) is Ind(p)-acyclic (by (iii)). This shows that
R*(Tyom,) =R'Tyo R r, andR*(Ind(9) o) = RT Ind (o) o R 0. O

COROLLARY 2.4.Let X be ataut separated adic space locallyafieakly finite
type over Spg:, k°) and let(F},),, be anR.-module onX.

() If X is quasi-compact then, for evepye Ny, there is an exact sequence

0 — Iim® HY M (X, F,) — HE(X, (F,),) — lim HY(X, F,) — 0.

n n
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In particular, if H?~1(X, F,,) is a finitely generated-module for every, € N
then
H? (X, (F,),) — lim H? (X, F,)

—
n

(cf. (3.2)).

(i) For everyp > 2-dim.tr(X/k) + 1, H?(X, (F,),) = 0. If, for every quasi-
compact open subsét of X and everyn € N, the R-moduleH (U, F,,) with

r = 2-dim.tr(X/k) is finitely generated, the#/?(X, (F,),) = O for every
p>2-dim.tr(X/k).

(iif) Suppose there exists an open covefingf X such that, for every/.V € U,

thereis alWw € UwithU UV C W and, for everyU € U, U is taut and is
contained in a quasi-compact open subseXoand H?(U, F,,) = O for every
p,n € Nand H)(U, F,,,1) — HO(U, F,) is surjective for everys € N. Then
H?(X,(F,),) = Oforeveryp € N.

Proof. (i) We choose a compactificatign X — X of X such thatj is quasi-
compact. Applying Lemma (2.3) to tie-module(j F;, ), on X and the covering
U = {X}, we obtain the assertion.

(i) For every taut open subséf of X and everyn € N and everyp >
2-dim.tr(X/k), we haveH?(U, F,,) = 0 ([H, 5.5.8]). Hence for quasi-compact
X the assertion follows from (i). For arbitrady, apply Proposition (2.1.iv).

(iii) We choose a dense quasi-compact open embedfliig — X where
X is partially complete. There is an open coverivigf X such that, for every
UV €V, thereisaW € VwithU UV C W and, for everyV € V, V is
taut and is contained in a quasi-compact open subs& ahdV N X € U. Put
Gn = jF,. ThenH?(V,G,) = HP2(V N X, F,) for everyV € V,n € N,
p € Np. Hence, for everyy € VvV, H?(V,G,) = 0 for everyp,n € N and
HO(V,G,.1) — HO(V,G,) is surjective for every» € N. Then Lemma (2.3)
implies 0= H?(X, (Gy,)n) = HP(X, (Fy),) for everyp € N. O
PROPOSITION 2.5Let X be ataut separated adic space locally'afeakly finite
type over Sp@, £°) with dim.tr(X/k) < oo, let (U;);cr be a covering ofX by
taut open subsets, and &t = (F),), be anR.-module onXg. For every finite
subset/ of I, putU; := N;c; U; and lete;: U; — X be the inclusion.

(i) There is a spectral sequenge< 0,q > 0)

E'= @ HIU, F|Uy) = HYYX,F).
JCI
|J|==p+1
(i) If (U;):er is locally finite then there is a spectral sequefiges 0, g > 0)
EY'= @ HUX, (en(FalUs)nen) = HEY(X, F).

JCr
[J|==p+1
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Proof. (i) We choose a total ordering on the index seketU = (V;);c; be a
family of subsets ofX" such that eacly; is a quasi-compact open subsetlgfand
V; # 0 for only finitely many: € I. By the arguments of [SGA 4, XVII.6.2.10]
there is a spectral sequence

BV = @ HUV,dn(F|Vy) = HYV,F|V),
S

whereV = U;cr Vi, Vi = N;es Vi, dj denotes the open embeddihg —
V and dj(F|Vy) denotes theR.-module (d s (F,|Vy))nen ON Vg Since the
open embedding/;:V; — V is quasi-compact, we havB4(V;, F|V;) —
HY(V,dn(F|Vy)). So we get a spectral sequence

EY'= @ HIV,, F|Vy)= HTY(V,FV). (Sw)
pr

By Proposition (2.1.iv) the inductive Iimit_Ii)rﬁm is the desired spectral sequence.
Py

(i) For every finite subsef of I put F; := (esi(Fn|Us))nen € MOod Xg — R.).
Then for every quasi-compact open suldgeif X we have a spectral sequence

EY'= (D HUV,F;|V)= HIY(V,F|V). (Sv)
\J\igﬂrl
Again take the inductive Iimimm?v. O
14

PROPOSITION 2.6Let X be a taut separated adic space locally ofveakly
finite type over Sp&, £°), let (F},),, be anR.-module onX,, letU be a taut open
subspace ok and putZ .= X — U.
() Letj: U — X andi: Z — X be the inclusions. Then there is an exact sequence

o= HY(X, (315" F)n) = HZ(X, (Fn)n) — HE(X, (43" Fp)n)

— H2YHX, (ji* Fo)n) — -+

(In Section 1 we defined the compactly supported cohomologffanodules on
adic spaces. Analogously one can define the compactly supported cohomology for
R.-modules on pseudo-adic spaces. THEOX, (i,i* Fy,),) — HP(Z, (i*Fy)p).)
(i) Assume thak andU are partially complete. Lek* . be the derived functor
of m.: modXg — R.) — mod (Xg — R), (Fn)n +— I@ F,, let H?(Z,—) be
the compactly supported cohomology f@mmodules onZg ([H, 5.3.1]) and let
1. Z — X be the inclusion. Then we have an exact sequence

oo — HP(U, (Fp|U)n) — HP (X, (F,)yn) — HP(Z,1* R (Fp)p)

- H(I:)Jrl(Ua (Fn|U)n) -
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Proof. (i) follows from the exact sequence &f-modules onXg
0= (37" Fp)n — (Fp)n — (isi"Fy), — 0.
(iif) We have the exact sequence

.- = HP(U,(R*n.F)|U) » H?(X,R*n.F) — H?(Z,i*R*n,F)
— HPYU, (R* 1, F)|U) — - --

and by Lemma (2.3.) we haveH?(X,R*n.,F) = HP(X,F) and
H2(U,(R*m.F)|U) = H2(U, F|U). o

EXAMPLE 2.7. We apply Proposition (2.6) to compute some cohomology groups.
Let K be a local field and let be the algebraic closure &f. With the schem@?!
over SpeZ we can associate the adic spdeeé)2? := Plxgpeq Spdk, k°) over
Spdk, k°) (H1, 3.8]). The seP}(K) of K-rational points of** can be considered
as a subset of1)2%. This subset is closed i{?1)2@ and the subspace topology of
(P12 onPL(K) agrees with the topology dnt(K ) induced by the absolute value
of K. The open subspade := (P})2? — P1(K) equals the adic space associated
with Drinfeld’s upper half plangP})"0 — PY(K). (P1)2d is complete and? is
partially complete.
Let ¢(R) denote theR-module of all constant mappings froft(K) to R,
let £c(R) denote theR-module of all locally constant mappings frobt(K) to
R whereP(K) is equipped with the subspace topology(8t)2°, and lets(R)
denote thek-module of all continuous mappings frdPh( K ) to R whereP!(K) is
equipped with the subspace topology(®t)2? andR is equipped with thex-adic
topology.
Letj: Q — (P1)2 be the inclusion. We consider tiie-moduleF = (F,), =
(R/m™),, on Q. Assume that chéR/m) # cha(K°/K°°). Then we have
(i) The natural mappingf; ((P')*, (i F)n) — lim HZ(Q, F,) is bijective.
=

(ii) There is a natural isomorphissiR) /c(R) — lim HX(Q, F},).

lim
(iii) There is a natural isomorphis#e(R)/c(R) — TIL{(}(Q, (Fn)n)-

In particular, we obtain

(iv) The natural mappindZ(Q, (Fy,),) — lim HL(Q, F,) is not bijective.

(v) The natural mappin@(Q, (F,,),) — HX((PY)24, (51 F},),) is not bijective.
(vi) The R-moduleHX(Q, (F,),) is not finitely generated.

Proof. First we remark that by [H, 5.7.2], for every torsion grol@and every
p € No, we haveH?((PY)24 L) = HP (P}, L), and thusi }((P1)24 ) = 0.
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(i) Since H2((PY)24 5, F,,) = I'.(Q, F,,) = 0, we obtain from Corollary (2.4.i),
HY(P12, (jiFn)n) — “Tm HY(P1)29, 51 Fy) = “Tm HY(Q, Fy).
(i) Since H}((P)29, R/m™) = 0, we have the exact sequence

HO((PH2 R/m") — HO(PY(K), R/m") — HX(Q, F,) — 0,

ie. le(R/m™)/e(R/m™) > HYQ,F,). Thens(R)/c(R) [te(R/m™)/

= lim
ey
~ . 1
c(R/m")] — L? HZ(Q, Fy).
(i) Let 7, mod((P1)29 — R.) — mod((P1)29— R) be the functor from (2.6.ii)
and letG = (G,,),, denote theR.-module(R/m"),, on (P1)34 By [E], RIm.G is

the sheaf orfP?)29 associated with the preshdaf— H?(r*U, G), and there is an
exact sequence

0= limWH U, G,) - HY(x*U,G) — lim HY(U,G,) — 0.

n n

For everyz € PY(K) C (P1)29, the set of all open disks @f?)2 containingz
is a fundamental system étale neighbourhoods af For every diskJ we have
HO(U,G,) = R/m" andH!(U,G,,) = 0forq > 0 ([H, 3.2.4]). Hence the natural
morphismr,G — RT .G induces an isomorphisiir,G — i* RT7.G wherei
denotes the inclusiob(K) — (P1)29, SinceH((P)2%, G,,) = 0, we obtain from
Corollary (2.4.0)

HX(PH G) = 0.
Hence Proposition (2.6.ii) gives the exact sequence

H(PH™ G) — HO(PY(K),i*r.G) — HXQ,F) — 0.
Sincer. G is the constant sheaf le)gg to the groupR, we obtain

tc(R)/c(R) =+ HX(Q, F). O

3. Finiteness

First we introduce constructible sheaves.

Let X be an analytic adic space, ldt be a noetherian ring and lét be an
A-module onXg. We call F' constructible if for everyr € X there is a locally
closed locally constructible subsktof X such that: € L and the restriction of

F to L is locally constant of finite type ([H, 2.7]). We call quasi-constructible
if for every z € X there exist arétale morphism of adic spacesY — X
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and a locally closed constructible subdetof Y and a decreasing sequence
Y =YyDY1D... DY, =0 of closed adic subspaces¥fsuch that: € g(L)
and, for every € {0,...,¢ — 1}, the restriction of" to L N (Y; — Y;1) is locally
constant of finite type ([kl).

We call anR.-module(F,),, on theétale site of an analytic adic spa&econ-
structible (resp. quasi-constructible) if the following three conditions are satisfied

(1) For everyn € N, the morphisn¥), .1 — F, is surjective with kerneh” F, ;1.

(2) For everyn € N, the R/m"-moduleF}, on X is constructible (resp. quasi-
constructible).

(3) The ascending chai,,, n € N) of sub-R-modules off} is locally stationary
(i.e., there is an open coverind;);c; of X such that, for every € I, the
chain (K,|X;,n € N) is stationary), wherdg,, is defined as follows: Let
a be a generating element of the maximal idealfbfBy (1) the morphism
VY. F, — F,,z — a1z factors through a morphism,: F; — F,,. Then
K, :=ker(py,).

We call an adic spac®& over Spék, £°) locally algebraic if for every: € X there
exist an open neighbourhodd of = in X and a schem& of finite type overk
such thatJ is over Spék, £°) isomorphic to an open subspace of the adic space
Y X spee: SPEk, k°) associated withy.

THEOREM 3.1.Let X be a separated adic space of finite type over(&pe’) and
let (F,),, be anR.-module onXg;. Suppose that one of the following conditions
(a),(b) is satisfied
(@) X is locally algebraic,chafR/m) # cha(k°/k°°) and (F,), is con-
structible
(b) chafk) = 0, cha(R/m) # charfk®/k°°), R/m is finite and(F,), is
quasi-constructible.
Then, for every € Ny, the natural mapping

c

HY(X, (Fp)n) — lim HY (X, F)

is bijective. Furthermore, the projective systemidmodules(H? (X, F},))nen IS
AR — m-adic and, for every. € N, the R-moduleH? (X, F,,) is finitely generated.
(Hence also th&R-moduleH? (X, (F, ), ) is finitely generated.)

Proof. For everyn € N and everyp € Ny the R-module H? (X, F,,) is
finitely generated (in case (a) see [H, 6.2.1], in case (b) see2k8]). Hence
HY (X, (Fy)n) — lim H?(X, F,) by Corollary (2.4.i). It remains to show that

n
(H?(X, F,))n is AR — m-adic. For this we follow the proof of [FK, 12.15].
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By (1) above, the image of the morphisfy 1 in (3) equals the kernel of the
morphismF;, ., — F,,. Hence we have an exact sequence

0— Fi/Kpi1 — Fpy1 — F, — 0.

Since the sequendds,,n € N) is stationary, we obtain that there exist locally
closed constructible subsets, ..., S, of X such thatX = (J;;S; and such
that, for everyi € {1,...,m}, there exist a quasi-compact quasi-separéatate
morphism of adic space& Y — X and a decreasing sequence= Yy O Y; D
... 2'Y, = D of closed adic subspaces ¥fsuch thatS; C f(Y) and, for every
j €{0,...,£—1} and every: € N, the restriction of7,, to f~1(S;) N (V; — Yj41)
is a locally constanR-module of finite type. In case théF,,),, is a constructible
R.-module we may assume thgg = ().

LetC denote the full subcategory of the categonRrafodules onX s consisting
of those R-modulesF on X such thatm? F = 0 for somep € N and, for
everyi € {1,...,m} and everyj € {0,...,¢ — 1}, the restriction ofF to
f71(S;) N (Y; — Y;41) is locally constant of finite typeC is an abelian category.
By [H2, 3.5], f1(S;) N (Y; — Y;11) has finitely many connected components.
Therefore every object of the categatys noetherian.

Considering the ascending chain of sBbmodules Py, k € N) of (F,),, with

ak

Py, = ker((F,)n —(F,)n) Wherea is a generating element of the maximal ideal
of R, we can conclude from [SGA 5, V. 5.2.1 and 5.2.2] that there exists an exact
sequence oR.-modules onXg

0— (Lp)n — (Fu)n — (Gp)n — 0

with the following propertiesZ,, andG,, are objects ot for everyn € N, the
projective system&.,,),, and(G,, ), inC areAR—m-adic ([SGA5, V. 3.2.2]), there
exists & € Nsuchtham”L, = 0foreveryn € N, the kernel of (G, ), — (G )n)
is AR-null.

It suffices to show that, for evegy € Ny, the projective systems @t-modules
(H?(X, Ly)), and(H? (X, G,)), areAR — m-adic ([FK, 12.4]). SincéL,,),, and
(G,)n are AR-isomorphic tom-adic projective systems i@}, we may assume that
(L,), and(G,), arem-adic.

Sincem”L,, = 0 for everyn € N, we havel,, .1 — L, for everyn > k. Then
obviously the projective syste(?(X, L,)), is AR — m-adic.

We show that(H?(X,G,)), is AR — m-adic. Letj: X — X be a com-
pactification of X with dim.tr (X /k) < oo ([ H, 5.1.14]). ThenH?(X,G,,) =
HP(X,jGy). For everyn € N, let C(j:G,) be the Godement resolution pf7,,
on X ([SGA 4, XVII. 4.2.2]). We consider the truncation,(C(51G»)) with
d := 2-dim.tr (X/k) + 2. The morphism&s,, .1 — G,, induce morphisms of
complexes ofR-modulesD'(X, 7¢4(C(jiGn+1))) — T(X,7<q(C(HGr))). By

a.

construction of(G,), above, the kernel ofG,),—(Gy)n is AR-null. This
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implies that, for everyh € N, G, is a flat R/m"-module. Then alsg,G,, is a
flat R/m"-module. From this together with the fact thidt (X, F) = 0 for every
p > 2.dim.tr (X /k) and every torsion she&fon X ([H, 2.8.3]), one can conclude
that every component of the complEXX , 7<4(C (j1G))) is a flatR/m™-module
and thatl' (X, 7<4(C(jiGn11))) @g/mnrt R/m™ — T(X,7¢4(C(71Gy))) is an
isomorphism. Now by [FK, 12.5], for eveny € Ny, the projective system aR-
modules(H?(X, G,)), is AR — m-adic. O

In the following we will consider closed constructible subsktsf adic spaceX
and their interiord.°. For example, iff1, ..., f, € Ox(X) then the set

L={z e X||al) <1....|ful®)| < 1}

is closed and constructible ik, and for the interio.® of L in X we have (here
we assume thaX is an adic space over Sg@gak°))

L* = |J {z € X[|fa(2)| < la(2)],- .., |fa(@)] < |a(2)]}
fai<a

(H2, 1.3)).

3.2. LetX be a separated adic space of finite type ove(Bg&), letU be a taut
open subset ok, let j: U — X be the inclusion and IgtF, ),, be anR.-module
on Ug such that there exists a quasi-constructiBlenodule(G,,),, on X with
(Fn)n = (GnlU),. Assume that ch@k) = 0, chafR/m) # chafk®/k°°) and
R/m s finite. We are interested in the following two statements

(a) For everyp € Ny, the natural mappind?? (U, (F,,)n) — Im HP(U,F,) is

bijective and the projective systefH? (U, F},) )nen IS AR — m-adic and every
HP(U, F,) is afinitely generatedk-module.

(b) For everyp € Ny, the natural mappindg/? (U, (Fy,),) — HP(X, (51 Fp)n) IS
bijective.

For example, (a) and (b) hold if is quasi-compact ((a) follows from (3.1) and
(b) follows immediately from the definition of compactly supported cohomology
for R.-modules). But ifU is not quasi-compact then in general neither (a) nor (b)
holds (see Example (2.7.iv,v)). In the following theorem we describe two types of
open subsetd of X which in general are not quasi-compact and for which (a) and
(b) hold.

THEOREM 3.3.1In the situation of (3.2) assume that one of the following condi-
tions is satisfied

(i) There is a closed adic subspaZeof X withU = X — Z.
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(i) Thereis a locally closed constructible subgedf X with U = L°.

Then(a) and (b) hold.

(Remark.In Theorem (3.3), statement (b) also holdX'ifs only locally of finite
type over Spék, k°). Indeed, if(X;);c; is the family of all quasi-compact open
subsets oA’ then by Proposition (2.1.iv{{? (U, F) = HmHg(U NX;, FlUNX;)

iel
andHg (X, ji F) = lim HE (X5, ji F'| X;)).
iel
Proof. We need a result of [} which says

(I) Let X be a separated adic space of finite type ovel(Sg&) and letU be an
open subset oK which satisfies (i) or (ii). Letd be a finite ring whose order
is prime to cha(k°/k°°). Assume that ch@k) = 0. Then there is a sequence
(U;|i € N) of open subsets of such that the following holds

(o) EveryU; is quasi-compact and; C U; 1 andU = ;e Us.

(8) For every quasi-constructiblé-module on Xg; there is ag € N such
that, for everyi > ig and every € Np, the natural mapping/?(U;, Q) —
H? (U, Q) is bijective. ([H, 2.7 and 2.9])

Proposition (2.1.iv) and Theorem (3.1) imply that in order to show that under
the assumptions of Theorem (3.3) the statement (a) holds it suffices to show the
following

(I) Thereis anopen coverin@/;|i € N) of U such that every; is quasi-compact,
U; C U;y1 for everyi € N, and for everyi,n € N andp € Ny the natural
mappingH?(U;, F,,) — HP? (U, F,,) is bijective.

We show (ll): Let(K,,n € N) be the ascending chain of sutymodules ofF}

which occurs in condition (3) of the definition of quasi-constructiklemodules.
Then, for everyr € N, we have an exact sequencelan

0— F1/Kyi1 — Fpy1 — F, — 0.

Since (K,,n € N) is stationary, there is s € N with K,, = K,, for every
n > m. It suffices to show that there is an open cover{g|: € N) of U
such that everyJ; is quasi-compact/; C U;,1 for everyi € N, and for every
n € {l,...,m— 1}, € Nandp € Ny the mapping#?(U;, F,,) — HP(U, F,)
and H?(U;, F1/K,,) — HP?(U, F1/K,,) are bijective. But this follows from (I)
above.

Thus we have proved that (a) holds. By the following Lemma (3.4), (a) implies
(b). O

LEMMA 3.4. LetX be aseparated adic space'@feakly finite type over Spa, k°),
let U be a taut open subset &f with inclusionj:U — X and let(F,), be an
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R.-module or/. Letp be an element afg such thatim O HP-Y(U, F,) = 0 (for

n
example, this is satisfied if for evenyc N the R-moduleHP~1(U, F,,) is finitely
generated). Then the following two statements are equivalent

(i) The natural mappind? (U, (Fy.)n) — I|<_m HP(U, F,) is bijective.

n
(i) The natural mappind? (U, (F.)n) — HP(X, (jiFn)n) IS bijective.
Proof. We consider the commutative diagram

H2(U, (F)n) —— HZ(X, (ji Fa)n)

o g

im HY (U, Fy) — mHE (X, Fr).
n n

The mappingy is bijective. Sincelnﬁl)Hg’*l(X, J1F,) = IiHm(l)Hg’*l(U, F,) =

0, we obtain from Corollary (2.47?i) that the mappiggis gijective. Hencex is
bijective if and only ifé is bijective. O

4. A comparison theorem

With every schemé& locally of finite type ovetk one can associate an adic space
Xad over Spék, k°) ([H1, 3.8]),

X = X xsped; SpAk, k°).

The functorEt/ X — Et/ X2, Y/ X — Y24/ X2 is a morphism of sites
0 (X*g — Xa.

For every sheal’ on X put
Fd:= o' F.

If X is separated and quasi-compact then, for epegyNy and everyA-module
F on Xg wWhereA is a torsion ring, there is a natural isomorphism ([H, 5.7.2])

HP(X,F) = HP(X?3 Fad), (4.1)

In the following theorem we extend this isomorphismi@emodulesF'.
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THEOREM 4.2.Assume thathark) = 0, chafR/m) # chark°/k°°) and R/m
is finite. Then, for every separated scheiieof finite type overk and every
constructibleR.-module(F},),, on Xg and everyp € Ny, there is a natural iso-
morphism

HY(X, (Fa)n) = HP(X?, (F2),).

(Remark. The main ingredient of the proof of Thoerem (4.2) is the resujt [H
2.7] (cf. proof of Theorem (3.3)). It was already remarked by Berkovich {Bat
one gets the comparison theorem (4.2) once one has a result jik2.[H).

Proof. Let X C X be a compactification of. There is a constructiblé.-
module(G,,), on Xe with (F,),, = (G| X).. The associate®.-module(G29),,

on (X9 is quasi-constructible. (Indeed, condition (3) in the definition of quasi-
constructibleR.-modules is satisfied, since tf&emoduleG'; on X, is noetherian).
The adic spac& s of finite type over Sp@:, k°) andX 2dis a Zariski-open subset
of X2 Hence by Theorem (3.3) we have

(1) HE(X™ (F3a) = lim HE (X ).
n

We also have

() HE(X, (Fa)n) < lim HY(X, Fy).

The isomorphisms (1) and () together with the comparison isomorphisms (4.1)

induce an isomorphistiH? (X, (Fy,),) — HP(X2d (Fad),). |
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