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Mean flow structure and velocity–bed shear
stress maxima phase difference in smooth wall,
transitionally turbulent oscillatory boundary
layers: experimental observations
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Oscillatory boundary layer (OBL) flows over a smooth surface are studied using laser
Doppler velocimetry in a large experimental oscillatory flow tunnel. The experiments
cover a range of Reynolds numbers in the transitional regime (Reδ = 254–1315).
Motivated by inconsistencies in the literature, the focus is to shed light regarding the phase
shift Δφ between the bed shear stress and the free stream velocity maxima. Details of
the mean flow structure and turbulence characteristics in transitional OBL flows indicate
the emergence of a logarithmic profile, which for Reδ = 763 appears at the middle of
the deceleration and as the Reδ increases, it appears for a longer part of the period and
for a larger region of the boundary layer. Turbulence statistics profiles approach those of
equilibrium, unidirectional boundary layer flows with similar Reθ , defined using the local
free stream velocity and momentum thickness θ . Analysis of the ensemble-average bed
shear stress variation reveals that for Reδ < 552 a single peak, associated with the laminar
regime, occurs during the acceleration phase. For Reδ = 552 a second peak, associated
with the transition to turbulence, appears towards the middle of the deceleration phase.
This turbulence peak becomes larger than the ‘laminar’ one for Reδ ∼ 763 and lags with
respect to the free stream velocity maximum. For Reδ > 1036 the laminar peak disappears
under the effect of the turbulence peak. The presence of the phase lag is discussed using
data from this study and the literature, and a revised Δφ diagram is introduced for the
whole range of flows, from laminar to fully turbulent.
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1. Introduction

Oscillatory boundary layer (OBL) flows have received great attention in the past owing
to their large range of applications in both nature and engineered systems. Of particular
interest are wave boundary layer flows in shallow and moderate waters which play an
important role on coastal engineering, sediment transport and seabed mechanics (Sleath
1984; Fredsøe & Deigaard 1992; Nielsen 1992; Sumer 2014).

Many studies are available in the literature that deal with the bottom boundary layer.
On the experimental side, the pioneering works of Hino, Sawamoto & Takasu (1976),
Hino et al. (1983), Jensen, Sumer & Fredsøe (1989), Akhavan, Kamm & Shapiro (1991a),
Sarpkaya (1993), Carstensen, Sumer & Fredsøe (2010) and van der A, Scandura &
O’Donoghue (2018) among others, summarize current knowledge regarding the oscillatory
boundary layer structure and possible flow regimes in oscillatory flow over flat, smooth
beds; while on the numerical side, high-fidelity direct numerical simulation (DNS) and
large-eddy simulation works have investigated the same family of flows, which has
enhanced our current understanding in terms of flow structure (Spalart & Baldwin 1989;
Vittori & Verzicco 1998; Salon, Armenio & Crise 2007; Pedocchi, Cantero & García
2011; Ozdemir, Hsu & Balachandar 2014; Scandura, Faraci & Foti 2016; Bettencourt &
Dias 2018; Ebadi et al. 2019), stability analysis (e.g. Akhavan, Kamm & Shapiro 1991b)
and coherent structures (Costamagna, Vittori & Blondeaux 2003; Mazzuoli, Vittori &
Blondeaux 2011). However, despite of all these advances, most of the state-of-the-art
simplified models fail to accurately predict the underlying physics related to the turbulent
flow–bed interaction (e.g. see Guizien, Dohmen-Janssen & Vittori 2003; Blondeaux,
Vittori & Porcile 2018); this is especially true when it comes to the prediction of friction
coefficients (defined later in the text), which are of high importance for the estimation
of sediment transport (Fredsøe & Deigaard 1992; Nielsen 1992; Liu, García & Muscari
2007; García 2008) as well as the phase difference of the maximum bed shear stress
with respect to the maximum free stream velocity. This fact highlights the need for the
development of better numerical models for non-equilibrium and transitional flows but
also may be a sign of an incomplete understanding of the OBL behaviour, especially
in the transitional regime as will be shown herein. Hino et al. (1983) categorized the
OBL flows literature into three categories, as follows: (a) works relevant to the flow
resistance under oscillatory/wave condition; (b) works relevant to the identification of
critical conditions for the transition between laminar and turbulent oscillatory flow; and
(c) studies examining the flow structure under oscillatory flow conditions. The present
work bridges the gaps between these different categories and associates the flow structure
effect on the wave friction for a range of flow conditions varying from laminar to fully
turbulent. Special effort is placed in examining the flow structures and resistance through
the transitional/intermittent turbulent regime.

Theoretical, experimental and numerical studies are available in the literature for
oscillatory (zero mean velocity) and pulsatile (with non-zero mean velocity) flows.
This analysis focuses on pure reciprocating (zero mean flow) OBL flows which can
be characterized based on an oscillatory Reynolds number Reδ , commonly defined
as Reδ = Uoδ/ν, where δ is the Stokes layer thickness (δ = √

2ν/ω), Uo is the
amplitude of the free stream velocity oscillation (U∞ = Uo sin (ωt)), ν is the kinematic
viscosity of the fluid, ω is the angular frequency of the wave (ω = 2π/T) and T
is the period of the oscillation. Interested readers can refer to studies of pulsatile
flows, such as the works of Tu & Ramaprian (1983), Ramaprian & Tu (1983),
Tardu, Binder & Blackwelder (1994) and Lodahl, Sumer & Fredsøe (1998), among
others.
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Flow structure and phase difference diagram in OBL flows

Depending on the duration of the period and the amplitude of this sinusoidal movement,
OBL flows are categorized into four distinct regimes (see Akhavan et al. 1991a; Pedocchi
et al. 2011; Ozdemir et al. 2014): (i) the laminar regime (Reδ < Reδcr1), corresponds
to Stokes’ second problem for which an analytical solution exists (Batchelor 1967);
(ii) the disturbed laminar regime (Reδcr1 < Reδ < Reδcr2), in which the flow behaves
like in the laminar regime but small perturbations are superimposed on the OBL flow.
These disturbances are not sufficiently strong to alter the mean velocity profile and
are caused by the formation of linear instability related features (Carstensen et al.
2010); (iii) the intermittent turbulent regime (Reδcr2 < Reδ < Reδcr3), in which the flow
tends to remain laminar during the acceleration phase. However turbulent bursts are
observed at the beginning of the decelerating phase after the maximum velocity, when the
pressure gradient is adverse to the flow before laminarizing again during the acceleration
phase (Merkli & Thomann 1975; Hino et al. 1983; Akhavan et al. 1991a,b; Carstensen
et al. 2010); (iv) the fully turbulent regime (Reδ > Reδcr3), in which turbulence is
observed during the whole cycle of the oscillation while the characteristic feature of the
unidirectional turbulent flow, the logarithmic layer, is observed in the OBL for most of the
time during the oscillation cycle excluding a period close to the flow reversal (Jensen et al.
1989).

Identifying the exact value of Reδcr1 , Reδcr2 and Reδcr3 has become the subject of many
studies. In depth reviews of the available instability related work can be found in the
works by Akhavan et al. (1991a,b), Sarpkaya (1993), Blondeaux & Vittori (1994), Ozdemir
et al. (2014) and Thomas et al. (2015). A commonly accepted value for Reδcr1 is usually
close to 85 (Blondeaux & Seminara 1979; Akhavan et al. 1991b). However, it is worth
pointing out that this theoretically derived value is the result of an analysis predicting
that the instability occurs at a time instance close to the beginning of the acceleration
phase. This finding is not in agreement with the experimental observations of Merkli
& Thomann (1975), Hino et al. (1976) and Fishler & Brodkey (1991) for pipes, and
Jensen et al. (1989) for rectangular channels, who observed the incipient turbulence
occurs during the deceleration phase. Wall imperfections (Blondeaux & Vittori 1994)
and high-frequency ‘noise’ (Thomas et al. 2015) have been used in theoretical studies to
explain the discrepancies between theory and experiments. Higher values of 260–280 have
been reported for the height-limited case of finite oscillatory pipe flow (Hino 1975; Merkli
& Thomann 1975). While laminar flow behaviour has been observed for significantly
higher Reδ values in the lab (Kamphuis 1975; Jensen et al. 1989), Reδcr2 values of 500–550
are reported both experimentally and numerically (Hino et al. 1976; Jensen et al. 1989).
However, the exact value of Reδcr2 seems to be affected by the background turbulence
levels (Ozdemir et al. 2014). Finally, a Reδcr3 value of 3460 was reported by Jensen et al.
(1989). Experimental observations showed that the flow regime plays an important role on
bed friction (e.g. Kamphuis 1975; Jensen et al. 1989; Sarpkaya 1993).

The early works by Kajiura (1964), Yalin & Russell (1966), Jonsson (1966), Riedel,
Kamphuis & Brebner (1973) and Kamphuis (1975) were focused on the estimation of
the flow resistance under wave conditions, aiming mainly on setting up graphs for the
prediction of the friction factor (fw = 2τ/ρU2) for various flow and bed roughness
conditions. Kajiura (1964, 1968) and Jonsson (1966) developed analytical formulae for
the prediction of friction factors based on some assumptions related to the velocity
profile distribution. Riedel et al. (1973) and Kamphuis (1975) performed extensive sets
of experiments on flat beds with glued sand particles and presented some of the first
comprehensive plots for the friction factor for various bed roughness values. Jensen
et al. (1989) examined the velocity and turbulent structure of the OBL and identified the
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transition to turbulence in terms of the friction coefficient fw for laminar, transitional and
turbulent flows. Jensen et al. (1989) reported values of the friction coefficient as well as
the phase difference (Δφ) between the instance when the maximum of the bed shear stress
occurs with respect to the maximum of free stream velocity. Sarpkaya (1993) studied the
OBL flow structures using laser-induced fluorescence (LIF) and shear force measurements
using strain-gauge sensors, and reported values of the friction coefficient for a wide range
of flows ranging from laminar to fully turbulent. More recently, Carstensen et al. (2010)
obtained similar results to those of Jensen et al. (1989) and Sarpkaya (1993). It is worth
mentioning that even though the experimental values for the transitional regime reported
by these authors are similar to those reported by Spalart & Baldwin (1989) using DNS,
they deviate from those of Kamphuis (1975) by 20 %. In addition, in all these studies
(Jensen et al. 1989; Sarpkaya 1993; Carstensen et al. 2010), the reported results show a
phase lead of the maximum bed shear stress with respect to the velocity maximum value.

For a laminar OBL, a constant phase lead of 45◦ can be expected and derived from
the classic laminar OBL solution (Batchelor 1967). At the limit when Reδ approaches ∞
the phase difference Δφ approaches zero at a rate of approximately 1/ log[Reδ] (Spalart
& Baldwin 1989). However, in the fully turbulent regime and for a large but finite Reδ

value, Fredsøe (1984) developed a semi-empirical formula for the prediction of phase lead
with the values ranging below 10◦ (see the paper by Fredsøe (1984), p. 1110, table 2).
These two asymptotic behaviours, when Reδ approaches zero (low values) and infinity
(high values), have led researchers to assume that in the narrow range of Reδ between
approximately 300 and 1000 the commonly reported behaviour is that the phase difference
Δφ decreases rapidly from the 45◦, when Reδ ≤ 300, to nearly 10◦ when Reδ ≈ 1450.
The above-described behaviour is shown in figure 1. Owing to the fact that some works
have used a different Reynolds number, Rew, defined using half of the oscillation excursion
instead of δ, Rew = Uoα/ν (note the explicit relationship Rew = Re2

δ/2), a second abscissa
axis is added showing the values of Rew. This kind of diagram is included in coastal
engineering handbooks (e.g. p. 32 of Fredsøe & Deigaard 1992) to show the bed shear
stress phase lead. Herein, it is shown that this is not the actual behaviour. A revised
phase shift diagram is advanced and flow structure changes across the different regimes
are presented.

Near-bed velocity measurements by Hino et al. (1976) and Fishler & Brodkey (1991)
indicate the presence of violent turbulent bursts during the deceleration of an oscillation.
These turbulence-related velocity spikes become dominant for flows in the transitional
regime and are consistent over different periods. These increased velocity fluctuations
may result in an increase of ensemble-averaged, wall shear stress during the deceleration.
A close observation of the measurements by Hino et al. (1976) shows that the phase of
the cycle when these spikes appear happens earlier as the Reδ value increases. Later,
Hino et al. (1983) (p. 373, figure 10) presented the phase variation of wall shear stress
results for a Reδ value of 876. From their measurements, it can be seen that the maximum
bed shear stress value occurs at the deceleration phase, i.e. lags compared with the
maximum free stream velocity. However, no analysis is presented in their work for the
phase difference variation with different Reδ , nor is a discussion about the presence of
the phase-lag itself included. It is important to mention here that in figure 1, the data by
Hino et al. (1976) are plotted with positive Δφ which corresponds to the smaller peak
during the acceleration phase rather than the maximum bed shear stress over the period
(this will be further discussed in § 3.3.1). Similar behaviour has been observed in the
instantaneous bed shear stress measurements in oscillatory channel flows for Reδ between
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Flow structure and phase difference diagram in OBL flows
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Figure 1. Typical phase lead Δφ diagram as a function of Reδ and Rew (adapted from Jensen et al. 1989).

616 and 898 by Carstensen et al. (2010). However, owing to the fact that only instantaneous
values are presented in such works, no solid conclusion can be reached regarding the
ensemble-average bed friction behaviour and the phase difference of its maximum value
with respect to the maximum free stream velocity. Once again, no analysis is presented
explaining the presence of a phase lag in the data set, but instead a phase difference
diagram showing phase lead values is included (Appendix, p. 203, figure 21) by the
authors. The bed shear stress measurements of Jensen et al. (1989) also include phase-lag
observations for Reδ of 762. In their measurements phase lag turns to phase lead for an
increased value of Reδ of 1140 as well as for a decreased value of Reδ = 566. Although no
discussion is included in the paper by Jensen et al. (1989), these observations suggest that a
threshold value at which phase lag begins to occur may exist. However, no detailed analysis
of the phase difference between the bed shear stress and free stream velocity maxima
is included in the literature on: (i) how slowly enhanced levels of turbulence as the Reδ

number increases within the transitional regimes (from disturbed laminar to intermittent
turbulent regimes) modify the friction on the bed; and (ii) how do corresponding changes
in flow structure affect the phase difference values.

The present work focuses on the examination of bed shear stress, friction factor and
phase difference in the range of 254 ≤ Reδ ≤ 1315. Special attention is given to the
identification of a threshold value of a Reδ for which a phase lag exists. In addition, the flow
structure variation across the different flow regimes is examined in an effort to evaluate
the effect of flow structure on friction velocity and bed shear/free stream velocity maxima
phase difference. An effort is made to bridge the remaining gaps in knowledge from the
previous experimental works of Hino et al. (1983), Jensen et al. (1989) and Akhavan et al.
(1991a) regarding the flow structure in OBL for various flow regimes and especially in
the intermittent turbulent regime where there is a scarcity of observations close to a wall,
within the boundary layer.
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The analysis herein focuses on oscillatory flows over smooth walls. However, oscillatory
flows in nature commonly involve rough bottoms. Although additional analysis is
needed for the case of a rough wall, the results and conclusions from the exclusively
smooth-walled cases considered in the present analysis may be relevant for OBL flows
over rough walls. For example Nielsen & Guard (2010) and Nielsen (2016) suggested that
the normalized Stokes length

√
2ν/ω/α is roughly interchangeable with 0.09

√
αks/α.

This equivalence between the viscous and roughness scales is similar to that proposed
by Colebrook (1939) for unidirectional flows, for which ks/30 is equivalent to 0.11ν/u∗
(where u∗ is the shear velocity). A more recent analysis regarding the roughness scaling
in the transition from smooth to fully rough conditions is provided by Pedocchi & García
(2009a).

2. Experimental apparatus and data analysis

2.1. Large Oscillatory Water and Sediment Tunnel (LOWST)
Experiments were conducted in the Large Oscillatory Water and Sediment Tunnel
(LOWST) housed in the Ven Te Chow Hydrosystems Laboratory of the University of
Illinois at Urbana-Champaign (figure 2). The test section is 12 m long and the internal
dimensions of the cross-section are 0.8 m wide by 1.2 m high. A false bed was placed at
the middle of the cross-section reducing the height of the water tunnel to 0.6 m. Special
attention was given to keeping the smooth PVC bottom fixed rigidly at the middle of the
section. External disturbances were kept to a minimum via insulation of the flume from
the laboratory floor. The oscillatory motion of the water is driven by three pistons that run
inside 0.78 m diameter cylinders with a maximum stroke of 1.37 m. At the opposite end of
the tunnel, a 1.0 by 2.0 m holding tank open to the atmosphere acts as a passive receiver
for the water displaced by the pistons. Three servo motors, controlled by a computer,
drive the pistons using a screw-gear system. Although unidirectional flow was not used
in this study, the facility also has two centrifugal pumps that allow for the superposition
of a unidirectional current of up to 0.5 m s−1 onto the oscillatory motion through a pipe
recirculation system. Flow straighteners and sediment traps are available at both ends of
the main test section. No sediment particles were used for the present study. LOWST can
generate oscillatory flows with time periods between 5 to 15 s and maximum horizontal
velocities of up to 2 m s−1. A more detailed description of the facility can be found in the
paper by Pedocchi & García (2009b).

Instantaneous velocity measurements were conducted using a three-dimensional laser
Doppler velocimetry (LDV) system from TSI Inc., with an Ar-ion 6 W multiline laser
(model Stabilite 2017, from Spectra-Physics) generating a light beam which in turn is
directed towards a FiberLightTM multicolour beam separator box (model FBL-3). The
LDV technique was adopted owing to its high temporal resolution (up to 10 000 Hz),
provided that appropriate seeding is achieved in the large oscillatory flow tunnel. This high
rate of data sampling (samples per second) ensures that the high frequencies of the flow are
preserved, which allows for the analysis of turbulence characteristics, especially within the
boundary layer. A preliminary study examined different kinds of seeding particles, which
included hollow glass spheres (HGS) and silver-coated hollow glass spheres (S-HGS)
of various densities and diameters, as well as different concentrations of particles to
ensure a maximum recording rate for the LDV system (Mier 2015). The particles used
in the experiments were the HGS particles (with a density of 1.1 g cm−3 and diameter of
11 μm) which are close to neutrally buoyant and are big enough to generate high-intensity
backscatter signals, and light enough to meet the turbulence criteria. Preliminary analysis
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Figure 2. Large Oscillatory Water and Sediment Tunnel (LOWST).

indicated that the optimum concentration (number of particles per unit volume) to ensure a
maximum data rate was approximately N = 0.1–0.2 × Vm, where Vm is the measurement
volume. This analysis took into consideration the effect of light attenuation through the
penetration length dw which was equal to 0.4 m (N = 0.4–0.5 × Vm eαdw , where α is the
attenuation coefficient with values of 7.86 m−1 for HGS and 5.75 m−1 for S-HGS). More
information can be found in the paper by Mier & García (2009). An average value of the
diameter of the measurement volume was 0.1 mm and an average value of its length was
approximately 1 mm, which resulted in a very small measurement volume (approximately
0.01 mm3).

Velocity profiles were measured from a series of vertically distributed pointwise LDV
measurements. The LDV probe was mounted on a 3-axis traverse, driven by a microstep
controller, capable of providing a spatial resolution of 0.01 mm in all three directions,
which was essential for the fine geometric requirements needed inside the boundary layer.
The displacement range was approximately 50 cm in all three directions, which allowed
for taking measurements across the tunnel. Special attention was given to define the level
of the wall where y = 0 m (i.e. no-slip boundary condition).

A set of magnets, one mounted on the moving pistons and one on the enclosing cylinders
of the flume, was used to synchronize the time instances that define the beginning of
each cycle. The present work focuses on the examination of OBL flows with a period of
10 s, which is a typical period for coastal wave applications. In the present work, 130
cycles, in each test, were used for the estimation of turbulence statistics for each phase.
Sleath (1987) argued that 50 periods are enough for the statistics to converge. Jensen et al.
(1989) performed a similar analysis confirming Sleath’s findings. A similar analysis of our
results shows that negligible variations (typically less than 1 %) were observed for a higher
number of cycles.

A summary of the examined cases is presented in table 1. Temperature measurements
were conducted to estimate any significant viscosity or density variations. The temperature
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Exp.
no

Temperature
TC (◦C)

Excursion of
oscillation

2α (m) Uo (m s−1) u∗max (cm s−1) Reδ = Uoδ/ν Rew = Uoα/ν

1 18.0 0.468 0.147 1.1 254 3.2 × 104

2 16.6 0.761 0.239 1.4 405 8.2 × 104

3 23.2 0.958 0.301 1.6 552 1.5 × 105

4 23.6 1.159 0.364 1.7 671 2.3 × 105

5 27.5 1.261 0.396 1.8 763 2.9 × 105

6 27.0 1.362 0.428 2.3 819 3.4 × 105

7 26.5 1.566 0.492 2.4 937 4.4 × 105

8 24.5 1.770 0.556 2.6 1036 5.4 × 105

9 18.1 2.069 0.650 3.7 1123 6.3 × 105

10 20.0 2.368 0.744 3.9 1315 8.6 × 105

Table 1. Test conditions of pure oscillatory flow. Period of the motion T = 10 s. Amplitude of the oscillation
α = UoT/ν. Kinematic viscosity ν = 1.79 × 10−6/(1 + 0.03368TC + 0.00021T2

C) and density ρ = 1000(1 −
(TC + 288.9414)(TC − 3.9863)2/508929.2(TC + 68.1293)).

of the water was kept constant over the time of each experiment. The measured
temperatures are also reported in table 1.

Ensemble averaging was used to estimate the mean values of all quantities as

ū( y, ωt) = 1
N

N∑
k=0

u( y, ω(t + kT))) (2.1)

The instantaneous fluctuations were calculated as

u′( y, ωt) = u( y, ω(t + kT)) − ū( y, ωt)) (2.2)

The root-mean-square (r.m.s.) of the velocity fluctuations and Reynold shear stresses were
calculated as

(u′2)1/2( y, ωt) =
{

1
N

N∑
k=0

u′2( y, ω(t + kT))

}1/2

(2.3)

−u′v′( y, ωt) = 1
N

N∑
k=0

u′( y, ω(t + kT))v′( y, ω(t + kT)) (2.4)

3. Results and discussion

3.1. Mean flow structure and boundary layer properties

3.1.1. Flow regimes
Akhavan et al. (1991a) and Ramaprian & Tu (1983) used dimensional analysis and
examined the similarity laws of oscillatory and pulsatile pipe flows, respectively. They
considered that the OBL flows can be categorized into four regimes based on three length
scales: a geometrical length scale based on the diameter of the pipe R, an inertia length
scale δt = u∗/ω and a viscous length scale δv = ν/u∗. It is worth noting that the Stokes
length scales with the geometric mean of inertia and viscous length scales (δ ∼ √

δtδv).
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Akhavan et al. (1991a) showed the dimensional necessity for a logarithmic layer to exist
when two or more of the scales R, δt and δv are widely separated.

Based on the above scales, four different cases of oscillatory pipe flows are defined
(Akhavan et al. 1991a): (a) Case I, the pipe diameter-limited, ‘quasi-steady’ turbulent
behaviour for which δt 
 R 
 δv (i.e. u∗/(ωR) 
 1, Ru ∗ /ν 
 1), where the flow
behaves in a quasi-steady way and a universal logarithmic law is valid; (b) Case II,
which can in a way be considered as a special version of Case I for which δt ∼ R 
 δv

(i.e. u∗/(ωR) ∼ 1, u∗R/ν 
 1), for which the flow obeys a modified version of the
log-law where the universal slope expressed by von Kármán constant κ may be constant
(κ = 0.41). However, the value of constant A varies over time (A(ωt) = f (u∗/(Rω)));
(c) Case III, for which R 
 δt 
 δv (i.e. u∗/(ωR), u2∗/(ων) 
 1) and a logarithmic law
is valid for y < δt. However, in the outer layer, where y/δt → ∞ (i.e. δt = u∗/ω → 0),
the flow behaves in an ‘inviscid way’ similar to the case when u∗ → 0 (assuming that
ω is finite). The mean velocity and turbulent moments profiles depend only on R and ω

values; (d) Case IV, which again can be considered to be a special version of Case III, for
which R 
 δt ∼ δv (i.e. u∗/(ωR), u2∗/(ων) ∼ 1) and a logarithmic profile is once again
valid with As varying over the cycle. Akhavan et al. (1991a) presented results of pipe flow
of case II. Because coastal/wave flow conditions are of interest, flows in the current study
belong to the non-diameter-limited cases III and IV but for a closed channel. Considering
half the height of the channel (or the hydraulic radius of the channel) as equivalent to R,
R 
 u∗/ω (or u∗/(ωR) 
 1 except from the shear stress reversal when u∗ is zero) for all
the flows considered in the present study.

The structure of the OBLs was examined by Jensen et al. (1989) for a wide range of
Reδ (Reδ between 257 and 3464). Jensen et al. (1989) noticed a distinct difference in the
boundary layer structure for Reδ of 762 (expressed in the original work as Rew = 2.9 ×
105). This flow exhibited an intermittent turbulent behaviour for which the logarithmic
distribution, u+ = (1/κ) ln y+ + 5.1, was valid after ωt = 6π/9 (120◦). An explanation
for this different behaviour, given by the authors, indicated that the flow experiences
transitional conditions for most of its period. However, no detailed explanation was given
about the effect of Reδ on the flow structure and consequently its effect on the bed shear
stress especially at the transition from the laminar to transitional and to turbulent flow
regime. Hino et al. (1976) studied an OBL for Reδ of 876 and R/δ of 12.8; however once
again, the effect of Reδ variation was not clearly shown as only results from a single flow
case were presented. Recently, Kaptein et al. (2019) used large-eddy simulation to examine
the effect of the h/δ ratio (where h is the height of their domain representing the water
depth on oscillatory flows over a flat plate) on the phase difference between free stream
velocity and bed shear stress maxima. Their results showed that for h/δ ≥ 40, velocity,
turbulent characteristic and bed shear stress results converged to those for h/δ → ∞. In
the present study R/δ is of the order of 250, which was consider large enough to represent
the coastal boundary layer conditions for which R/δ → ∞.

3.1.2. Laminar flow
To test the accuracy of our measurements, the lowest Reδ case was examined (experiment
1 with Reδ = 254) and it was compared with an analytical solution. The velocity profile
for the laminar regime can be calculated using the following analytical solution:

u( y, ωt) = Uo(sin(ωt) − e−y/δ sin(ωt − y/δ)) (3.1)
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Figure 3. Comparison of measurements against analytical solution for laminar regime (Test 1, Reδ = 254):
(a) streamwise velocity profiles during acceleration, ◦ measurements, (—–, black) analytical solution;
(b) streamwise velocity profiles during deceleration; (c) comparison between positive and negative parts of
the period, ◦ measurements in the positive part, × measurement in the negative part multiplied by −1.0,
(—–, black) analytical solution; (d) measurements of bed shear stress τb and free stream velocity U∞, ◦
measurements of bed shear stress, (•, grey) measurements of free stream velocity, (—–, black) analytical
solution for bed shear stress τb, – – – U∞(t) = Uosin(ωt).

by differentiating (3.1) and using the definition of viscous shear stress (τ = ρν∂u/∂y) we
can estimate the shear stress variation as τ( y, ωt) = √

2ρ(U2
o/Reδ) e−y/δ sin(ωt − y/δ +

π/4) and the wall shear stress τb can easily be calculated for y = 0 as

τb

ρ
=

√
2

U2
o

Reδ

sin(ωt + π/4) (3.2)

In figures 3(a) and 3(b), the analytical profiles for various time instances are plotted
for the acceleration and deceleration phases, respectively, together with the experimental
observations. The comparison between the analytical and experimental values agrees well.
In addition, to evaluate the symmetry of the imposed oscillation from the pistons of the
experimental facility, a comparison between the positive and negative parts of the cycle
was conducted. Such comparison of these profiles is shown in figure 3(c), in which the
measurement of the negative part of the period is multiplied by −1.0. No significant bias
or skewness towards the positive or negative direction was observed in our measurements.
Finally, figure 3(d) shows a comparison with the bed shear stress measurements, estimated
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as τb = ρν∂u/∂y|b. Once again, the experimental results agree well with the analytical
solution above.

3.1.3. Transitional flow
In their work, Hino et al. (1983) examined the flow structure for a flow with Reδ = 876.
They presented data for the mean flow and turbulence characteristics for this Reynolds
number but owing to the fact that only a single flow was analysed, the change of the
mean flow characteristics as Reδ increased and the flow went through a transition remains
unknown. In figure 4, the ensemble average velocity profiles for three characteristic
instances of the period (π/4, π/2 and 3π/4) are shown for all the examined flows.
In figure 4(a–c), the velocity profiles are presented in wall units (where y+ = u∗y/ν,
u+ = ū/u∗ and u∗ is the shear velocity u∗ = √

(τb/ρ)). The orange dashed lines show
the fit of a logarithmic profile similar to the ‘universal log-law’ for turbulent equilibrium
boundary layers. Figures 4(d–f ) and 4(g–i) show the velocity defect normalized using the
free stream velocity U∞ and shear velocity, respectively. The arrows show the general
trends of the velocity profiles. Jensen et al. (1989) have shown that for high enough Reδ

values the velocity profiles should approach the universal logarithmic-law for a smooth
wall:

U+ = 1
κ

ln
(

y+) + As (3.3)

with κ ≈ 0.41 and As ≈ 5.1. For equilibrium boundary layers, (3.3) is valid only for
the part of the velocity close to the wall, while far from the wall additional adjusting
parameters need to be used to describe the velocity profile, e.g. law of the wake (Krug,
Philip & Marusic 2017; Jimenez 2018). Akhavan et al. (1991a) showed that for Reδ in the
transitional regime (when u∗/ων ∼ 1.) (3.3) is modified to U+ = (1/κ) ln( y+) + As(ωt),
As changes for different phases of the period. Hino et al. (1983) also showed that As varies
for a transitional flow (Reδ = 873). In figures 4(b), 4( f ) and 4(i), and to an extent in
figures 4(a) and 4(h), it can be observed that the mean profile in the transitional flows and
especially for Reδ = 763 (experiment 5) deviate significantly from both the logarithmic
profiles, which are observed for higher Reδ cases, and the laminar profiles. However, as
Reδ increases there is a clear trend towards the equilibrium logarithmic law (As ≈ 5.1 in
(3.3)). The arrows in figure 4(c–i) show this transition.

To evaluate the fit of the logarithmic profiles, the log-law diagnostic function Ξ (Ξ =
y+(∂ ū+/∂yy)) is plotted in figure 5 for three Reδ (763, 937 and 1315) for ωt = π/2 to
5π/6. The Ξ function should approach 1/κ for zero-pressure gradient boundary layers
in regions where the log-law occurs (Nagib, Chauhan & Monkewitz 2007). In addition
to the equilibrium value 1/κ , the 1/κ(ωt) values are also plotted for each profile. It can
be seen that for Reδ = 763 (experiment 5) the part of the profile where a logarithmic
equation may fit is smaller compared with the higher Reδ cases. For this flow, the slope
of the logarithmic profile will be larger than 1/0.41. As Reδ increases to 937 and 1315 we
can observe that the log profile slope 1/κ(ωt) starts to approach 1/0.41 for parts of the
deceleration. Furthermore, the region where a logarithmic profile may fit increases in size.
Finally, for Reδ = 1315 the profiles seem to agree well with the 1/0.41 slope, although
the slope becomes smaller towards ωt = 5π/6. It is important to note that in our work
the use of κ (velocity profile’s slope) and As (velocity profile’s intersect) for the parts of
the flow that are not in equilibrium (e.g. the values for ωt < π/2) is merely to provide us
with a diagnostic parameter for the development of a true logarithmic profile. This same
approach has been used in the past specifically for the case of OBL flows by Hino et al.
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Figure 4. Reynolds number effect. Ensemble average velocity profiles in wall units for: (a) ωt = π/4; (b) ωt =
π/2; (c) ωt = 3π/4. Ensemble average velocity defect profile normalized with free stream velocity U∞ and
δ for: (d) ωt = π/4; (e) ωt = π/2; ( f ) ωt = 3π/4. Ensemble average velocity defect profile normalized with
shear velocity u∗ for:(h) ωt = π/4; (i) ωt = π/2; (g) ωt = 3π/4. Dashed orange lines show logarithmic fit for
the cases with Reδ ≥ 763. The arrows show the increasing Reδ path.

(1983) (figures 7 and 9 in their original work) and by Akhavan et al. (1991a) (figures 19 and
23 in their original work). The values of κ and As are obtained by fitting the logarithmic
law in a region of approximately 30 ≤ y+ ≤ 150. The region where a logarithmic layer
exists varies over time and for different Reδ values. However, the region of the fit was
chosen with the aims to maximize the region of the fitting but also to avoid the wake
effects (Krug et al. 2017).

Akhavan et al. (1991a) argued that As should approach an equilibrium value for
oscillatory pipe flows when u2∗/ων 
 1 (and u∗/ωR  1). Their analysis did not
include cases for u2∗/ων 
 1. Instead they referred to the works of Mizushina,
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Figure 5. Log-law diagnostic function Ξ during the deceleration phase for Reδ values of 763, 937 and 1315.

Maruyama & Shiozaki (1974) and Ramaprian & Tu (1983) who examined conditions
of u2∗/ωR ≈ 0.1 and u2∗/ων ≈ 100. The present analysis extends significantly the
ranges of Akhavan et al. (1991a), Mizushina et al. (1974) and Ramaprian &
Tu (1983).

3.2. Boundary layer thickness
Different characteristic length scales have been proposed in the literature to characterize
the thickness of oscillatory boundary layers. Sumer, Jensen & Fredsøe (1987) defined the
thickness of the boundary layer δπ/2 based on the velocity maximum at ωt = π/2. Similar
definitions have been used by Sleath (1987) and Jonsson & Carlsen (1976) for ωt = π/2
but instead of the maximum velocity they used the 5 % defect of the velocity with respect

922 A29-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

51
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.510


J.M. Mier, D.K. Fytanidis and M.H. García

102

104 105 106 107

0

0.01

0.02

0.03

0.04

0.05

0.06

Reδ

Rew

103 104

10–1

10–2

10–3

10–4
0 0.5 1.0

ωt = π/2

δ π
/2

/α

δ π
/2

/α

y/
α

u–/Umax|π/2

Laminar solution

Fredsøe’s (1984) theoretical solution

Spalart and Baldwin (1989)

Present study

Hino et al. (1983)

Jensen et al. (1989)

Figure 6. Normalized oscillatory boundary layer thickness δπ/2/α as a function of Reδ or Rew.

to the free stream value and the first y-position from the wall where ū equals the free
stream velocity, respectively. Jensen et al. (1989) plotted their results of δπ/2 for two
flow conditions (Reδ of 1789 and 3464). They also compared their results with those of
Hino et al. (1983) and Spalart & Baldwin (1989). In figure 6 the boundary thickness is
plotted based on the definition of Sumer et al. (1987). The values are normalized using
the amplitude of the oscillation α. The definition of δπ/2/α is also shown in the inset
of the plot. The prediction of the analytical solution δπ/2/α = (3π/4)(4/Re2

δ)
1/2 and the

solution by Fredsøe (1984) are also plotted together with the previous data of Jensen et al.
(1989), Hino et al. (1983) and Spalart & Baldwin (1989). The experimental observations
of the present work match reasonably well with the laminar solution for Reδ of 254 and 405
(experiments 1 and 2). The rest of the data (experiments 3–10) connect the laminar with
the turbulent regimes. Specifically, as the Reδ increases, δπ/2/α seems to increase until
Reδ ≈ 1500 when the turbulent solution of Fredsøe (1984) predicts well the behaviour of
the experiments by Jensen et al. (1989). The results of the present study agree well with
the results of Hino et al. (1983) and Spalart & Baldwin (1989), which are in a similar range
of Reδ values.

For their analysis, Jensen et al. (1989) used the maximum velocity of each
ensemble-averaged profile to define the boundary layer thickness ymax for each phase (for
this location also shear stress is τ̄ ≈ 0). For this analysis, the same approach used by
Jensen et al. (1989) was adopted. No significant changes in the results of the analysis
were observed when τ̄ ≈ 0 was used instead of ū|max for the definition of the boundary
layer. A plot of boundary layer thickness for all the examined cases together with the
ensemble-averaged contours of streamwise velocity are shown in figure 7. The results
are made dimensionless using the Stokes length δ. In addition to the boundary layer
thickness, the displacement thickness δ∗ and momentum thickness θ are plotted in figure 7,
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Figure 7. Contour maps of normalized velocity profiles ū/Uo. Dimensionless boundary layer thickness ymax/δ,
displacement thickness δ∗/δ, momentum thickness θ/δ and shape factor H. The typical value of H = 1.4 for
fully developed unidirectional flow is also shown.

which are defined as

δ∗(ωt) =
∫ ymax

0

U∞(ωt) − ū( y, ωt)
U∞(ωt)

dy, (3.4)

θ(ωt) =
∫ ymax

0

ū( y, ωt)
U∞(ωt)

(
U∞(ωt) − ū( y, ωt)

U∞(ωt)

)
dy, (3.5)

where U∞(ωt) is the free stream velocity over time and ymax(ωt) is the boundary layer
thickness. Based on the displacement and momentum thickness, the shape factor H is
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defined as H = δ∗/θ . A value between H = 1.3–1.5 is typical for turbulent unidirectional
flows. The prediction of displacement thickness and momentum thickness normalized with
the Stokes length are shown in figure 7 together with the corresponding H factors. For
reference, H = 1.4 is plotted as a threshold value for equilibrium boundary layers.

It can be observed that the boundary layer thickness continues to grow even during
the deceleration phase. As Reδ increases, the normalized boundary thickness ymax/δ also
increases. It is worth noting that owing to the characteristic near-bed overshoot with respect
to the free stream velocities (see e.g. figures 3(a) or 4), both the displacement thickness
and momentum thickness have negative values at the beginning of the acceleration phase.
Displacement and momentum thickness maxima increase with Reδ . Initially, for the low
Reδ cases, H stays high (∼ 2.5). As Reδ increases (especially for Reδ ≥ 763), the shape
factor approaches a value of 1.4 at the middle of the deceleration phase. This part of the
period is associated with enhanced turbulent fluctuations (Hino et al. 1983; Fishler &
Brodkey 1991; Carstensen et al. 2010, also see § 3.4). The shape factor increases again
near the bed shear stress reversal. For higher Reδ values, the shape factor approaches the
value of 1.4 earlier, towards the end of the acceleration phase.

Figure 7 shows the boundary layer thickness increase during the deceleration phase.
It is important to note here that the boundary layer thickness was considered to be zero
when near-bed reversal occurred. The difficulties associated with the measurements of bed
shear stress and velocity profiles at a boundary layer which is on the verge of separation
may explain the discrepancies at the instance when the boundary layer thickness drops
in figure 7. These discrepancies can also be observed in previous works in the literature,
e.g. significant scatter has been reported by Carstensen et al. (2010) at the instance when
near-bed flow reversal occurs (figure 10 in their paper).

3.3. Friction coefficient and phase difference

3.3.1. Bed shear stress and friction coefficient
Jensen et al. (1989) presented time series of the bed shear stress variation over an
oscillation period for a wide range of flows. Also included were the experimental
observations by Hino et al. (1983) and the direct numerical simulation results of Spalart
& Baldwin (1989). The purpose of the present work is to examine in more detail the
behaviour of bed shear stress in the transitional regime (and especially for 550 ≤ Reδ ≤
1000), for which only limited data are available in the literature, i.e. by Hino et al.
(1983) (Reδ = 876), Spalart & Baldwin (1989) (Reδ = 800 and 1000) and Jensen et al.
(1989) (Reδ = 762). In this regime some inconsistencies have also been noticed in the
literature regarding the phase when the maximum bed shear stress occurs with respect to
the maximum free stream velocity (Δφ in figure 3) (see § 3.3.2). In the present study the
bed shear stress is estimated using the following:

τ b

ρ
= ν

∂ ū
∂y

− u′v′ (3.6)

The gradient of the ensemble-average velocity is typically estimated over the 3–4 nearest
points (which typically are within a distance of less than 0.2 mm from the wall) to ensure
accurate estimation of the gradient. Also, for all the examined flows the second term of
(3.6) is nearly zero; this arises from the fact that the first points of measurement are usually
inside the viscous sublayer. This is typically the case for both unidirectional (e.g. Nezu &
Nakagawa 1993) as well as oscillatory flows (e.g. see the DNS results of Spalart & Baldwin
(1989) or the experimental observations by Hino et al. 1983).
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Another way to estimate the bed shear stress is by using the integral of the momentum
equation (Hino et al. 1983; Jensen et al. 1989):(

τ̄b

ρ

)
=

(
τ̄

ρ

)
wall

=
∫ D

0

∂

∂t
(U∞(ωt) − ū( y, ωt)) dy (3.7)

Hino et al. (1983) used half the height of the cross-section as distance D, while Jensen
et al. (1989) used the boundary layer thickness ymax (see appendix B in the paper by Jensen
1989). In the present work, the approach of Jensen (1989) was adopted.

Throughout the present work, τb results were obtained using (3.6), because that
method is better suited than (3.7) considering the type of measurements performed
(point-wise LDV measurements close to the wall, even inside the viscous sublayer). Some
discrepancies between the computed values using (3.6) and (3.7) are consistent with the
observations by Hino et al. (1983) and Jensen (1989) for OBL flows and by Coles (1956)
for unidirectional boundary layers. The latter argued that the momentum integral equation
may introduce large errors for flow under a pressure gradient, especially close to flow
reversal. Although the main results of the present analysis do not seem to be sensitive to
the choice between (3.6) and (3.7), (3.6) has been adopted for the rest of the analysis.

For comparison, the normalized bed shear stress (τb/τ bmax) computed using (3.6) and
(3.7) are shown in figure 8, where τ bmax is the maximum of the ensemble-average bed
shear stress. In addition, the corresponding results by Hino et al. (1983) and Jensen et al.
(1989) are plotted. These studies had examined flows with slightly different Reδ compared
with those in the present analysis. These Reδ values are shown in figure 8 in grey. From
the results, it becomes obvious that two peaks, one associated with the laminar regime (◦)
and one associated with the intermittent-turbulent/turbulent regime (•), exist. Depending
on the Reδ , one of the two peaks becomes larger. The absolute maximum is also shown
in figure 8 by (©, grey). For low Reδ values (Reδ < 552) only a single peak exists. The
second peak which is related also to the transition to turbulence starts to occur for Reδ =
552. This is consistent with the experimental observations by Fishler & Brodkey (1991)
and Hino et al. (1976) who measured significant turbulent bursts during the deceleration
phase in flows of similar Reδ . For Reδ of 671 the second ‘turbulent’ peak increases but still
remains small compared with the ‘laminar’ peak. It is at Reδ = 763 when the ‘turbulent’
peak becomes larger than the ‘laminar’ peak. This behaviour of a gradually increasing
second peak continues until Reδ = 1036. For Reδ > 1036 the ‘laminar’ peak is absorbed
by the strength of the ‘turbulent’ peak.

It is important also to comment on the time instance when the maximum shear stress
occurs. The ‘turbulent’ peaks start to occur towards the middle of the deceleration phase.
As the values of these peaks increase, the absolute maximum of the bed shear stress
starts occurring earlier during the deceleration phase. In other words, the bed shear stress
maximum ‘lags’ with respect to the free stream velocity maximum (which takes place
always at ωt = π/2). Although this behaviour has been observed in the literature, no
detailed analysis has ever been performed to examine the presence of this phase lag
and how the phase difference changes in the transitional regime. This was the main
motivation for the present study. The authors suggest that the ‘phase lead’ diagram of
Jensen et al. (1989), which is included in many classic textbooks on coastal engineering
and coastal boundary layers (e.g. Fredsøe & Deigaard 1992), needs to be revised to take
into consideration the presence of the phase lag. More about this point will be discussed
in § 3.3.2.

The behaviour of the bed shear stress time series, presented in figure 8, is consistent
with the published values of Reynolds number separating the different OBL flow regimes.
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Figure 8. Normalized bed shear stress |τ b|/τ bmax for various Reδ . The peaks associated with the laminar
regime are shown with ◦ and the peaks associated with the ‘turbulent’/‘transitional’ regime are shown with •.
The maximum of the two peaks is shown with (©, grey). The Reδ values for the data by Hino et al. (1983) and
Jensen (1989) are shown in grey text.

In the introduction, the disturbed laminar regime was defined as a regime in which the
flow behaves like in the laminar regime, but small perturbations are superimposed on the
OBL flow. This kind of linear instability-related disturbances (Carstensen et al. 2010) are
not sufficiently strong to alter the mean velocity profiles. Figure 3 showed the excellent
agreement between our measurements for Reδ = 254 and the laminar solution. These
linear instability-related features are extremely difficult to be captured using the applied
pointwise measurement technique (i.e. LDV). However, it is worth noting that the second
‘turbulent peak’ of the bed shear stress starts to appear for Reδ = 552, which is very
close to the threshold value for the intermittently turbulent regime (Pedocchi et al. 2011;
Ozdemir et al. 2014).
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Figure 9. Friction factor fw as a function of Reδ and Rew.

In addition to bed shear stress variation over a period, also of interest is the maximum
bed shear stress and its variation as a function of Reδ . Numerous studies in the literature
deal with the estimation of the maximum bed shear stress over the period, usually
expressed in terms of the friction factor fw (e.g. Jonsson 1966; Kamphuis 1975; Sarpkaya
1993), where fw = 2(τ bmax/ρ)/U2

o . Effects of roughness height, which is usually expressed
using the relative ratio α/ks (e.g. Jonsson 1966; Kamphuis 1975), and flow regime using a
form of Re∗ = u∗ks/ν (e.g. Pedocchi & García 2009a) have also been examined (note that
here ks is an effective Nikuradse roughness, usually estimated using a characteristic bed
particle diameter, García 2008).

In figure 9 the friction factor fw as a function of Reδ is plotted together with data from
previous studies in the literature. A second abscissa axis is added showing the values
of Rew arising from the fact that some works have defined the Reynolds number using
half of the oscillation amplitude (Rew = Re2

δ/2). The prediction of the laminar solution
and the semi-empirical theoretical solution of Fredsøe (1984) are also shown. In general,
a good agreement is observed between the data from this study and the experimental
and theoretical results in the literature. Data of Kamphuis (1975) seem to underestimate
the friction coefficient (by a factor of ∼ 20 %) compared with the rest of the datasets.
The observed fw results are reasonably close to the measurements of Hino et al. (1983),
Jensen et al. (1989), Sarpkaya (1993) and Carstensen et al. (2010), and the DNS results of
Spalart & Baldwin (1989). For higher Reδ values (Reδ > 1123) the results are close to the
experimental observations of Jensen et al. (1989) and Carstensen et al. (2010) but start to
deviate from the observations by Sarpkaya (1993).

3.3.2. Phase difference
Hino et al. (1976) measured the near bed velocity time series and showed that the
velocities experience significant fluctuations during the deceleration phase. These spikes
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increase in magnitude as Reδ increases. The moment during the period when these
spikes in the velocity signal start to appear also varies with Reδ , starting earlier for
higher Reδ and moving towards the end of the acceleration phase (see Hino et al.
1976, pp. 200–201, figures 6, 7 and 8). These velocity fluctuations are associated with
a peak in the phase-averaged bed shear stress that follows a similar peak in r.m.s.
fluctuations. In fact, this behaviour was also shown in the ensemble-average wall shear
stress measurements by Hino et al. (1983, p. 373, figure 10). Jensen et al. (1989)
measured the bed shear stress variation over the circle of an oscillation. From their
analysis, the fluctuation of bed shear stress can be used to determine the inception of
turbulence. Starting from the laminar regime and as Reδ increases, bed shear stress
fluctuations start appearing at the deceleration point near bed shear stress reversal. In the
transitional regime, these fluctuations increase in magnitude and appear earlier during
the period as flow Reynolds number increases. From figure 9 in the paper by Jensen
et al. (1989) it is clear that actually the maximum bed shear stress occurs after the
maximum velocity instance for the case of Reδ = 726 (this value corresponds to Rew of
2.9 × 105 based on the different Reynolds number Rew adopted by Jensen et al. 1989).
However, it is worth pointing out that both Hino et al. (1983) and Jensen et al. (1989)
did not comment on the presence of a phase lag in their results. Instead, they reported
only the laminar peak of the bed shear stress, as it is shown in figure 1. Carstensen
et al. (2010) studied coherent structures development in oscillatory flows with gradually
increasing oscillation amplitude but constant period. In their study, they conducted a
comprehensive analysis of coherent structures by means of flow visualization while the
effect of these structures on bed shear stress was examined quantitatively using bed shear
stress measurements with a hot-film probe. Despite the fact that their measurements
were mainly instantaneous, similar conclusions regarding the phase difference Δφ can
be drawn after careful inspection of their bed shear stress measurements. In figures 15
and 16 of their work, the instantaneous bed shear stress measurements are plotted. The
range of the flows is for Reδ values between 616 and 1288 for figure 15 (these values
correspond to Rew between 1.9 × 105 and 8.3 × 105, based on the different Reynolds
number adopted by Carstensen et al. 2010), and between 1549 and 3162 for figure 16.
Close examination of these instantaneous data shows that the actual maximum bed shear
stress is delayed by approximately 45◦ for Reδ = 616. This phase lag between maximum
bed shear stress and maximum velocity decreases as Reδ increases (equalling 734, 812,
892 and 969). As the Reynolds number further increases, it becomes difficult to exactly
evaluate the time instance when the maximum bed shear stress is reached; however, it can
still be seen that the phase of the maximum bed shear stress shifts closer to the maximum
velocity instance. The above observations also motivated the present experimental
analysis.

Previous numerical studies have also shown the presence of a phase lag at the
intermittent turbulent regime (Spalart & Baldwin 1989; Vittori & Verzicco 1998;
Costamagna et al. 2003; Bettencourt & Dias 2018). Figure 2 in the paper by Spalart &
Baldwin (1989) shows that for Reδ = 600 there is a ‘phase lead’ of the bed shear stress
with respect to free stream velocity while bed shear stress lags with respect to the free
stream velocity for Reδ = 800. This means that there is a threshold value for Reδ for which
the phase difference between bed shear stress and free stream velocity maximum shifts to
negative values. In figure 3 from the paper by Spalart & Baldwin (1989) it is also shown
that the phase lag decreased for a higher Reδ = 1000. Similar values of phase difference
have been obtained using DNS by Vittori & Verzicco (1998) (figure 19 in their paper for
Reδ = 1000), Costamagna et al. (2003) (figure 5 in their paper for Reδ 740 and 1120),
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Figure 10. Phase difference Δφ as a function of Reδ and Rew.

and one-dimensional modelling of oscillatory boundary layer flows by Hanjalić, Jakirlić
& Hadžić (1995) and Cotton et al. (2001).

The observations in the present study for the phase difference Δφ between free stream
and bed shear stress maxima are plotted together with other data in the literature in
figure 10. It is worth noting that all the data from the literature that showed phase lag
are plotted with the appropriate negative Δφ values. The prediction of the analytical
(Δφ = π/4) and the theoretical solution of Fredsøe (1984) are also shown. The results
found in the literature seem to agree reasonably well with the observations in this study. For
flows in the laminar regime, bed shear stress maxima seem to lead the free stream velocity
maxima by the standard π/4 rads. As the Reδ increases further and the flows approach the
end of the ‘disturbed-laminar’ and the beginning of the ‘intermittent turbulent’ regime,
this phase lead decreases (note that after Reδ = 550 the second/‘turbulent’ peak of the bed
shear stress is increasing). At a threshold value of Reδ = 763 a phase lag, i.e. negative Δφ,
is observed as the second ‘transition to turbulence’-related peak becomes larger. This peak
happens earlier and earlier as the Reδ value increases, until it turns to positive values again
for Reδ ∼ 1000. For Reδ > 1450 the phase difference seems to be predicted well using the
theoretical solution of Fredsøe (1984). In the authors opinion, this modified diagram is
the main contribution from the work presented herein and it has important implications in
the fields of coastal engineering, sediment transport and morphodynamics. Of relevance
to the analysis of the phase lag is the second burst of sediment entrainment, which is
commonly observed in oscillatory sheet flows (Ribberink et al. 2000, 2008; Nielsen, van
der Wal & Gillan 2002). Similar sediment entrainment bursts during the deceleration phase
have been observed in time-varying flows by Admiraal, García & Rodriguez (2000). In the
following section, turbulence parameters will be presented in an effort to elucidate the
changes of the flow structure that are associated with the phase difference between bed
shear stress and free stream velocity.
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Figure 11. Ensemble-average velocity profiles ū normalized using the maximum velocity Uo for Reδ = 763.

3.4. Turbulence statistics
In this section some ensemble-average flow statistics of two characteristic experiments
are presented. The results are compared with data from the literature from unidirectional
and oscillatory flow studies (when available). Results of experiment 5 (Reδ = 763) and
experiment 10 (Reδ = 1315) are presented. In addition, the change of the turbulence
characteristics as the flow experiences transition with increasing Reδ are also shown.

3.4.1. Experiment 5 – Reδ = 763
The ensemble-average velocity profiles for every ωt = π/12 normalized with the
maximum velocity Uo are plotted in figure 11. Jensen et al. (1989) examined a flow of
similar Reδ (762); however, they measured only bed shear stress values. Thus, the mean
flow measurements were compared with the closest experimental data from the literature;
those of Hino et al. (1983) for Reδ = 876. The laminar solution is also plotted for reference
(note that experiment 5 is not in the laminar regime). The vertical coordinates y are
normalized using δ. Data of Hino et al. (1983) are reported in π/32 intervals, which do
not match exactly with the data presented here. Thus, the corresponding data that match
exactly with the time instances of Hino et al. (1983) are shown in grey. The measured
profiles agree well with the laminar solution during the acceleration phase (for ωt ≥ π/6).
This can be explained as a result of flow laminarization owing to the severe favourable
pressure gradient that the flow experiences during acceleration. It is also in agreement
with previous observations by Merkli & Thomann (1975), Hino et al. (1983), Akhavan
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u–+ = log y+ + As (ωt)1

κ(ωt)

Figure 12. Ensemble-average velocity profiles u+ and logarithmic fit for Reδ = 763. For comparison the
equilibrium logarithmic law by VanDriest (1956) (where κ = 0.41 and Av = 26) is also plotted.

et al. (1991a), Akhavan et al. (1991b) and Carstensen et al. (2010). The velocity profiles
start deviating from the laminar solution after ωt = 2π/3 when turbulence increases under
adverse pressure gradient. Measurements by Hino et al. (1983) seem to agree well with
our observations far from the wall, where y > δ. However, close to the wall (y/δ < 1) the
results deviate from one another. The results become closer towards the end of deceleration
(ωt ≥ 3π/4).

The ensemble-average velocity profiles are plotted using wall units in figure 12. For
comparison, the results by Hino et al. (1983) (Reδ = 876), Jensen et al. (1989) and Spalart
& Baldwin (1989) (Reδ = 1000) are also shown. In addition, the laminar solution for
Reδ = 763 is plotted in wall units. Furthermore, the velocity profile by VanDriest (1956)
is plotted:

ū+ = 2
∫ y+

0

dy+

1 + [1 + 4κ2y+2(1 − exp(−y+/Av))2]1/2 , (3.8)
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Figure 13. Ensemble-average streamwise r.m.s. profiles
√

u′2+
for Reδ = 763.

where κ = 0.41 and Av = 26. Equation (3.8) agrees well with the equilibrium logarithmic
law in the range of y+ ≥ 30. The logarithmic fits are also plotted using dashed orange
lines.

In addition to the velocity profiles, the measured normalized wall shear stress τb/τbmax ,
the shape factor H and the Reθ values are also shown for each ωt. In this plot, the effect of
velocity profile on the aforementioned parameters is shown. During the acceleration phase,
the velocity profile agrees well with the laminar solution. Significant deviations between
the measured velocity profiles and the laminar solution exist after ωt ≥ 7π/12. At that
time, an enhanced shear stress causes the u+ values to decrease and start approaching
the logarithmic law. At the same instance, H starts approaching 1.4 and Reθ = 287. It
can be observed that the higher Reδ flows of Jensen et al. (1989) and Spalart & Baldwin
(1989) approach the equilibrium logarithmic law earlier, towards the end of acceleration.
Later, during the deceleration phase (ωt = 2π/3 and 5π/6) the profiles agree well with
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Figure 14. Ensemble-average vertical r.m.s. profiles
√

v′2+
for Reδ = 763 (the legend is the same as in

figure 13).

the logarithmic law, until they start deviating again near the bed shear stress reversal (ωt =
12π/12).

The streamwise r.m.s. fluctuations are plotted in figure 13, normalized using the shear
velocity u∗. For comparison, the measurements of Jensen et al. (1989) for a fully turbulent
flow (Reδ = 3464) are shown. In addition, some unidirectional zero pressure gradient
boundary layer flow results from the DNS analysis by Spalart (1988) and Schlatter &
Örlü (2010) are shown. Laminarization during the acceleration phase reduces significantly

the
√

u′2+
values and thus, as it may be expected, the values deviate significantly from

the observations of fully turbulent flows by Jensen et al. (1989) and the numerical results
for the unidirectional flows. After ωt = 2π/3 the results approach the profiles of Spalart
(1988) and Schlatter & Örlü (2010) regardless of the fact that Reθ (ωt) is still 0.6 times
smaller compared with the Reθ = 677, which is the lowest value that is shown in figure 13.
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Figure 15. Ensemble-average spanwise r.m.s. profiles
√

w′2+
for Reδ = 763 (the legend is the same as in

figure 13).

Once again, this phase corresponds to H values close to 1.4. Later, close to the bed shear

stress reversal, the
√

u′2+
values start deviating from the turbulent unidirectional boundary

layers profiles.
The vertical and spanwise r.m.s. fluctuations are plotted in figures 14 and 15. The

non-dimensionalization remains the same (wall units) and the experimental data of fully
turbulent OBL and the numerical results for unidirectional boundary layers are again used
for comparison. The analysis results in similar conclusions; the turbulence statistics are
reduced during the acceleration phase, when flow laminarization occurs, and approach the
fully turbulent profiles during part of the deceleration phase (7π/12 < ωt ≤ 11π/12). It
is worth noting here that the agreement with the equilibrium boundary layer behaviour
occurs after the instance when the peak of the bed shear stress occurs. This peak seems
to be associated with the transition to turbulence, because the turbulence statistics and the
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Figure 16. Ensemble-average velocity profiles u+ and logarithmic fit for Reδ = 1315.

mean velocity profile approach those of fully developed turbulent flow after this ‘turbulent’
peak.

3.4.2. Experiment 10 – Reδ = 1315
The mean velocity profiles in wall units for experiment 10 are shown in figure 16.
The logarithmic fit is plotted with an orange dashed line. For comparison, the laminar
solution and the universal log-law for the fully turbulent flow (3.8) are also plotted. In
addition, measurements by Jensen et al. (1989) for Reδ = 3436 are also plotted. Compared
with experiment 5, experiment 10 exhibits a behaviour that mimics closer that of fully
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Schlatter & Ȯ̇rlu̇̇ (2010) (unidirectional ZPG BL) - Reθ = 4060

H = 1.4

0

1

τ b/
τ b m

ax

–––    
(u′2)

1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42

–––    
(u′2)

1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42
–––    

(u′2)
1–
2 
+

0 42

0

7π
—
12

2π
—
3

3π
—
4

5π
—
6

11π
—
12

π/2

–
π

2

7π
—
12

2π
—
3

3π
—
4

5π
—
6

11π
—
12 

–
π

2

π
––
12

π
–
6

π
–
4

π
–
3

5π
—
12

ωt
π0 π/2

ωt
π 0 π/2

ωt
π0 π/2

ωt
π 0 π/2

ωt
π0 π/2

ωt
π

0 π/2
ωt

π0 π/2
ωt

π 0 π/2
ωt

π0 π/2
ωt

π 0 π/2
ωt

π0 π/2
ωt

π

0

π
––
12

π
–
6

π
–
4

π
–
3

5π
—
120

Reθ =Reθ =
34656

Reθ = Reθ =
650 819

Reθ =
1105

Reθ =
1208

Reθ =
1150

Reθ =
0

0

H Re
θ

5 1500

0

0

H Re
θ

5 1500

0

(b)

(a)

Figure 17. Ensemble-average streamwise r.m.s. velocity fluctuation profiles
√

u′2+
for Reδ = 1315.

developed turbulent flow for a larger portion of the period. At the beginning of the
acceleration phase, the profile again deviates from the universal log-law. The velocity
profile approaches the log-law only towards the end of the acceleration phase. At that
time, the shape factor H approaches 1.4 and Reθ shows values larger than 346. During the
deceleration phase the velocity profiles agree with the log-law, although small variations
of κ and As values do exist compared with the 0.41 and 5.1 values. Such variations are
attributed to the adverse pressure gradient effect. The turbulent case of Jensen (1989)
shows less sensitivity to the favourable pressure gradient and matches the log-law over
a larger portion of the acceleration phase (for ωt ≥ π/12). The r.m.s. of the streamwise,
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Figure 18. Ensemble-average vertical r.m.s. velocity fluctuation profiles
√

v′2+
for Reδ = 1315 (the legend is

the same as in figure 17).

vertical and spanwise fluctuations are plotted in figures 17, 18 and 19 in wall units. The
unidirectional DNS data of Spalart (1988) and Schlatter & Örlü (2010) are again included
for comparison together with the measurements by Jensen et al. (1989).

4. Conclusions

Experiments were conducted involving the measurement of velocities under oscillatory
flow conditions over a flat smooth wall. The experiments were designed to cover the
flow regimes from the upper limit of laminar flows to the lower limit of the fully
turbulent regime. The main focus of the present study was to elucidate and explain the
inconsistencies in the literature regarding the phase shift Δφ between the bed shear stress
and the free stream velocity maxima. In addition, the mean flow structure and turbulence
characteristics of the oscillatory boundary layer in the transition regime were observed,
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Figure 19. Ensemble-average spanwise r.m.s. velocity fluctuation profiles
√

w′2+
for Reδ = 1315 (the legend

is the same as in figure 17).

with a focus on the differences between acceleration and deceleration phases. The key
results regarding the analysis of transitional, smooth-bed, oscillatory boundary layers are
summarized below:

(i) In the transitional regime the classic logarithmic profile was found to be valid for part
of the period for Reδ ≥ 763. Depending on the Reδ the logarithmic profile with κ ∼
0.41 and As ∼ 5.1 still becomes valid for part of the period. In the y+ region, where
the log-profiles are valid depends on Reδ . Starting from Reδ ∼ 763 the profiles match
a log-law at the deceleration phase. As the Reδ increases the logarithmic profile holds
over a more extended region and for a longer portion of the period.

(ii) Bed shear stress variation over the period was examined for a wide range of Reδ . For
Reδ < 552 the bed shear stress has a single peak associated with the laminar regime.
This peak takes place during the middle of the acceleration phase. When Reδ = 552
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a second peak appears towards the middle of the deceleration phase. This peak is
associated with the transition to turbulence and initially is weaker than the ‘laminar’
peak. As the Reδ is further increased this ‘turbulent’ peak becomes stronger and also
occurs earlier during the deceleration phase. Reδ = 763 is a threshold value when
the ‘turbulent’ peak becomes larger than the ‘laminar’ peak. For Reδ ≥ 1123 the
‘laminar’ peak vanishes owing to the enhanced effect of the ‘turbulent’ peak.

(iii) Analysis of the obtained experimental data suggests the need for a revision of
the widely used ‘phase lead’ diagram found in the literature (e.g. Jensen et al.
1989), to take into consideration the phase lag that is present at the transitional
regime. Therefore, a new revised phase shift diagram for the instance when the
maximum bed shear stress occurs with respect to the maximum free stream velocity
is proposed. The maximum phase lag happens at the threshold value of Reδ and it
is 0.46 rads (26.5◦). For higher Reδ the phase lag is smaller until it turns zero for
approximately Reδ of 1000. Then Δφ becomes positive and reaches a maximum of
∼ π/18 (∼ 10◦) for Reδ = 1450. After this, the phase difference decreases again
following the theoretical solution of Fredsøe (1984).

(iv) Flow structure results agree reasonably well with the experimental and numerical
data from the literature. The present study enhances the amount of data available
in the literature for the transitional regime of oscillatory boundary layer flows
over smooth walls. The analysis of the flow profiles and turbulence characteristics
suggests that the profiles agree well with those of unidirectional fully developed flow
in parts of the period where the shape factor approaches 1.4. This occurs close to the
threshold value of Reδ = 763 for ωt ≈ 3π/4. During the deceleration phase, r.m.s.
values tend to mimic those of unidirectional flows of similar Reθ values. For higher
Reδ values this behaviour starts towards the end of the acceleration phase (as shown
in figures 17–19).

A comparative analysis between the laboratory observations reported herein and direct
numerical simulations is presented in a companion paper.
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