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ANOTHER SINGLE LAW FOR GROUPS

B.H. NEumann

It has long been known that, in terms of right division, groups
can be defined by a single law. In this paper a single law
defining groups in terms of multiplication and inversion is
proposed. This law is in 4 wvariables, and it is conjectured
that no fewer than U variables will do, and that the proposed
law is of minimal length as well. Some extensions of the result,
and an alternative single law with the same length and number of
variables, are also discussed. By contrast, groups in terms of
multiplication, inversion, and a unit element can not be defined
by a single law. Most of these results were stated by Tarski at
the Logic Colloquium at Hannover in 1966, but apparently no proof
has yet been published.

1. Introduction

In [3, p. 280], Alfred Tarski states that groups can be defined by a
single law in terms of multiplication and inversion, but not in terms of
multiplication, inversion, and a unit element. However, I am not aware of

any published proof of these results, and in this paper I provide such a
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proof. Tarski's approach is through logic, while mine is only algebraic;
our notations are rather different; and we even differ in terminology, as
Tarski calls "left-hand division" what I call "right division". I shall

therefore develop the subject in my own pedestrian manner.

It was first shown in [Z] that groups can be defined by a single law
in a binary operation, namely right division. This raises the problem of
defining groups by a single law in a binary operation, namely
multiplication, and a unary operation, namely inversion; or in terms of a
binary multiplication, a unary inversion, and a nullary operation giving
the unit element. I denote operations by lower case Greek letters, and
use, in particular, p for right division, # for multiplication, 1 for
inversion, and € for the nullary operation that gives the unit element
(though a different notation will be used, most of the time, for the unit
element, because elements and element variables will be denoted by lower
case italic litters). I use what is now called the "inverse Polish"

notation; thus
abp , abu , av , €

stand for the results of operating on the (ordered) pair (a, b) with p ,
or with M , or on a with 1 , or on the empty sequence with € ,

respectively. However, € will be used in Appendix B only.

Now in a group with multiplication u and inversion 1 , right

division is given by
(1.1) Typ = YU 3
and Y4 and 1 can be expressed in terms of p by

(1.2) 21 = xxpxp ,

(1.3) TyH = TYyeyep .
Thus the law
TLTPYOZPLTLPXOZPPP = Y

proved in [2] to define the variety of groups, can be immediately
translated into a law in y and 1 , by simply replacing p by 1u at

each of its occurrences, namely

(1.4) ZLL1UY LUZ PSS IPEIUZ UMY = .
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But though the variety so defined is the variety of groups in some sense,
it is not the variety of groups in terms of Y as multiplication and 1

as inversion: it is the variety of groups in terms of a new multiplication
u* , say, and a new inversion 1* , say, defined, in analogy to (1.2) and

(1.3) vy

x1* = xxiuxriy ,

Tyu* = Tyyluyup .

There is no reason why (1.4) should imply 1* =1 or u* =i ; and indeed

the following model shows that such an implication is not true:

Let G be a group with multiplication u* and inversion 1* , and
assume the centre of G contains an element ¢ of order 2 . Define
x1 = xitept
Ty = xyu* .
Then the law (1.4) will be satisfied in G , because though at each
occurrence of 1 an extra factor ¢ 1is inserted in the left-hand side,
all these factors can be combined to a single power of ¢ , because ¢ is
central. Note that some of the factors ¢ may be inverted by some of the
operations 1 that occur: but as ¢ is of order 2 , this does not
change them. The final power of ¢ that collects is even, because there
are 8 occurrences of 1 in (1.4); but as e is of order 2 , this even
power equals the neutral element, and thus can be omitted. Thus (1.4) is

satisfied; but 1 manifestly is not inversion with respect to u as

multiplication.
This same model shows more generally:

LEMMA 1. If a set of laws in w and 1 defines the variety of
groups, then the number of occurrences of 1 1in at least one of the laws
must be odd. //

Various modifications of the law (1.4) have been tried, without
success. I propose, therefore, a quite different law, which involves L

variables as against only 3 in the law (1.4):

THEOREM 1. The variety of groups is defined, in terms of
multiplication w and inversion 1\ , by the single law

(1.5) ylwc tyizpyzuiuiy = £ .
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Here, as always, <X, ¥, 2, t are variables that range over the set of
elements, or carrier, of the (u, 1) algebra considered, and a law like
(1.5) is interpreted as the sentence that results from binding all

variables by universal quantifiers.

The law (1.5) is not the only one that will serve to define the

variety of groups; another can readily be derived from it by the

observation that a (u, 1) group is also a (u_l, 1) group, where u-l

is defined by

-1
YU = Yxu g
and there are other ways of shuffling variables and operations.

There is, however, a different single law in u and 1 that can not

be so derived from (1.5):

THEOREM 2. The variety of groups is defined, in terms of

multiplication uw and inversion 1 , by the single law
(1.6) zzluxtuymizuiylug = ¢ .

The proofs of Theorems 1 and 2 are similar in some respects, different
in others. One point of similarity is that neither of them is interesting.
Nevertheless I shall give the proof of Theorem 1 later in this paper; the
proof of Theorem 2 is relegated to Appendix A.

2. Other varieties of groups

A subvariety of the variety of all groups that can be defined by a
finite system of group laws can also be defined by a single group law.
Such varieties, which I call mononomic varieties of groups, were treated in
[Z2] simultaneously with the variety of all groups; they were of greater
interest when [2] was written than they are now, because then no other

group varieties were known yet.

Theorem 1 can be extended to mononomic varieties of groups. So can
Theorem 2, though some slight extra complication seems then to become

necessary.
Let

(2.1) u=v
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be a group law, where u and vV are (u, 1) words in variables

Tys Tys eees T, . Put wnlw=w, so that w is also a (u, 1) word in
Ty Lys wees X s and the law (2.1) is equivalent to
(2.2) w=e ,

where e is the unit element (whose existence is yet to be established).

Denote by w' the word obtained from w by replacing xl, m2, N xn by

xi, xé, cees xé , respectively. Then the analogue of Theorem 1 is:

THEOREM 3. The mononomic variety of groups with the law (2.1) is
defined, in terms of multiplication u and inversion 1 , by the single

law
(2.3) AR AR AR EATIZATRRY7 ARERTERTRRTHE I 2

The law (2.3) differs from (1.5) by the insertion of a factor
ww’1ul , which will later be shown to be constant with value e (before e
has been shown to be the unit element of u ). The form of the factor is
designed to ensure that the total number of occurrences of 1 on the left-
hand side of the law remains odd, as by Lemma 1 it has to be.

To modify Theorem 2 analogously, a further additional variable =z’ 1is

required:

THEOREM 4. The mononomic variety of groups with the law (2.1) is

defined, in terms of multiplication u and inversion 1 , by the single

Law
(2.4) zzluiz 'z U Uty ey Wuug = ¢ .

The proof of this theorem is, like that of Theorem 2, relegated to
Appendix A.

The variety of abelian groups, in particular, can be defined by a

single law of the form (2.3) or (2.4), with w = Ty T UL, UL In (2], a

shorter and simpler law in terms of right division p was shown to
suffice. I have not been able to find a corresponding shorter or simpler
law to define the variety of abelian groups in terms of u and 1 , though
a minor simplification is possible by replacing the factor ww'ipvr in
(2.3) or (2.4) by a factor w* defined by
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4 =
(2.5) w Z) THUE 0 MLl

1

The question naturally arises whether the variety of groups can be
defined by a single law in terms of a binary multiplication Y , a unary
inversion 1 , and a nullary unit element € . This is, in fact not the

case, as already stated by Tarski [3]; a proof is presented in Appendix B.

3. The quasigroup property

Mappings of the carrier of a (u, 1) algebra into itself are denoted
by capital letters, and in particular the identity mapping is I . If a
mapping P has both a left inverse and a right inverse, then P is a
permutation of the carrier, and its (unique left and right) inverse is
denoted by ‘P-l . The following well-known fact is used repeatedly.
LEMMA 2. I1f
ABCD = E ,

where A, D, and E are permutations, then B has a right inverse and C
has a left inverse. //

The binary operation u gives rise to the right multiplications Ra .
defined for every element a of the carrier by

xRa = xay ,

and the left multiplications La , defined correspondingly by
xLa = axy .
The unary operation t defines a mapping O , the opposition (mepping =z
to its opposite),
x0 = x
In terms of these mappings, tﬁe law (1.5) can be reformulated as

(3.1) L_L ORR 0L =1
TV Yyl 2 y3uw x

Similarly the law (2.3) becomes

(3.2) LleyIORzRyzuIwa’luIOLx =T

These two laws can be combined in the form
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(3.3) LmLleRzRyszOLx =TI,

where X =1 in (3.1) and X =R in (3.2), so that almost all of

ww '
the proofs of Theorems 1 and 3 can proceed simultaneously, starting from
(3.3).

The first step is to prove the following fact:

LEMMA 3. A (u, 1) algebra subject to the law (3.3) is a quasigroup

with respect to u , and O 1is a permutation of its carrier.

Note. For terms such as quasigroup, loop, or inverse property, the

survey [1] by Bruck may be consulted.

Proof of Lemma 3. Repeated use of Lemma 2 applied to (3.3) shows that

Lx has a left inverse, for every & , and Lx has a right inverse: thus

1

L is a permutation, and so then, of course, is Then O has a .

1 Lyl

right inverse. Choose & = x'1 , so that Lx is also a permutation; then
0 has a left inverse for this choice of x , on which, however, it does
not depend: so opposition is a permutation. In particular then x

ranges over the whole carrier, and thus all left multiplications are
permutations. This means that, for every a, b in the carrier, the

equation

xL =b ,

or

has a unique solution x .
Again Lemma 2 is used repeatedly: first Rz has a right inverse for

every 2 , and X has a left inverse. If X =R , then X is thus

ww 'l
a permutation; if X =TI , then X 1is trivially also a permutation. Thus

Ryzul has a left inverse. But yzyv = zLyO ranges over the whole

carrier: thus all right multipliecations are permutations. This means

that, for every a, b in the carrier, the equation

xR _=b ,
a
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or

xau = b |
has a unique solution & . The algebra is then a quasigroup with respect
to U, and Lemma 3 follows. //

From now on, the inverses of left and right multiplications and of
opposition can be freely used. In particular, for any elements a, b, ¢

of the carrier, the implications

(3.4) if abu = acu , then b

n
)

b

(3.5) Zf bau = cay , then b =c¢ , and

(3.6) if biv=c1 , then b

]
Q

will be used frequently.

4, An idempotent element

Note that AR R does not depend on 2z , because
Z yaul

_o-l-1.-1.-1 -1 -1
BBz = 0 LIy 00,

and 2z does not occur on the right-hand side. Hence
(k.01) tzUyzUly = tspysuly .

Here put y = ¢ and choose 2z and s so that, for arbitrarily given u

and v ,
tzl =u , tsy=v 3

-1 -1

that is to say, put z = ul , 8 = th Then {(4.01) becomes

Ul = vy .
This is thus a constant element, say

(4.02) wily = f .

Putting fl = e and fO_l =g , then

{k4.03) gfu = feu = f .
These elements will later be shown to be all equal.

Next observe that, as the variables in w and in w’' are distinct
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from the variables without suffixes, X 1is a constant element,

x=rY rlolpipiplol |
LI yuzi 'z

In the case of Theorem 1, this is the identity permutation, X =I . 1In

the case of Theorem 3 it is

X = wa'lul ’

which will eventually turn out to be the identity permutation, too.
However, it follows already now that ww'iul is a constant element. To
Then

evaluate it, put &x! = T, x/! ' =x , so that w' =w

1 2 T Tgs e Ty T Ty :
wold = f , wwiyl = e , and thus also ww'iyl = e¢ , and

(L.ok) X =R
It is clear, incidentally, that w must be itself be a constant element,
whose evaluation will, however, have to wait.

Transform (3.3) by Lx , and note that

L1 =0 Yxtgl ploipl
"z yzul 2 y1

does not depend on x , and thus is a constant permutation. To evaluate

it, consider

aL L =23L L
x x Yy yt

that is

Z1XZUU = ylyzuy ,

and choose Yy = zO-l , so that yv =2z . Then
Zixzpd = zyyiup = zfp ,
that is to say

(4.05) LL. = Rf .
With this, (3.3) transformed by Lx becomes
(4.06) RfLyIORzRyzutxo =1I.

Put z = y1 here, so that yzul = e ; then (L.06) becomes

https://doi.org/10.1017/50004972700006912 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006912

90 B.H. Neumann

(L.07) ReL (OR RO =1T.
Now
L OR = RrRZoix gt
yu oyt f e

is independent of y , that is to say, a constant permutation. To evaluate

it, consider

ZLyIORyI = zL:L_lOII?m1 ,
that is
Y13uyu = rizuaw o,
and choose x so that x11 =2, or x1 = zO-l . Then
-1 -1
yizuiylp = xixvimnz0 "y = ez0 "y,
that is
L OR =07 .
Yy oy e

Substitute this in (4.07) to get
ROLRX0=1
fD ee ’
or

(L.08) LeReXORf. =0 .

Here the value of X needs to be used. As X =TI in the case of (3.1)

(or Theorem 1) and X = Re in the case of (3.2) (or Theorem 3) ~ see

(L.ok) -, put X = Rg , vhere p=0 or p=1. Then (4.09) becomes

1 YR, =0,
e e

f
or
ezyeld ... elifu = 21 ,
where ey ... eyl stands for p + 1 factors eu . 1In this, put =z = er ,
so that ezp = eewy = f , then
feu ... emfu = ern .
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Note that feu ... ey = f , however many factors eu there are. Thus

fifu

ell

or, finally,

(4.09) efu = el
Next use (4.02), (4.03), (4.05), (3.h):

zwiiy = f = gfu = ng = ngLxl = X\Xguy ,
so that
(4.10) 211 = xgu ,
that is
2
Lh.11 0" =R _.
( ) g

Apply (4.10) to (4.09), and then (3.4):
efu = el = egy ,

whence f = g ; and applying opposition to both sides, also e = f . This

proves
(L.12) e=f=g,
and thus also

(4.13) eey = el

[}
®

To sum up:

LEMMA 4. A (u, 1) algebra subject to the law (3.3) contains an
idempotent element e with respect to u which is invariant under 1 and

satisfies, for all =z ,

(L.1k) Tl = e . //

5. The inverse loop property

Return briefly to the situation of Theorem 3. It has already been

remarked that w = w(x

10 xe, . xn) is a constant element, and, of

course, equal to w' . To evaluate this constant, put

T, =TT, = ... = xn = ¢ . Repeated application of Lemma 4 then shows that
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(5.1) w=e,
which is (2.2) - except that it still remains to be proved that e is the

M unit element. To prove this, start from (4.07), with f replaced by e

and X replaced by Rg :

(5.2) ReLyIORlegﬂo =T,
and apply this to e :
yleepuiylyey ... eyl = e ,

where again ey ... eu stands for p + 1 factors ep . This immediately
simplifies, by (4.13) and the permutation properties of R, and 0, to

Ylepyin = e = yyip
by (4.14). Apply (3.5) to obtain

ylem =y ,

or

OR O =1,
e

This combines with (4.11), with ¢ replaced by e , to

and it also implies that Re and O commute. Use this commutativity in

(5.2) with yi = e , transformed by R, , together with (4.11), to get

Lo,
ee
This gives
(5.3) L, =R,
if p is even,
(5.4) L, = I

if p 1is odd. Now (k.05), with z =x1 = f = e , that is

2 _
(5.5) L2 =R, ,
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combines with (5.3) to give

(5.4) L =1

also in the case that p 1is even; and (5.4) and (5.5) combine to give
also

(5.6) R,=1T.

Thus e is the (unique) unit element of u , and from (4.11) then

(5.7) 0° =1 .
This shows:

LEMMA 5. 4 (u, 1) algebra subject to the law (3.3) is an inverse

property loop with unit element e and inversion 1 . //

6. Associativity
Now (4.05) becomes

(6.1) LL. =1;

and (4.06), with y = e and all identity permutations on the left-hand

side omitted, becomes

ORR._O=1,
2 21

which after transformation by O and application of (5.7) gives

(6.2) RR =1,
z a1
Now (5.2), with all factors R, = I omitted, is

L 0RO =1,

or, with the involutory property (5.7) of opposition

Ly10Ry1 =0 .

Apply this to x1 to get
Yizwyiy = 11 = x .
Then

Y1TIUIY LYY = zyu .
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The left-hand side is

yl.‘z:lulRley = ylziul

by (6.2) with 2z = y1 . Thus
(6.3) Yzl = xyu .

I omitted:

Now return to (4.06), with the factors Rf =X

L ORR __0=1I,
Yyl 2 yaumn

and apply this to xt
yirigizuyzmm = 21,
or, using (3.6) and (6.3),
TYURWYEUM = & .
Then
TYUZUYZUMMYZUL = TYZUY .
Here the left-hand side is, by (6.2) with yzU1 in place of 3z ,

YU, o By = FYVEY 5

so finally the associative law
(6.4) © xYyusu = YUy

for U is proved. This shows that the (U, 1) algebra is a group with

as multiplication and 1 as inversion.

To complete the proof of Theorem 1, it is necessary to verify that the
law (1.5) is satisfied in groups; this verification is straightforward and
omitted. //

In the case of Theorem 3, it has already been shown that the law (2.2)
follows from the law (2.3) -~ see (5.1). Thus again it only remains to
verify that the law (2.3) is satisfied in groups with the law (2.1) or
equivalently (2.2); again this verification is straightforward and
omitted. //

Appendix A. Proof of Theorems 2 and 4

The laws (1.6) in Theorem 2 and (2.4) in Theorem % can be
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reformulated, in analogy with (3.3), in the form

(A.01) LnyORxORy1XLzzlu1 =TI,

where X = I in the case of Theorem 2 and X = L in the

ww’tuth'z'tul
case of Theorem L.
As before, the p quasigroup property and the fact that opposition is

a permutation are established first, by repeated application of Lemma 2.

First all Lx have right inverses, and all LZZIul have left inverses,

too, and thus are permutations. Then X , being either the identity and
thus trivially a permutation, or a product of two permutations of the form

L , is also a permutation. Put & = x'x’'iy1 , so that L becomes a
zz1U1 x

permutation. Then Ry has a right inverse and Ry1 a left inverse - but
y and y1 do not depend on the particular choice of & ; thus all Ry
have right inverses, and all Ry1 are permutations. Put y = y'i to
ensure that Ry is also a permutation; then O , which does not depend on

the special choices of x and Yy , is seen to have both right and left
inverses and thus is also a permutation. In particular y = y'i ranges
with y' over the whole carrier; hence all right multiplications are
permutations. Return to (A.0l) with arbitrary zx ; now all mappings that

occur, except the left-most factor Lx , have been shown to be
permutations.” It follows that Lx is also a permutation, that is all left

multiplications are permutations, and the analogue of Lemma 3, with the law
(A.01l) in place of (3.3), is established.

Next observe that

L = xR Yo rto g1t
221Ut Yy x y
is seen to be independent of 2z , hence & constant permutation; and again

it follows that
zzim = e ,

1

say, is a constant element. As before, put f=e0  , g = fU-l , SO that

again
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zzw = f =gfu-= féu .

$ 3 [ r = . ' =
In the situation of Theorem k4, put zl xl, x2 xe, ey xn xn , SO
that w'’ = w . Then ww'iul = e ; and as also 2z'z'1pt = e , then
X = L2
e

in this situation. In the case of the variety of all groups, that is in

Theorem 2, X =1 , so

x=1P
e

with p=0 or p =2 will cover both cases. Note that p is even:

this fact will be used later. (A.0l) now simplifies to

p+l _
(A.02) LnyORxORyILe I.
Here
LROR =1 (P)ply1
2y x e y1

is seen to be independent of & ; thus
r3Uydixy = tauyuitu .

Put ¢t = zO_l , so that z = ¢t1 . Then

xtiuyuixu = fyuity .

Here put x = y = ¢ , and observe that then fyur = feyt = e . Then

etlyemrey = ety ,
or
(a.03) OLROR, =L,
Returning to (A.02), notice that
ROROR = p-tp~(p*1)
y oz oyl x e

is independent of y ; thus

YUYy = tmeutiy .

Put ¢ = 21 , so that ztur = zzim e ; thus
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(A.0L) ZYULTULYLIY = explziiy
Here put 2z = exp , so that the right-hand side reduces to f :
expyiruiyip = f = yyu

Cancelling on the right, that is to say, applying (3.5), which is available

because the analogue of Lemma 3 has already been established, then
(A.05) expyulTil = y
and with Yy = e in particular

expep iyl

e=f1,

and by (3.6),
expeulxy = f = xO'lxu .

Again by (3.5) then

1]
g

exyeut
or
expeull = x .

This means that
2
(A.06) LRO®=1I.

Transform by O to obtain

(a.07) OLeReo =1,
This combines with (A.03) to give
(A.08) R, =1L, .

Note that as feuw = f , that is to say fFe = f , also now for all » ,

(2.09) fH = fI, = f .

e e
In particular

(A.10) efu

f=gfu,
whence, by (3.4),

e=g=el ,
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and so also
(A.11) fii=er=g1=f .

Return to (A.02), applied to a variable =z :
xzuyulxulyluLg+l =2,
and put y = xzuvr , so that xzuyur = e . Then
ezulxzulluLg+l =2z .
Here put = = f and 2z = e¢ and use (A.10) and (A.11) to get

efhlféulIuLz+l = eflluL§+l =e ,

that is
fZZ+l =e,
and by (A.09) finally
f=e
This establishes, as before,
e=f=g

and
eel = et = e ,
and the analogue of Lemma 4, with the law (A.01) in place of (3.3).
In {A.05), put x = e¢ , and obtain
eylieyl =y ,
or
LQOReO =1T.
Compare this with (A.07) to see that L, , which by (A.08) equals R,
commutes with O :
(a.12) Lo=0L, .

In (A.O4), put x =y =e , to get

https://doi.org/10.1017/50004972700006912 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006912

Another single law for groups 99

zZeMlellel = ezlly |
or

2

R OR OR Lo
e e e e

Using (A.08) and the commutativity (A.12), this gives

2 _
(A.13) r;=1I,
and with (A.06) and again (A.08) also
(A.1b) 0°=1.

Now put & =y =e 1in (A.02) to get
LRORORIPY -1 .
e e e ee

Use (A.08), (A.12), (A.13), and (A.1L) to deduce

P
e

from this; and now recall that p 1is even, namely p =0 or p =2 , and

apply (A.13) to obtain finally

(A.15) Le =1,

Now the analogue of Lemma 5, with the law (3.3) replaced by (A.01),
follows; and (A.02) further reduces to

(A.16) LnyORxORy1 =TI,

Put x = e and use (A.15) and (A.1k):

(A.17) RyRy1 =1,
Thus also Rylﬂy = I , and multiplying the two sides of (A.16) by Ry
gives
LnyORxO = Ry .
Then
(A.18) TZUyWZUL = z2yp .

Put z = x1 , so that, by (A.14), =z = 21 , and observe that the factor
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X2y = e can be omitted:
(A.19) yrzun = zyu

which, but for the name of one of the variables, is (6.3). Now apply 1
to both sides of (A.18), observing (A.1h):

XUYULXY = ZYHL

Next

ZZUYUIZUTIY = ZyULT1Y
Here the left-hand side simplifies, using (A.17),

xzqutRxRxl = xIPyur ,

whence
ZZUYUL = YUixlU
Apply opposition to both sides, observing (A.1k4):
TZPYU = yulxiul
and apply (A.19) to this, with 2yw in place of Yy and & in place of
2z , to get finally
XIUYU = TIYUH .

This is the associative law for u , completing the proof of the group
property. To complete the proof of Theorems 2 and L4, it is again necessary
to verify that the law (1.6) holds in groups, and that the law (2.4) holds
in groups with the law (2.1) or equivalently (2.2). Again this

verification is routine, and omitted. //

Appendix B. A nullary unit element

One might hope to be able to go one step further and define groups
also by a single law in a binary multiplication U , a unary inversion 1 ,
and a nullary unit element € ; this is, however, not possible, as stated

by Tarski [3], and as I shall now show.

THEOREM 5. Let
(B.1) w(E, ¥, Yy oen y,) =2

be a law in variables =z, Yo Yps woos Uy with operations u (binary}, 1
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(unary), € (nullary) that is satisfied in groups when U 1is interpreted
as multiplication, 1 as inversion, and € as the unit element. Then
this law is also satisfied in a group with u as multiplication, but ¢

not as unit element; 1in this model 1 may or may not be inversion.

It is well known that if a single law is to define the variety of
groups, it must be of the form u = v where either % or vV 1is just a
single variable; thus no generality is sacrificed by assuming the law to

be of the form (B.1).

The model will be a suitable cyclic group, written additively, so that
z+y, -x, 0 denote the binary, unary, and mullary operations in it.

Put

g

r+y,
L = -xr +c ,
e=d,
where ¢, d , and the order p of the group are still to be determined.

Then the left-hand side of (B.1l) will become

w(x, yl, y29 ceey yn) =x + ke + 1d .

where k and I are integers that depend on the number and manner of
occurrences of 1 and € in w . Using Lemma 1, X may be assumed to be
odd. If 1 =0,put e=0, d=1,and p =2 . Then the law (B.1)
will be satisfied, but € will not be the unit element of the group; in
this case 1 is inversion. If I # 0, let p be a prime number greater
than |k] and |Z] , and choose e, d so that

ke + ld=0modp, d3iomodp;

for example, d =1 . Again the law (B.l) is satisfied, and again € is
not the unit element; in this case 1 1is not inversion, either. //
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