Corrigendum

Volume 104 (1988), 1-6

'On generalized albanese varieties for surfaces'

By HURŞIT ÖNSIPER

Department of Mathematics, Middle East Technical University, Ankara, Turkey
Theorem 3 of the paper is incorrect. Even when $U=X$, so that $m=0$ and $G_{u m}=\mathrm{Alb}_{X}$, it is well known that $\Pi_{1}^{a}(X)=\Pi_{1}\left(\mathrm{Alb}_{X}\right)$ if and only if the NéronSeveri scheme $N S(X)$ has no torsion. Moreover, the elementary observations in Lemma 1 below show that in characteristic zero for the study of $\Pi_{1}^{a}(U)$ we can replace $\lim G_{u m}$ simply by $G_{s a}$. As this lemma is not true in characteristic p, it is essential to consider $\lim G_{u m}$ in this case.

We keep to the notation of the paper and $\Pi_{1, t}($.$) denotes the usual topological$ fundamental group.

Lemma 1. (1) For any finite commutative group G, we have $\operatorname{Ext}\left(G_{u m}, G\right)=$ $\operatorname{Ext}\left(G_{s a}, G\right)$.
(2) $\Pi_{1}\left(G_{u m}\right)=\Pi_{1}\left(G_{s a}\right)$.

Proof. (1) follows trivially from the exact sequence of groups $\operatorname{Ext}^{n}(\cdot, G)$ obtained from $0 \rightarrow G_{a}^{N} \rightarrow G_{u m} \rightarrow G_{s a} \rightarrow 0$ together with the fact that $\operatorname{Ext}\left(G_{a}, G\right)=\operatorname{Ext}^{2}\left(G_{a}, G\right)=0$.

As $\Pi_{1}\left(G_{a}\right)=0,(2)$ is a consequence of the exact sequence

$$
\Pi_{1}\left(G_{a}^{N}\right) \rightarrow \Pi_{1}\left(G_{u m}\right) \rightarrow \Pi_{1}\left(G_{s a}\right) \rightarrow 0
$$

Now we let $k=\mathbb{C}$.
Lemma 2. As an analytic space

$$
G_{u m}^{a n} \cong\left(H^{0}\left(X, \Omega_{X}(m)\right)_{d-0}^{*}\right) / H_{1}(U, Z),
$$

and $\alpha_{u m}: U^{a n} \rightarrow G_{u m}^{a n}$ is given by

$$
\alpha_{u m}(x)=\left(\int_{x_{0}}^{x} w_{1}, \ldots, \int_{x_{0}}^{x} w_{r}\right)
$$

where x_{0} is a fixed point and $\left\{w_{1}, \ldots, w_{T}\right\}$ is a basis for $H^{0}\left(X, \Omega_{X}(m)\right)_{d-0}$.
Proof. We have

$$
\operatorname{rank}\left(\Pi_{1, t}\left(G_{u m}^{a n}\right)\right)=2 q+s=\operatorname{rank}\left(H_{1}(U, Z)\right)
$$

(cf. [1]). Hence we can follow the proof of [2], V, proposition 11 observing that $\Omega_{u m}^{i n v}=H^{0}\left(X, \Omega_{X}(m)\right)_{d=0}$ (see the remark after corollary 1 in the paper).

Corollary 1. (1) $\Pi_{1}\left(G_{s a}\right)=\left(H_{1}(U, Z) / \text { torsion }\right)^{\wedge}$.
(2) The map $\Pi_{1}^{a}(U) \rightarrow \Pi_{1}\left(G_{s a}\right)$ is surjective (cf. [2], VI, proposition 10).

REFERENCES

[1] G. Faltings and G. Wüstholz. Einbettungen kommutativer algebraischer Gruppen und einige ihrer Eigenschaften. J. Reine Angew. Math. 354 (1984), 175-205.
[2] J. P. Serre. Groupes Algébriques et Corps de Classes (Hermann, 1959).

