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Abstract
Iterating the skew RSK correspondence discovered by Sagan and Stanley in the late 1980s, we define deterministic
dynamics on the space of pairs of skew Young tableaux (𝑃, 𝑄). We find that these skew RSK dynamics display
conservation laws which, in the picture of Viennot’s shadow line construction, identify generalizations of Greene
invariants. The introduction of a novel realization of 0-th Kashiwara operators reveals that the skew RSK dynamics
possess symmetries induced by an affine bicrystal structure, which, combined with connectedness properties of
Demazure crystals, leads to the linearization of the time evolution. Studying asymptotic evolution of the dynamics
started from a pair of skew tableaux (𝑃, 𝑄), we discover a new bijection Υ : (𝑃, 𝑄) ↦→ (𝑉, 𝑊 ; 𝜅, 𝜈). Here, (𝑉, 𝑊)
is a pair of vertically strict tableaux, that is, column strict fillings of Young diagrams with no condition on rows,
with the shape prescribed by the Greene invariant, 𝜅 is an array of nonnegative weights and 𝜈 is a partition. An
application of this construction is the first bijective proof of Cauchy and Littlewood identities involving q-Whittaker
polynomials. New identities relating sums of q-Whittaker and Schur polynomials are also presented.
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1. Introduction

1.1. The goal of this paper

The Robinson–Schensted–Knuth (RSK) correspondence is a fundamental bijection between matrices
M with nonnegative integer entries, sometimes encoded by biwords 𝜋, and pairs of semistandard
tableaux (𝑃, 𝑄) [54, 72, 76]. It represents one of the central tools in combinatorics, and its applications
range from representation theory to probability. Along with a simple algorithmic description, the RSK
correspondence possesses a surprising number of properties and symmetries. These have been central
object of study throughout the 20th century, receiving contributions from a number of celebrated
combinatorialists. A detailed account on the theory of RSK correspondence can be found in classical
books as [31, 60, 74, 82].

The RSK correspondence provides powerful tools to prove various identities involving symmetric
functions. For instance the Cauchy identity for the Schur polynomials 𝑠𝜆, with 𝑥 = (𝑥1, . . . , 𝑥𝑛),
𝑦 = (𝑦1, . . . , 𝑦𝑛), ∑

𝜆

𝑠𝜆(𝑥)𝑠𝜆 (𝑦) =
𝑛∏

𝑖, 𝑗=1

1
1 − 𝑥𝑖𝑦 𝑗

, (1.1)

which can be proved in various ways, may also be seen as a consequence of the RSK correspondence.
On the left-hand side the Schur polynomial appears as a result of the combinatorial formula 𝑠𝜆(𝑥) =∑
𝑇 :sℎ𝑇 =𝜆 𝑥𝑇 where the sum is over semistandard tableaux with shape 𝜆, whereas each factor in the

right-hand side is a geometric sum corresponding to each matrix element of an integral matrix M of size
𝑛 × 𝑛. An advantage of finding a bijective proof is that by leveraging symmetries it leads to a number of
related identities; see for instance [82].

A well-known property of the RSK is Schensted’s theorem [76]. It says that, assuming 𝜋
RSK
←−→ (𝑃, 𝑄),

the length of the first row of tableaux 𝑃, 𝑄 equals the length of the longest increasing subsequence of the
biword 𝜋. Noticeabl, this property became a crucial tool in the solution of the Ulam’s problem [4, 59, 87].
A generalization of Schensted’s theorem was found by Greene [36], who proved that the full shape of
tableaux 𝑃, 𝑄 can be identified by maximizing the disjoint increasing subsequences of 𝜋 or, alternatively,
maximizing the passage times of disjoint directed paths through M. Greene’s characterization has found
uses in the discovery of universal objects in probability theory such as the directed landscape [24],
which is a generalization of the Airy process [70].

In [73], Sagan and Stanley discovered a generalization of the RSK correspondence which relates
pairs (𝑀; 𝜈) consisting of a matrix of sequences of nonnegative integers 𝑀 = (𝑀 𝑖, 𝑗 (𝑘) ∈ N0 : 𝑖, 𝑗 ∈
{1, . . . , 𝑛}, 𝑘 ∈ N0) and a partition 𝜈 with pairs (𝑃, 𝑄) of semistandard tableaux of generic skew shape.
Throughout, we will use the convention N = {1, 2, . . . } and N0 = N ∪ {0}. In this paper, we will
refer to this as Sagan–Stanley correspondence, and we will often use the shorthand (𝑀; 𝜈)

SS
←→ (𝑃, 𝑄).

Naturally, they also discussed an application of their correspondence to prove bijectively a Cauchy
identity for skew Schur polynomials 𝑠𝜆/𝜌 [62, Chapter I.5]. Fixing a parameter |𝑞 | < 1 and variables
|𝑥𝑖𝑦 𝑗 | < 1, 𝑖, 𝑗 = 1, . . . , 𝑛, it reads∑

𝜌⊆𝜆

𝑞 |𝜌 |𝑠𝜆/𝜌 (𝑥)𝑠𝜆/𝜌 (𝑦) =
1

(𝑞; 𝑞)∞

𝑛∏
𝑖, 𝑗=1

1
(𝑥𝑖𝑦 𝑗 ; 𝑞)∞

, (1.2)

where (𝑧; 𝑞)𝑛 = (1 − 𝑧) (1 − 𝑞𝑧) · · · (1 − 𝑞𝑛−1𝑧), 𝑛 ∈ N0 ∪ {+∞} is the q-Pochhammer symbol.
Unlike for the classical RSK correspondence, a detailed description of properties of Sagan and

Stanley’s algorithm has proven to be more challenging to obtain. Powerful tools such as Schützenberger’s
theory of jeu de taquin [78] do not admit straightforward ‘skew’ analogs and extensions of Greene
invariants in a skew setting have also remained unexplored. For instance, if we assume (𝑀; 𝜈)

SS
←→

(𝑃, 𝑄), then a simple characterization of the last passage times of the matrix 𝑀 , properly defined, in
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terms of tableaux 𝑃, 𝑄 was, until the time of writing, not available. In this paper, we fill this void by
introducing a dynamics on the set of pairs (𝑃, 𝑄) and provide a generalization of Greene’s theorem in
this skew setting, as a consequence of the theory we develop.

To people with experience in symmetric polynomials, the factorized expression in the right-hand side
of identity (1.2) should look familiar. In fact, a closely resembling expression arises when considering the
Cauchy identity for q-Whittaker polynomials𝒫𝜇 (𝑥; 𝑞) [34], that are Macdonald polynomials𝒫𝜇 (𝑥; 𝑞, 𝑡)
[62, Chapter VI] with parameter 𝑡 = 0. We have∑

𝜇

b𝜇 (𝑞)𝒫𝜇 (𝑥; 𝑞)𝒫𝜇 (𝑦; 𝑞) =
𝑛∏

𝑖, 𝑗=1

1
(𝑥𝑖𝑦 𝑗 ; 𝑞)∞

, (1.3)

where b𝜇 is a normalization factor and its explicit definition can be found in equation (10.4) in the
text. The Macdonald polynomials 𝒫𝜇 (𝑥; 𝑞, 𝑡) are widely considered as a central object in the theory of
special functions and play prominent roles in various fields such as affine Hecke algebras [18], Hilbert
schemes [38], combinatorics [37] and more recently in integrable probability [14] and integrable systems
[17]. The particular case of the q-Whittaker polynomials has also attracted special attention in recent
years because of their importance in integrable probability [14, 43, 63, 66, 68], representation theory
[33, 64, 75, 77], combinatorics [15, 17, 32] and a few other subjects. A proof of the Cauchy identity
(1.3) is explained in [62]. Several different proofs have appeared in the literature in recent years, which
are based on the Yang–Baxter equation [15] or randomized variants of the RSK algorithm [63, 66].
In [26], representation-theoretic aspects of the Cauchy identity are investigated. However, to the best of
the authors’ knowledge, none of the techniques available in the existing literature allow for a bijective
proof of the Cauchy identity (1.3).

Nevertheless the striking similarity between partition functions (1.2), (1.3), along with the fact that
all terms involved 𝑞 |𝜌 | , 𝑠𝜆/𝜌 (𝑥), b𝜇 (𝑞),𝒫𝜇 (𝑥; 𝑞) possess positive monomial expansions, suggest the
possibility of relating the theories concerning the RSK correspondence to q-Whittaker polynomials.
The goal of this paper is to develop a combinatorial theory extending the scope of the RSK correspon-
dence and which allows the first bijective proof of the Cauchy identity (1.3). As a consequence our
theory will produce a number of new identities involving q-Whittaker polynomials and we envision it
playing important roles in a wide range of related fields in the future.

1.2. Skew RSK dynamics: examples and emerging questions

To achieve the goals outlined above, we first introduce a new deterministic time evolution on pairs of
skew tableaux, which is defined by combining the skew RSK map introduced in [73] and a novel cyclic
operation on tableaux. We call this the skew RSK dynamics, and in this subsection we will see through
an example how it would bring a connection between skew tableaux and q-Whittaker polynomials.
Looking at time evolution of skew tableaux for some examples, we observe certain properties of the
dynamics and a few questions emerge. Indeed, results presented in this paper are obtained while proving
these properties and answering these questions.

To define our dynamics, we first recall a basic operation on a tableau called the internal insertion,
which was introduced in [73]. From a semistandard tableau of skew shape P, select a row r such that
the leftmost cell (𝑐, 𝑟) at that row is a corner cell, that is, both (𝑐 − 1, 𝑟) and (𝑐, 𝑟 − 1) are empty cells.
Then, R[𝑟 ] (𝑃) is the tableau obtained vacating the cell (𝑐, 𝑟) of P and inserting, following the usual
Schensted’s bumping algorithm, the value 𝑃(𝑐, 𝑟) at the row below. For a more precise description of
this procedure, see Section 3.1 below. In the following example, calling P the tableau on the left-hand
side, we show, step by step, the computation of R[2] (𝑃)

(1.4)
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Using the notion of internal insertion, we define a new map, this time acting on pairs of skew tableaux
(𝑃, 𝑄) with the same shape. We call it 𝜄2 to emphasize its nontrivial action on the second tableaux Q;
later in Section 1.3, we will also introduce 𝜄1. Entries of tableaux here are assumed to belong to the
alphabet {1, . . . , 𝑛} for some fixed 𝑛 ≥ 1. Define 𝜄2 : (𝑃, 𝑄) ↦→ (𝑃′, 𝑄 ′), where 𝑃′ = R[𝑖𝑘 ] · · ·R[𝑖1 ] (𝑃),
𝑖1 ≥ · · · ≥ 𝑖𝑘 are all row coordinates of 1-cells (i.e., cells with label 1) of Q, and 𝑄 ′ is obtained from
Q vacating all 1-cells, decreasing by 1 the labels of all remaining cells and creating n-cells to make the
shape of 𝑃′, 𝑄 ′ equal. The following example shows a realization of 𝜄2 (𝑃, 𝑄), and we assume 𝑛 = 5

(𝑃, 𝑄) =

( 1
2 3 4

1 3 5
2

,

2
1 3 3

2 2 5
3

)
𝜄2

−−−−−−−−→

( 1
3 4

1 2 5
2 3

,

1
2 2

1 1 4
2 5

)
. (1.5)

𝜄2 is invertible, and the inverse 𝜄−1
2 is always well defined, provided we allow cells of tableaux to occupy

also nonstrictly positive rows. To give a reference, while drawing tableaux we will color such cells in
gray, so for instance we have

( 1
2 3 4

1 3 5
2

,

2
1 3 3

2 2 5
3

)
𝜄−1
2

−−−−−−−−−→
���	

1
4

2 3 5
1 2
2

,

1
3

2 4 4
3 3
4


��� . (1.6)

The operation 𝜄2, in particular the cycling operation on a Q tableau, is new in this paper and represents a
dynamical rule preserving semistandard properties. Iterating n times the application of 𝜄2 yields a known
content preserving map, that in [73] was called ‘skew Knuth map’ and that we will call skew RSK map,

RSK(𝑃, 𝑄) � 𝜄𝑛2 (𝑃, 𝑄). (1.7)

For instance, we have

( 1
2 3 4

1 3 5
2

,

2
1 3 3

2 2 5
3

)
RSK

−−−−−−−−−−→

����	
4

1 3
1 2 5
2 3

, 3
1 2

2 2 3
3 5


���� . (1.8)

From (1.7), 𝜄2 can be considered as a refinement of the skew RSK map. It will also play a crucial
role when we discuss an affine bicrystal symmetry of the skew RSK dynamics; see (1.25) below. The
skew RSK map is invertible, and its inverse RSK−1 comes from the application of n consecutive times
of 𝜄−1

2 . Continuing with our running example, we find

( 1
2 3 4

1 3 5
2

,

2
1 3 3

2 2 5
3

)
RSK−1

−−−−−−−−−−−−→
���	

1
4

2 5
1 3 3
2

,

2
3

1 5
2 2 3
3


��� . (1.9)

The skew RSK map is a map from a pair of skew tableaux to another. Iterating the map t times, one
can define the time evolution of a pair of skew tableaux by (𝑃𝑡+1, 𝑄𝑡+1) = RSK𝑡 (𝑃, 𝑄), with the initial
condition given by (𝑃1, 𝑄1) = (𝑃, 𝑄). In this paper, we adopt the convention that the starting time of a
dynamics is 𝑡 = 1. Note that t can be an arbitrary integer, using RSK−1 for a negative t. We call this the
skew RSK dynamics, and it plays a central role in our theory.

An interesting phenomenon occurs when we consider the large t limit. Tableaux (𝑃𝑡 , 𝑄𝑡 ), from a
certain t onward become ‘stable’, in the sense that the application of the skew RSK map has the only
effect of rigidly shifting columns downward. The amplitude of each shift is equal to the number of
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labeled cells at the column. Let us show this in our example taking, for instance, 𝑡 = 10. With some
patience, one can compute RSK10(𝑃, 𝑄) as

( 1
2 3 4

1 3 5
2

,

2
1 3 3

2 2 5
3

)
RSK10

−−−−−−−−−−−−→

���������	

...
...

...
...

...

12 4
...

...
...

...

22 3
23 1 5
24 2

...
...

31 1
32 2
33 3

,

...
...

...
...

...

12 3
...

...
...

...

22 2
23 2 3
24 5

...
...

31 1
32 2
33 3


���������
, (1.10)

so that applying the skew RSK map one more time yields

���������	

...
...

...
...

...

12 4
...

...
...

...

22 3
23 1 5
24 2

...
...

31 1
32 2
33 3

,

...
...

...
...

...

12 3
...

...
...

...

22 2
23 2 3
24 5

...
...

31 1
32 2
33 3


���������
RSK

−−−−−−−−−−→

���������	

...
...

...
...

...

13 4
...

...
...

...

24 3
25 1 5
26 2

...
...

34 1
35 2
36 3

,

...
...

...
...

...

13, 3
...

...
...

...

24 2
25 2 3
26 5

...
...

34 1
35 2
36 3


���������
. (1.11)

In the previous two displays, the gray numbers to the left of the tableaux indicate the row coordinates
of the cells to their right. We notice that, in equation (1.11), the skew RSK map had the only effect
of shifting columns downward, as an instance of the stabilization phenomenon described just above.
Notice again that in such stable states each column travels downward with ‘speed’ equal to the number
of labeled cells it hosts. In the above example, the speeds are 3,2,2,1 for the first, second, third and
fourth columns. Obviously, longer columns travel ‘faster’. This procedure defines an important object.

Definition 1.1 (Asymptotic increments). For a pair (𝑃, 𝑄) of semistandard tableaux of the same skew
shape, let 𝜆𝑡+1/𝜌𝑡+1 be the shape of the pair RSK𝑡 (𝑃, 𝑄). The asymptotic increment 𝜇(𝑃, 𝑄) is the
partition defined by

𝜇′𝑖 = lim
𝑡→∞
(𝜆𝑡 )′𝑖 /𝑡, (1.12)

where 𝜆′ means the transpose of 𝜆, that is, 𝜆′𝑖 is the number of cells in the i-th column of 𝜆.

In other words, partition 𝜇, defined by equation (1.12), is such that 𝜇′𝑖 is the speed of the i-th column
of (𝑃𝑡 , 𝑄𝑡 ), or the number of labeled cells eventually remaining in it, when t becomes large. It is an easy
exercise to verify that limits (1.12) always exist and numbers 𝜇′𝑖 define, in fact, an integer partition; see
Proposition 4.15 below. In our example, we have

𝜇(𝑃, 𝑄) = . (1.13)

The same stabilization phenomenon happens when iterating the map RSK−1, and we have, for
instance,

( 1
2 3 4

1 3 5
2

,

2
1 3 3

2 2 5
3

)
RSK−10

−−−−−−−−−−−−−→

��������	

−29 1
−28 4
−27 5

...
...

...
...

−18 2
−17 1 3
−16 3

...
...

−8 2

,

−29 2
−28 3
−27 5

...
...

...
...

−18 1
−17 2 3
−16 3

...
...

−8 2


��������
. (1.14)
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A striking observation is that asymptotic increments of tableaux in the right-hand side of equations
(1.10), (1.14) are equal, if we sort columns by length: In both cases, labeled cells eventually arrange
themselves into four blocks which propagate with the same fixed speeds 3,2,2,1. This is not a coincidence.
For any chosen pair of tableaux 𝑃, 𝑄, the ‘backward’ asymptotic increments one computes taking the
limit RSK−𝑡 (𝑃, 𝑄) for large t are always equal to 𝜇(𝑃, 𝑄), after sorting columns by length. This strongly
suggests that the asymptotic increments 𝜇 record in fact conserved quantities of the skew RSK dynamics
throughout the time evolution, and the information of 𝜇 may be contained already in (𝑃, 𝑄). This leads
us to the first major question.

Question 1. Can we characterize the asymptotic increment 𝜇 in terms of the initial data (𝑃, 𝑄)?

We will answer this question in Proposition 1.2 and in Proposition 6.6 in the text. Moreover, the
equivalence between backward and forward asymptotic increment will be addressed by result in Propo-
sition 9.1.

The existence of conservation laws suggests that the skew RSK dynamics admits a description as an
integrable system. In fact, the skew RSK dynamics show a clear resemblance to the multispecies Box–
Ball system (BBS), which is a well-known discrete classical integrable system [40, 83–85] (see [46] for a
review). We find such perspective particularly insightful. In this language, columns of tableaux become
solitons. When 𝑡 � 0, they are well separated and travel independently with their own speeds. At some
point, they interact with each other through collisions that momentarily mess up their structure. Once
mutual interactions end, they recover their original shape and again propagate with the same speed as
before. A profound result in the theory of classical integrable systems is that the whole time evolution of
such a system is fully determined by the knowledge of the scattering rules. These consist in the precise
description of exchange of degrees of freedom (i.e., how content of columns changes between backward
and forward aysmptotic states) and of the phase shift, which in our context are the shifts in asymptotic
positions of solitons as compared to the ones anticipated from initial positions and speeds assuming no
interaction occurs.

A natural question here is the following.

Question 2. Can we describe the scattering rules of the skew RSK dynamics?

The answer to such questions from the point of view of solition theory will be provided in Section 9.
The asymptotic increment 𝜇 was defined to be a partition such that 𝜇′𝑖 is the number of labeled cells

of the i-th column in 𝑃𝑡 , 𝑄𝑡 for large t. Recording labels eventually remaining on each column of 𝑃𝑡 , 𝑄𝑡 ,
we can construct two tableaux 𝑉, 𝑊 , each of which consists of columns of increasing numbers. We will
refer to these as vertically strict tableaux, and they differ from semistandard tableaux in that there is
no condition on rows.1 This defines a projection map Φ from a pair of skew tableaux (𝑃, 𝑄) to a pair
of vertically strict tableaux (𝑉, 𝑊). In the example, we are considering in this section, from equation
(1.10) we can write Φ(𝑃, 𝑄) = (𝑉, 𝑊), with

𝑉 =
1 1 3 4
2 2 5
3

, 𝑊 =
1 2 2 3
2 5 3
3

. (1.15)

Vertically strict tableaux, though much less studied compared to semistandard tableaux, play an impor-
tant role in our theory because their generating function, with suitable weights, is known to produce the
q-Whittaker polynomial [65, 75, 77]; see equation (1.32) below. This opens up a possibility to understand
Cauchy type summation identities involving q-Whittaker polynomials in a bijective fashion. In order to
do so, we need to account for the information we lose while projecting, through Φ, a pair of tableaux
(𝑃, 𝑄) to the corresponding vertically strict tableaux (𝑉, 𝑊). Then we arrive at the following question.

1Note that ‘column strict tableaux’, which sounds like a natural term to denote our vertically strict tableaux, is often used as
a synonym of semistandard tableaux. In literature ‘column strict fillings’ is also sometimes used (e.g., [58]), but we decided to
employ a new term which includes the word ‘tableaux’.
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Question 3. Can we refine projection Φ into a bijection?

The answer to this third question represents a fundamental problem we solve in this paper. The refined
map Υ, which will be described in Section 1.3 and Section 8, yields a bijection between pairs (𝑃, 𝑄) of
skew tableaux and pairs of vertically strict tableaux (𝑉, 𝑊) plus some ‘additional data’ characterizing,
for instance, the shape of RSK𝑡 (𝑃, 𝑄) for large t.

1.3. Results, ideas and tools, and applications

There are two main results in this paper: the characterization of asymptotic increment 𝜇(𝑃, 𝑄) as Greene
invariants and the construction of the bijection Υ. The first result answers Question 1. The second one,
while being a direct answer to Question 3, also resolves Question 2. An application of bijection Υ, leads
to summation identities involving q-Whittaker polynomials. In the following paragraphs, we explain
these results together with main ideas and tools to obtain them.

1.3.1. Generalized Greene invariants
In the previous subsection, we hinted how the asymptotic increment 𝜇(𝑃, 𝑄) records certain conserved
quantities of the skew RSK dynamics, result that we will prove in Proposition 6.6. In order to explain
these conservation laws, we find that algorithmic description of the skew RSK map given in terms
of Schensted’s bumping algorithm is not particularly insightful. Instead, we employ a geometrical
visualization of the RSK correspondence through Viennot’s shadow line construction [88]. An analogous
geometric realization can be devised for the Sagan–Stanley correspondence, where Viennot’s shadow
lines are ‘drawn’ in a lattice with periodic geometry that we call a twisted cylinder.

For a natural number n, the twisted cylinder 𝒞𝑛 can be represented as an infinite vertical strip
{1, . . . , 𝑛} × Z, where we impose faces (𝑛, 𝑖) and (1, 𝑖 + 𝑛) to be adjacent for all i; see Figure 1. For a
more precise definition, see Section 4.3. A matrix of nonnegative integer sequences 𝑀 = (𝑀 𝑖, 𝑗 (𝑘) :
𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑘 ∈ N0) can be represented as a map 𝑀 : 𝒞𝑛 → N0 by setting2

𝑀 ( 𝑗 , 𝑖 − 𝑘𝑛) = 𝑀 𝑖, 𝑗 (𝑘), for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑘 ∈ N0, (1.16)

with a slight abuse of notation. In this new representation the Sagan–Stanley correspondence, described
in Section 4.3 below, gives a bijection between compactly supported fillings 𝑀 of 𝒞𝑛 and partitions 𝜈
to pairs of tableaux. As an example, such correspondence applied to the pair (𝑃, 𝑄) used in Section 1.2
above appears in Figure 1 where, for the sake of cleaner notation we left cells ( 𝑗 , 𝑖) of 𝒞𝑛 empty
whenever 𝑀 ( 𝑗 , 𝑖) = 0. In the same figure, the entries of 𝑀 are taken, for simplicity, to be all 0 or 1,
although in general we have 𝑀 𝑖, 𝑗 (𝑘) ∈ N0. In case all entries 𝑀 𝑖, 𝑗 (𝑘) = 0 for 𝑘 ≠ 0 such representation
reduces to the Matrix–Ball construction by Fulton [31] and the Sagan–Stanley correspondence becomes
the usual RSK.

An up-right path 𝜛 on the twisted cylinder is a sequence (𝜛ℓ : ℓ ∈ Z) ⊂ 𝒞𝑛 such that

𝜛ℓ+1 ∼𝑛 𝜛ℓ + e1, or 𝜛ℓ+1 ∼𝑛 𝜛ℓ + e2, for all ℓ ∈ Z, (1.17)

where∼𝑛 means the equivalence relation such that𝒞𝑛 = Z2/∼𝑛; see Proposition 4.2 in the text. Examples
of up-right paths are colored trajectories in Figure 2. Notice that the up-right condition, along with the
geometry of 𝒞𝑛 implies that 𝜛 is not self-intersecting. Define the passage time of an up-right path 𝜛 as

𝐺 (𝜛; 𝑀) =
∑
ℓ∈Z

𝑀 (𝜛ℓ). (1.18)

2In the context of RSK correspondence, it is common to represent matrices M transposed and with first rows drawn at the
bottom. This explains why 𝑀 𝑖, 𝑗 (𝑘) becomes 𝑀 ( 𝑗 , 𝑖 − 𝑘𝑛) .

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.23


Forum of Mathematics, Pi 9

Figure 1. A realization of the Sagan–Stanley correspondence (𝑀; 𝜈)
SS
←→ (𝑃, 𝑄). The matrix 𝑀 is

represented as a filling of the twisted cylinder 𝒞5. Solid colored lines are identified by periodicity.

Figure 2. Up-right paths 𝜛 (•) , 𝜛 (•) , 𝜛 (•) maximize the passage times.

Objects as passage times are standard in the context of the RSK correspondence [36], although in
classical setting endpoints of paths are usually fixed. In our case, up-right paths are always infinite and
have no endpoints. Define the last passage time of k disjoint paths

𝐼𝑘 (𝑀) = max
𝜛 (1) ·∪··· ·∪𝜛 (𝑘) ⊂𝒞𝑛

𝜛 ( 𝑗) :up-right path

𝑘∑
𝑗=1

𝐺 (𝜛 ( 𝑗) ; 𝑀), (1.19)

where ·∪ denotes the disjoint union. For the map 𝑀 given in Figure 1, all last passage times can be
computed explicitly, as done in Figure 2. It is in general not true that the maximizer is unique or that in
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order to maximize the passage time for 𝑘 + 1 paths it suffices to add an up-right path to a maximizing
list of k paths.

The first original result we present relates last passage times of a matrix 𝑀 with the asymptotic
increment 𝜇 of pair of tableaux (𝑃, 𝑄) corresponding to 𝑀 under Sagan–Stanley correspondence. We
think of this as a generalization of Greene’s theorem [36].

Theorem 1.2 (Corollary of Proposition 6.6 in the text). Consider (𝑀; 𝜈)
SS
←→ (𝑃, 𝑄), and let 𝜇 =

𝜇(𝑃, 𝑄) be the asymptotic increment of (𝑃, 𝑄) under the skew RSK dynamics. Then we have

𝐼𝑘 (𝑀) = 𝜇1 + · · · + 𝜇𝑘 , (1.20)

for all 𝑘 = 1, 2, . . . .

The reader can check the validity of Proposition 1.2 comparing 𝜇 of equation (1.13) and last passage
times in Figure 2. Motivated by equation (1.20), in the text we will often refer to the partition 𝜇(𝑃, 𝑄)
as Greene invariant. We will see in Section 6 that the statistic 𝜇 is indeed invariant with respect to
a number of operations on (𝑃, 𝑄) including (generalized) Knuth relations, Kashiwara operators and
skew RSK map. In Proposition 6.6, an additional characterization of 𝜇(𝑃, 𝑄) is given, in terms of
maximizing closed loops on the twisted cylinder. This represents an additional generalization of the
Greene’s theorem [74, Chapter 3].

The following result is an extension in skew setting of the classical Schensted’s theorem [76]. It is
an immediate corollary of Proposition 1.2 along with the fact that the skew RSK map does not modify
the length of the first row of the tableaux.

Corollary 1.3. Consider (𝑀; 𝜈)
SS
←→ (𝑃, 𝑄), and let 𝜆/𝜌 be the common shape of skew tableaux (𝑃, 𝑄).

Then

𝜆1 = 𝜈1 + 𝐼1(𝑀). (1.21)

In [10, Theorem 2.1], authors prove a similar statement relating the first row (𝜆1) of a ‘free boundary
Schur processes’ to a random shift (𝜈1) of the last passage time 𝐼1 in a geometry slightly different from
the cylinder 𝒞𝑛. Such statement follows from standard properties of Fomin growth diagrams and in [10]
the quantity 𝐼1 was just the last passage time and it was not related to the asymptotic increment of the
corresponding pair (𝑃, 𝑄). Proposition 1.2 and this corollary represent a partial answer to questions (1)
and (3) of [73, Section 9].

To prove Proposition 1.2, we regard fillings of the twisted cylinder 𝒞𝑛 as ‘particle’ configurations.
We then define a deterministic dynamics V : 𝑀 ↦→ 𝑀

′, transporting particles from sources of Viennot’s
shadow lines to the sinks. For the definition of the map V, see Proposition 4.6, while for a quick view
of rules of this dynamics see Figure 11 at page 34 in the text, where sources (resp. sinks) are denoted
as black (resp. red) dots. This Viennot dynamics is, in a sense, ‘dual’ to the skew RSK dynamics, but
conservation laws are more transparent in this picture. Indeed, we will show, in Proposition 6.5 below,
that last passage times are conserved quantities, that is, 𝐼𝑘 (𝑀) = 𝐼𝑘 (𝑀

′
) holds. To prove this, we will

utilize a number of well-known relations between insertion algorithms and other common operations
in combinatorics, as the jeu de taquin, Knuth relations, Kashiwara operators and so on. For the sake
of clarity of the exposition these prerequisites will be covered, although not extensively, in Section 5
and Appendix A. Translating this into the language of the skew RSK dynamics leads to the proof of
Proposition 1.2.

1.3.2. The bijection 𝚼: statement of results
We come now to present the main result of this paper: a bijection between pairs of semistandard tableaux
and pairs of vertically strict tableaux equipped with additional weights. For any partition 𝜇, we define
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the set

K(𝜇) = {𝜅 = (𝜅1, . . . , 𝜅𝜇1 ) ∈ N
𝜇1
0 : 𝜅𝑖 ≥ 𝜅𝑖+1 if 𝜇′𝑖 = 𝜇′𝑖+1} (1.22)

and for any list of nonnegative integers 𝜂, we denote |𝜂 | = 𝜂1 + 𝜂2 + · · · .

Theorem 1.4 (Proposition 8.1 in the text). There exists a bijection (𝑃, 𝑄)
Υ
←→ (𝑉, 𝑊 ; 𝜅; 𝜈) between

the set of pairs (𝑃, 𝑄) of semistandard Young tableaux with the same skew shape and quadruples
(𝑉, 𝑊 ; 𝜅; 𝜈), with the following properties:

(i) 𝑉, 𝑊 are a pair of vertically strict tableaux of shape 𝜇 and Φ(𝑃, 𝑄) = (𝑉, 𝑊);
(ii) 𝜅 ∈ K(𝜇) and 𝜈 is a partition;

(iii) if 𝑃, 𝑄 have skew shape 𝜆/𝜌, then

|𝜌 | = ℋ(𝑉) +ℋ(𝑊) + |𝜅 | + |𝜈 |, (1.23)

where ℋ is the intrinsic energy function; see Proposition 7.4 in the text.

Note that composing Υ with the Sagan–Stanley correspondence allows to factor out the partition 𝜈
yielding a bijection, denoted by Υ̃, between matrices 𝑀 and triples (𝑉, 𝑊 ; 𝜅). This is more similar to
the classical RSK correpondence; see Proposition 8.2.

Equality (1.23) represents the most nontrivial property of Υ. The intrinsic energy ℋ, discussed more
in Section 1.3.3 and at length in Section 7.1, is a grading statistic on the set of vertically strict tableaux,
which was originally introduced in the theory of crystals [41, 65, 67]. Its precise definition requires the
notion of combinatorial R-matrix and is not reported here in the introduction, but morally it measures
how much a vertically strict tableaux needs to be ‘modified’ to produce a semistandard tableaux.

Although the algorithmic definition of the skew RSK dynamics is not very complicated to apply to
specific examples, as we did in Section 1.2, proving its various properties using only the defining rules
poses serious difficulties. To circumvent these issues, we will implement a more powerful machinery
based on symmetries. More precisely, we will show that the skew RSK dynamics possesses an affine
bicrystal symmetry associated with the affine Lie algebra 𝔰𝔩𝑛. This will allow us to linearize the
dynamics, resulting in the precise construction of bijection Υ and in the proof of its various properties.

1.3.3. Crystal structure
In order to establish Proposition 1.4, we import ideas from the theory of crystals [16, 42], which was
introduced by Kashiwara and Lusztig [49, 50, 61] to study representations of quantum groups. In this
paper, we will only deal with the simple case of the affine Lie algebra 𝔰𝔩𝑛. Applications of crystals are
also common in the context of the BBS, which was mentioned after Question 1 in Section 1.2. For
example, conserved quantities, scattering rules and phase shifts of the BBS can be studied using affine
crystals [30, 46]. We will apply these ideas to precisely analyze the skew RSK dynamics.

Many of the combinatorial objects we deal with possess a natural crystal structure. For instance, it is
a well-known fact that many properties of the RSK correspondence can be understood in the language of
𝔰𝔩𝑛 crystals [16, 60]. In fact, as recalled in [81], even the original algorithm by Robinson [72], could be
stated in terms of crystals. The idea, implicit in [72], is to assign a permutation 𝜋 to a pair of tableaux in
such a way that the assignment commutes with certain transformations, which are nothing but Kashiwara
operators 𝑒̃𝑖 , 𝑓̃𝑖 , 𝑖 = 1, . . . , 𝑛 − 1 in today’s language. Kashiwara operators act on a word by changing
its content according to certain rules; for instance, 𝑒̃𝑖 would change a letter 𝑖 + 1 into i, see Section
5.2. In this way, starting from 𝜋, through successive applications of 𝑒̃𝑖 , 𝑓̃𝑖 one would transform it into a
Yamanouchi word 𝜋Yam whose corresponding tableaux are canonically determined. Then to deduce the
pair (𝑃, 𝑄) associated to 𝜋 one would apply in reverse order the inverse of each Kashiwara operator,
whose corresponding action on tableaux is defined through their column reading word (see Section 5.2).

An example of a well-known 𝔰𝔩𝑛 crystals, which is relevant for our discussions, is the one of vertically
strict tableaux. Here, in addition to 𝑒̃𝑖 , 𝑓̃𝑖 with 𝑖 = 1, . . . , 𝑛 − 1 one has to consider two more operators
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𝑒̃0, 𝑓̃0, which act by replacing 1-labels into n-labels and vice versa, and they are defined conjugating
𝑒̃1, 𝑓̃1 by an operation called promotion [80]. On the set of pairs of vertically strict tableaux (𝑉, 𝑊), we
may define two commuting families of Kashiwara operators

𝐸 (1)𝑖 = 𝑒̃𝑖 × 1, 𝐸 (2)𝑖 = 1 × 𝑒̃𝑖 , 𝐹 (1)𝑖 = 𝑓̃𝑖 × 1, 𝐹 (2)𝑖 = 1 × 𝑓̃𝑖 , (1.24)

letting 𝑒̃𝑖 , 𝑓̃𝑖 act on single components, and this defines an example of 𝔰𝔩𝑛 bicrystal.
To study the skew RSK dynamics, we want to equip also the space of pairs (𝑃, 𝑄) of semistandard

tableaux of skew shape with an 𝔰𝔩𝑛 bicrystal structure, with the requirement that projectionΦ : (𝑃, 𝑄) ↦→
(𝑉, 𝑊) commutes with the action of respective Kashiwara operators. It turns out, however, that a naive
action of Kashiwara operators 𝑒̃𝑖 , 𝑓̃𝑖 used above for vertically strict tableaux is not appropriate on skew
tableaux. This is because, while 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 for 𝑖 = 1, . . . , 𝑛 − 1 and 𝜖 = 1, 2 commute with the skew
RSK map, the same is not true for the 0-th operators 𝐸 (𝜖 )0 , 𝐹 (𝜖 )0 . One of the key novelties in this paper
is that the desired 0-th Kashiwara operators, which commute with the skew RSK map and make of Φ a
morphism of bicrystal graphs in the sense of Proposition 5.1, can be defined using the operation 𝜄2. As
a result, they will act nontrivially on both tableaux of the pair (𝑃, 𝑄). They are given by

𝐸 (2)0 = 𝜄2 ◦ (1 × 𝑒̃1) ◦ 𝜄−1
2 , 𝐹 (2)0 = 𝜄2 ◦ (1 × 𝑓̃1) ◦ 𝜄−1

2 ,

𝐸 (1)0 = 𝜄1 ◦ (𝑒̃1 × 1) ◦ 𝜄−1
1 , 𝐹 (1)0 = 𝜄1 ◦ ( 𝑓̃1 × 1) ◦ 𝜄−1

1 ,
(1.25)

where 𝜄1 is defined through 𝜄2 inverting roles of 𝑃, 𝑄, that is 𝜄1 (𝑃, 𝑄) = swap ◦ 𝜄2 ◦ swap(𝑃, 𝑄). Here,
swap is defined by swap(𝑃, 𝑄) = (𝑄, 𝑃). In this way, as we will show in Section 5.4, the set of pairs of
semistandard tableaux possess an 𝔰𝔩𝑛 bicrystal structure.

1.3.4. The bijection 𝚼: construction
With these preparations, we may now precisely define the correspondence Υ of Proposition 1.4. For this,
we study the skew RSK dynamics for a generic tableaux (𝑃, 𝑄) by generalizing the idea by Robinson.
Namely, we first bring the pair (𝑃, 𝑄) into a certain canonical form (𝑇, 𝑇) through the action of affine
crystal operators, then we run the dynamics on such canonical pair, and finally transforms the result back
applying inverse crystal transformations. Schematically, this procedure is summarized by the following
commuting diagram.

(𝑃, 𝑄) (𝑇, 𝑇)

(𝑃′, 𝑄 ′) (𝑇 ′, 𝑇 ′).

L

RSK RSK
L

(1.26)

Here, (𝑇, 𝑇) is a pair of identical skew tableaux consisting of generalizations in skew setting of Ya-
manouchi tableaux.3 In the text, we will call them leading tableaux; see Proposition 7.15. The definition
of the canonical transformation L is delicate and owes to deep results in the theory of affine crystals. If
V is a vertically strict tableau with intrinsic energy ℋ(𝑉), then a result of [77] guarantees that through
the action of Kashiwara operators 𝑒̃𝑖 , 𝑓̃𝑖 one can always transform V into a Yamanouchi tableau of the
same shape in such a way that the difference # 𝑓̃0 − #𝑒̃0 of 0-th operators used equals ℋ(𝑉). We call
such transformation a leading map L𝑉 , and in Section 7.2 we construct it in terms of the so-called
Demazure arrows. When 𝑉, 𝑊 are the vertically strict tableaux corresponding to 𝑃, 𝑄, that is, when
(𝑉, 𝑊) = Φ(𝑃, 𝑄), they can be both transformed into the same Yamanouchi tableau. For instance, the
ones of equation (1.15) are transformed to

3A Yamanouchi tableaux is a tableaux where content and shape are equal, that is, each cell in the i-th row is an i-cell. In the
text, we denote the Yamanouchi tableau of shape 𝜇′ by 𝜇lv and we will call it leading vector; see Section 5.3
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1 1 1 1
2 2 2
3

, (1.27)

and the respective leading maps are given by the slightly complicated expressions

L𝑉 = 𝑒̃2 ◦ 𝑒̃3 ◦ 𝑒̃4 ◦ 𝑒̃1 ◦ 𝑒̃2 ◦ 𝑒̃3 ◦ 𝑒̃1 ◦ 𝑒̃2,

L𝑊 = 𝑒̃3 ◦ 𝑒̃4 ◦ 𝑒̃1 ◦ 𝑓̃0 ◦ 𝑓̃4 ◦ 𝑓̃3 ◦ 𝑓̃ 2
1 ◦ 𝑒̃2 ◦ 𝑒̃ 3

1 ◦ 𝑒̃2.
(1.28)

Using the affine bicrystal structure for (𝑃, 𝑄), which is homomorphic to the one for (𝑉, 𝑊), we can
simultaneously lift up the leading maps L𝑉 ,L𝑊 and define the map L on (𝑃, 𝑄). Moreover, our new
0-th operators (1.25) allow to transport the result of [77] at the level of pairs of skew tableaux.

In particular, the variation in intrinsic energy at the level of vertically strict tableaux yields the
removal of ℋ(𝑉) +ℋ(𝑊) empty boxes from the skew shape of (𝑃, 𝑄). In the text, we will call such
map L the leading map of the pair (𝑃, 𝑄). To give an idea of the result of the application of a leading
map we consider the pair (𝑃, 𝑄) of equation (1.7), and we have( 1

2 3 4
1 3 5
2

,

2
1 3 3

2 2 5
3

)
L

−−−−−−−−→

(
1

1 1 1 2
2 2 3

,
1

1 1 1 2
2 2 3

)
. (1.29)

For more details, consult Section 5 and Section 7 in the text. From the computation above, one can
observe how the value ℋ(𝑉) +ℋ(𝑊) = 1, which follows from equation (1.28) counting the number of
𝑓̃0 operators, coincides with the size difference between skew shapes in equation (1.29).

The leading tableau T resulting from the application of a leading map L, as we will prove in Section
7.4, turns out to be uniquely characterized by a triple of data (𝜇, 𝜅; 𝜈). Here, 𝜇 is a partition recording the
content of T and it is equal to the shape of 𝑉, 𝑊 . 𝜈 is also a partition and it can be easily determined by
‘squeezing’ T, that is, moving its rows as much as possible to the left without breaking the semistandard
property; see Section 2.4. Finally, 𝜅 is an element of K(𝜇), and it encodes the empty shape of T after
the removal of 𝜈. For the tableau T in the right-hand side of equation (1.29), we have 𝜈 = ∅ and
𝜅 = (0, 1, 1, 1).

A crucial observation that motivates such a long construction is that, on leading tableaux, the effect
of the skew RSK map becomes purely linear and it modifies the tableaux 𝑇 (𝜇, 𝜅; 𝜈) by just adding 𝜇′

to 𝜅 as

𝑇 = 𝑇 (𝜇, 𝜅; 𝜈)
RSK

−−−−−−−−−−→ 𝑇 ′ = 𝑇 (𝜇, 𝜅 + 𝜇′; 𝜈). (1.30)

The reader familiar with discrete integrable systems might notice that the linearization given by map
L resembles the Kerov–Kirillov–Reshetikhin (KKR) algorithm for BBS [56], although the precise
connections will be explored in future works.

This parameterization of the leading tableau 𝑇 = 𝑇 (𝜇, 𝜅; 𝜈), along with the pair (𝑉, 𝑊) completes
the construction of bijection Υ. Notice that equality (1.23) can be understood by carefully analyzing the
change of number of empty boxes at each step in the description.

Concluding the example considered throughout the section, we write( 1
2 3 4

1 3 5
2

,

2
1 3 3

2 2 5
3

)
Υ

←−−−−−→

(
1 1 3 4
2 2 5
3

,
1 2 2 3
2 5 3
3

; (0, 1, 1, 1);∅
)

. (1.31)

1.3.5. Summation identities
Finally, we present some of the immediate consequences of Proposition 1.4. We use the well-known fact
[65, 75, 77] that the generating function of vertically strict tableaux of assigned shape 𝜇 and weighted
by ℋ is the q-Whittaker polynomial
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𝑉 ∈𝑉 𝑆𝑇 (𝜇)

𝑞ℋ (𝑉 )𝑥𝑉 = 𝒫𝜇 (𝑥; 𝑞). (1.32)

Bijection Υ, or more precisely the one between 𝑀 and (𝑉, 𝑊, 𝜅) mentioned below in Proposition 1.4,
allows us to establish the Cauchy identity for q-Whittaker polynomials (1.3).

Theorem 1.5 (Bijective proof of Cauchy identity for q-Whittaker polynomials). Fix |𝑞 | < 1 and the set
of variables 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) such that |𝑥𝑖𝑦 𝑗 | < 1. Then equation (1.3) holds and the
normalization term is b𝜇 (𝑞) =

∑
𝜅 ∈K(𝜇) 𝑞

|𝜅 | =
∏
𝑖≥1 1/(𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1 .

The proof of Proposition 1.5 follows a simple bijective argument. The correspondence 𝑀
Υ̃
←→

(𝑉, 𝑊 ; 𝜅) introduced below Proposition 1.4 allows one to interpret monomials (in x’s, y’s and q) from the
expansion in the right-hand side of equation (1.3), which are parameterized by matrices of sequences 𝑀 ,
as monomials in the left-hand side of equation (1.3), which are parameterized by triples (𝑉, 𝑊, 𝜅). The
full argument is reported in Proposition 10.2, where instead of matrices 𝑀 we use their parameterization
in ‘weighted biwords’ 𝜋.

The following identity, which refines the Cauchy identity for both skew Schur polynomials (1.2) and
q-Whittaker polynomials (1.3), was stated and proven in our very recent work [44] using integrable
probabilistic techniques.

Theorem 1.6. Fix |𝑞 | < 1 and sets of variables 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛). Then, for all
𝑘 = 0, 1, 2, . . . , we have

𝑘∑
ℓ=0

𝑞ℓ

(𝑞; 𝑞)ℓ

∑
𝜇:𝜇1=𝑘−ℓ

b𝜇 (𝑞)𝒫𝜇 (𝑥; 𝑞)𝒫𝜇 (𝑦; 𝑞) =
∑

𝜆,𝜌:𝜆1=𝑘

𝑞 |𝜌 |𝑠𝜆/𝜌 (𝑥)𝑠𝜆/𝜌 (𝑦). (1.33)

Indeed, the original motivation of this work was to find a bijective proof of this identity, which is
now accomplished by the bijection Υ in Proposition 1.4. A number of analogous identities, such as
Littlewood-like identities involving summations of single q-Whittaker polynomials, will be presented
in Sections 10.1 and 10.2. They all follow from Proposition 1.4 and can be proven bijectively. See
Proposition 10.3.

Remark 1.7. The summation identities of Proposition 1.6, as well as equations (1.2), (1.3), have been
reported by assuming that the set of variables 𝑥, 𝑦 are n-tuples of complex numbers. Such assumption is
not necessary to our results and only serves the purpose of keeping the notation as simple as possible.
In general x and y in equation (1.33) can be arbitrary specializations of the algebra of symmetric
functions; see Proposition 10.8. Analogously, we have assumed that matrices 𝑀 𝑖, 𝑗 (𝑘) are squared; that
is, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. This is also not necessary, and our results and constructions hold also for rectangular
matrices.

Identities such as equation (1.33) or equation (10.38) in the text have important consequences in
the realm of integrable probability which we will develop in a forthcoming paper [45]. In fact, they
provide a new way of solving stochastic integrable systems in the KPZ class connecting q-Whittaker
polynomials with manifestly determinantal and pfaffian point processes, as the ones related to skew Schur
polynomials [9–11]. This accomplishes a generalization in q-deformed setting of the original techniques
employed by Johansson to solve the totally asymmetric simple exclusion process [47]. Moreover,
properties of bijection Υ, resulting in identity (10.38), allow us to generalize ideas of Baik and Rains
who used symmetries of the RSK correspondence to study, on the same footing, asymptotics of random
permutations with various symmetries [5, 6]. In particular, this will solve, bypassing complicated Bethe
Ansatz calculations, the outstanding problem of rigorously establishing pfaffian formulas for solvable
models in the KPZ class in restricted environment [7, 8, 12, 55]. We will elaborate on these results
in [45].
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1.4. Outline

In Section 2, we fix the notation and introduce different useful parameterizations of Young tableaux and
other combinatorial objects. In Section 3, we discuss the skew RSK map in its various formulations both
in terms of the insertion algorithms and of edge local rules. In Section 4, we describe Sagan and Stanley’s
correspondence and we introduce an integrable dynamics on matrices. We call it Viennot dynamics,
being based on the shadow line construction. In Section 5, we endow various combinatorial objects
with an affine bicrystal structure. In Section 6, we establish conservation laws for the Viennot dynamics
and characterize asymptotic increments 𝜇(𝑃, 𝑄) as Greene invariants. In Section 7, we discuss the
combinatorial R-matrix, the intrinsic energy function ℋ. Subsequently, we implement a combinatorial
transformation that reduces the skew RSK map to a linear map. Such linearization defines a useful class
of tableaux, we call leading tableaux and which we study in detail. In Section 8, we discuss our bijection
Υ, proving Proposition 1.4. In Section 8.3, we also propose, without entering technical discussion, a
few natural extensions of Proposition 1.4. In Section 9, we study the scattering and phase shift of the
skew RSK dynamics. Finally, in Section 10, we give proofs of a number of summation identities for
q-Whittaker polynomials and skew Schur polynomials. In Appendix A, we review classical notions of
Knuth relations and we propose their generalizations in skew setting. In Appendix B, we give a proof
of an invariance property of last passage times with respect to crystal operators.

2. Preliminary notions

2.1. Biwords and matrices of integers

We introduce the alphabet A𝑛 = {1, . . . , 𝑛}, and we denote by A∗𝑛 the set of word of finite length in A𝑛.
The length of a word p is denoted by ℓ(𝑝), while its content is recorded by an array 𝛾 = (𝛾1, . . . , 𝛾𝑛),
where 𝛾𝑖 equals the multiplicity of i in p.

Given two natural numbers 𝑛, 𝑚 we denote by A𝑛,𝑚 the set of biwords in the alphabets A𝑛,A𝑚. A
biword 𝜋 ∈ A𝑛,𝑚 is an array of pairs

( 𝑞1 𝑞2 · · · 𝑞𝑘
𝑝1 𝑝2 · · · 𝑝𝑘

)
, 𝑘 ∈ N, where 𝑞𝑖 ∈ A𝑚, 𝑝𝑖 ∈ A𝑛 and whose columns

are ordered lexicographically. This means that for all i we have 𝑞𝑖 ≤ 𝑞𝑖+1 and whenever 𝑞𝑖 = 𝑞𝑖+1, then
𝑝𝑖 ≤ 𝑝𝑖+1. Clearly, words 𝑝1 . . . 𝑝𝑘 are particular cases of biwords, obtained setting 𝑞𝑖 = 𝑖. Permutations
𝜎 ∈ S𝑛 are also particular cases of biwords where we set 𝑞𝑖 = 𝑖 and 𝑝𝑖 = 𝜎𝑖 .

Given A𝑛,A𝑚 we consider weighted biwords in these alphabets and we denote their set by A𝑛,𝑚.
Elements of A𝑛,𝑚 are arrays of triplets4

𝜋 =
��	
𝑞1 𝑞2 · · · 𝑞𝑘
𝑝1 𝑝2 · · · 𝑝𝑘
𝑤1 𝑤2 · · · 𝑤𝑘


�� , (2.1)

where again 𝑞𝑖 ∈ A𝑚, 𝑝𝑖 ∈ A𝑛 and weights 𝑤𝑖 ∈ Z. Columns of a weighted biword are arranged so that
the biword composed by 𝑞, 𝑝 is lexicographically ordered, with top entries taking precedence, while if
𝑞𝑖 = 𝑞𝑖+1 and 𝑝𝑖 = 𝑝𝑖+1, then 𝑤𝑖 ≥ 𝑤𝑖+1. The total weight of a weighted biword 𝜋 is the sum of the 𝑤𝑖
entries and we denote it by wt(𝜋), that is, wt(𝜋) =

∑
𝑖 𝑤𝑖 . In this text, weighted biwords will always be

denoted by overlined Greek letters 𝜋, 𝜎, 𝜉, . . . so to distinguish them from biwords, whose symbols are
never overlined.

For later use, we also present an alternative format to express a weighted biword, which we call
timetable ordering. Given 𝜋 its timetable ordering 𝜋

^ is the array consisting of the same triplets of 𝜋

arranged in such a way that 𝑤
^

𝑖 ≥ 𝑤
^

𝑖+1 and in case 𝑤
^

𝑖 = 𝑤
^

𝑖+1 then 𝑞
^

𝑖 ≤ 𝑞
^

𝑖+1 and if also 𝑞
^

𝑖 = 𝑞
^

𝑖+1 then
𝑝
^

𝑖 ≤ 𝑝
^

𝑖+1. Examples of a weighted biword and of its timetable ordering are

4In [73] columns
( 𝑞𝑖
𝑝𝑖
𝑤𝑖

)
were denoted by

( 𝑞𝑖

𝑝
(𝑤𝑖 )
𝑖

)
.
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𝜋 =
��	
1 1 1 1 2 3 3 3 4
2 3 3 3 1 3 4 4 2
0 2 1 1 0 1 2 −1 1


�� , 𝜋
^
=
��	
1 3 1 1 3 4 1 2 3
3 4 3 3 3 2 2 1 4
2 2 1 1 1 1 0 0 −1


�� . (2.2)

Particular cases of weighted biwords are weighted words, where we assume 𝑞𝑖 = 𝑖, or weighted
permutations, where 𝑞𝑖 = 𝑖 and 𝑝1, · · · , 𝑝𝑘 form a permutation of {1, . . . , 𝑘}. We also use the notion
of partial (weighted) permutations, that are weighted biwords where each q and p rows present no
repetitions. The set of weighted biwords where all weights are nonnegative integers will be important
to us and is denoted with A

+

𝑛,𝑚.
Biwords ofA𝑛,𝑚 are in natural bijection with the set of rectangular matrices with nonnegative integral

entries

M𝑛×𝑚 � {(𝑀𝑖, 𝑗 ; 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚) : 𝑀𝑖, 𝑗 ∈ N0}. (2.3)

Such correspondence is realized assigning to 𝜋 the matrix m with elements

𝑀𝑖, 𝑗 = # of
(
𝑗

𝑖

)
in 𝜋. (2.4)

Analogously, weighted biwords ofA𝑛,𝑚 are in correspondence with rectangular matrices whose elements
are eventually vanishing sequences of nonnegative integers

M𝑛×𝑚 = {(𝑀 𝑖, 𝑗 : Z→ N0 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚) : 𝑀 𝑖, 𝑗 (𝑘) = 0 for |𝑘 | � 0}. (2.5)

Also in this case to a weighted biword 𝜋, we assign the matrix 𝑀 defined by

𝑀 𝑖, 𝑗 (𝑘) = # of ��	
𝑗
𝑖
𝑘


�� in 𝜋. (2.6)

As earlier, we will always denote matrices ofM𝑛×𝑚 by overlined capital letters to distinguish them from
those ofM𝑛×𝑚. The subset ofM𝑛×𝑚 in bijection with nonnegatively weighted biwords A

+

𝑛,𝑚 is denoted
byM+𝑛×𝑚. The weight of a matrix is defined as

wt(𝑀) =
∑
𝑘∈Z

𝑘
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑀𝑖, 𝑗 (𝑘)

so that under correspondence (2.6) we have wt(𝑀) = wt(𝜋). We will represent matrices 𝑀 ∈ M𝑛×𝑚,
with a slight abuse of notation, as compactly supported maps 𝑀 : {1, . . . , 𝑚} × Z → N0 via the
identification

𝑀 ( 𝑗 , 𝑖 − 𝑘𝑛) = 𝑀 𝑖, 𝑗 (𝑘), for all 𝑖 ∈ A𝑛, 𝑗 ∈ A𝑚, 𝑘 ∈ Z. (2.7)

Given two weighted biwords 𝜋, 𝜋′, we consider their disjoint union 𝜋 ·∪ 𝜋′ formed taking all columns
of 𝜋 and 𝜋′ and rearranging them in the correct order. In case 𝑀, 𝑀

′ are the matrices corresponding to
𝜋, 𝜋′, then naturally 𝑀 + 𝑀

′ is the matrix associated to their union.
Throughout the paper, we will consider a number of operations on biwords and most of times these

will have a nice description in the language of matrices. For instance, if 𝑀 is the matrix corresponding to
a weighted biword 𝜋, then to its transpose 𝑀

𝑇 it will correspond a biword 𝜋−1 obtained from 𝜋 swapping
the p and the q rows and rearranging the result in the prescribed order. This notation is standard and is
justified by the fact that when 𝜋 is a permutation 𝜋−1 is its inverse in the symmetric group.
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Figure 3. 𝑅𝑖’s and 𝑟𝑖’s for a partition 𝜇.

2.2. Partitions and Young diagrams

A partition 𝜆 = (𝜆1, 𝜆2, · · · ) is a weakly decreasing sequence of integers 𝜆𝑖 eventually being zero. The
number of nonzero parts of 𝜆 is its length, and it is denoted by ℓ(𝜆). We say that 𝜆 partitions k if
|𝜆 | = 𝜆1 + 𝜆2 + · · · = 𝑘 and sometimes we write 𝜆 � 𝑘 . The multiplicative notation 𝜆 = 1𝑚1 (𝜆)2𝑚2 (𝜆) · · ·

is often used and 𝑚𝑖 (𝜆) denotes the multiplicity of i in 𝜆. The set of all partitions is denoted by Y.
Sometimes, we will refer to arrays 𝜘 = (𝜘1, . . . , 𝜘𝑁 ) ∈ N

𝑁
0 of N nonnegative integers as compositions.

Given a composition 𝜘 ∈ N𝑁0 , we denote by 𝜘+ the unique partition that can be generated permuting
elements of 𝜘.

Partitions are identified by their Young diagrams, and we will freely interchange these two notions.
Viewing the plane Z × Z with the vertical coordinate increasing downward, the Young diagram of 𝜆 is
the collection of cells (𝑐, 𝑟) with 1 ≤ 𝑟 ≤ ℓ(𝜆) and 1 ≤ 𝑐 ≤ 𝜆𝑟 . Reflecting the Young diagram of 𝜆
with respect to the main diagonal, we obtain the transposed partition 𝜆′ with parts 𝜆′𝑖 = #{ 𝑗 : 𝜆 𝑗 ≥ 𝑖}.
Given two partitions 𝜇, 𝜆, we write 𝜇 ⊆ 𝜆 if 𝜇𝑖 ≤ 𝜆𝑖 for all i or equivalently if their Young diagrams are
encapsulated. When 𝜇 ⊆ 𝜆, we define the skew Young diagram 𝜆/𝜇 consisting of all all cells in 𝜆 but
not in 𝜇. The number of cells of 𝜆/𝜇 is denoted with |𝜆/𝜇 |.

As hinted in the introduction, for the discussion in this paper, it is essential to allow Young diagrams to
have rows at nonpositive coordinates. For this, we define the upward translation T−𝑖 : (𝑐, 𝑟) ↦→ (𝑐, 𝑟 − 𝑖),
for any 𝑖 ∈ N0 and the set of generalized Young diagrams Y−𝑖 = T−𝑖 (Y). A generalized Young diagram
𝜆 ∈ Y−𝑖 is associated to its generalized partition (𝜆1−𝑖 , 𝜆2−𝑖 , . . . ). The notion of skew diagrams is
defined as always: If 𝜇, 𝜆 ∈ Y−𝑖 , then 𝜆/𝜇 is the set of cells in 𝜆 but not in 𝜇. When drawing generalized
Young diagrams we will color cells at nonpositive rows in gray to give a reference. We report an example
of a skew Young diagram and a generalized one obtained translating it

T−3
−−−−−→

−2
−1
0
1
2
3

. (2.8)

At times, we will need to distinguish generalized Young diagrams from nongeneralized ones, that in
these circumstances will be called classical. Statements and constructions reported in this text often
apply the same to classical Young diagrams or to generalized Young diagrams and unless required, we
will not stress the difference. Nevertheless, we point out that not every operation defined on classical
Young diagrams is possible in the generalized case: For instance, the notion of transposition 𝜆′ is only
defined if 𝜆 ∈ Y.

Given a classical Young diagram 𝜇, its rectangular decomposition is given by indices 0 = 𝑅0 < 𝑅1 <
· · · < 𝑅𝑁 = 𝜇1 such that

𝜇′𝑅𝑖−1+1 = · · · = 𝜇′𝑅𝑖 > 𝜇′𝑅𝑖+1, (2.9)

for 𝑖 = 1, . . . , 𝑁; see Figure 3. When using the notion of rectangular decomposition, we will denote by
𝑟𝑖 = 𝑅𝑖−1 − 𝑅𝑖 the base of each rectangle of 𝜇.
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2.3. Young tableaux

A Young tableau, or simply a tableau, T is a filling of cells of a Young diagram with natural numbers.
The label assigned to a specific cell (𝑐, 𝑟) ∈ 𝜆 is indicated with 𝑇 (𝑐, 𝑟) and in this case 𝜆 is called
shape of T. If a cell has label ℓ we call that an ℓ-cell. The content of a tableau T is recorded by an array
𝛾 = (𝛾1, 𝛾2, . . . ), where 𝛾𝑖 = #𝑖-cells in T. We will mainly deal with two types of tableaux. Semistandard
tableaux have entries strictly increasing column-wise and weakly increasing row-wise. When their labels
range in the alphabet A𝑛 and the shape 𝜆/𝜌 is fixed, we denote their set by 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛). In such cases,
we call 𝜆 the external shape and 𝜌 the empty shape. It could happen that the shape 𝜆/𝜌 of T is a
generalized skew Young diagram, as in the examples in Section 1.2, and in such cases T is a generalized
semistandard tableau. As before, we will not stress the generalized property unless required. A particular
class of semistandard tableaux is that of standard tableaux, defined by the property of having content
𝛾𝑖 = 1 for all 𝑖 = 1, . . . , |𝜆/𝜌 |. Their set is denoted by 𝑆𝑇 (𝜆/𝜌).

The other class of tableaux, which will play an important role in this paper, is that of vertically
strict tableaux that have labels strictly increasing column-wise and no additional conditions. These are
sometimes called ‘column strict fillings’ [58] or when entries have no repetitions ‘column tabloids’ [74].
Shapes of vertically strict tableaux will always be straight (i.e., nonskew) classical Young diagrams
𝜇 ∈ Y, and we denote their set by 𝑉𝑆𝑇 (𝜇, 𝑛) when entries range in the alphabet A𝑛. Examples of
semistandard and vertically strict tableaux are

2 4
1 3 3 5

1 2 5
and

2 4 1 1 3
3 5 3 2
5

, (2.10)

with content, respectively, equal to (2, 2, 2, 1, 2) and (2, 2, 3, 1, 2).
Given a tableau T, we define its row reading word 𝜋row

𝑇 concatenating rows of T starting from the
last. Alternatively, the column reading word 𝜋col

𝑇 is formed reading entries of T column by column from
the last row up and from left to right. For instance, if T is the semistandard tableau in equation (2.10)
we have

𝜋row
𝑇 = 1 2 5 1 3 3 5 2 4 and 𝜋col

𝑇 = 1 2 1 5 3 3 2 5 4. (2.11)

2.4. Kernels of tableaux

We now define a useful statistic of a semistandard Young tableau of classical shape.

Definition 2.1. Given a classical skew tableaux 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), its kernel is the partition 𝜘 = ker(𝑃) ∈
Y such that, for all 𝑗 = 1, 2, . . . , 𝜘 𝑗 − 𝜘 𝑗+1 is the maximal number of boxes one can shift the first j rows
of P to the left without breaking the semistandard property.

For example, if

𝑃 =
2 4

1 3 3 5
1 2 5

, then ker(𝑃) = . (2.12)

In fact, shifting the second and first row of P, respectively, one and two cells to the left we obtain the
semistandard tableau of equation (2.10), which cannot be ‘squeezed’ anymore.

In order to describe more precisely the partition ker(𝑃), we introduce the notion of overlap of two
weakly increasing words 𝐴, 𝐵. This is defined as ℓ(𝐵) minus the size of the empty shape of the minimal
semistandard tableaux having first and second row content given by A and B, respectively. In formulas,
we have

ov(𝐴, 𝐵) = max
𝐿∈{0,...,ℓ (𝐴)∧ℓ (𝐵) }

{
𝐿 : 𝐵ℓ (𝐵)−𝐿+𝑖 > 𝐴𝑖 , for all 𝑖 = 1, . . . , 𝐿

}
. (2.13)
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For instance, for 𝐴 = 1 3 3 5 and 𝐵 = 1 2 2 3 4 we have ov(𝐴, 𝐵) = 2 since the minimal semistandard
tableaux with first row A and second row B is

1 3 3 5
1 2 2 3 4 . (2.14)

Recording the j-th row of a tableau 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) in a weakly increasing word 𝑝 ( 𝑗) of length
𝜃 𝑗 = 𝜆 𝑗 − 𝜌 𝑗 and setting 𝜘 = ker(𝑃), we have

𝜘 𝑗 − 𝜘 𝑗+1 = 𝜌 𝑗 − 𝜆 𝑗+1 + ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ). (2.15)

Given a pair (𝑃, 𝑄) of semistandard tableaux with the same shape, we can define ker(𝑃, 𝑄) in the
same way as in Proposition 2.1. If 𝜈 = ker(𝑃, 𝑄), then 𝜈 𝑗 − 𝜈 𝑗+1 is the maximal amount of cells we can
shift the first j rows of P and Q simultaneously to the left without breaking the semistandard property. In
this case, if 𝜘 = ker(𝑃), 𝜅 = ker(𝑄) and 𝜈 = ker(𝑃, 𝑄). then it is clear that for all 𝑗 = 1, 2 . . . , we have

𝜈 𝑗 − 𝜈 𝑗+1 = min{𝜘 𝑗 − 𝜘 𝑗+1, 𝜅 𝑗 − 𝜅 𝑗+1}. (2.16)

2.5. Row coordinate parameterization

To any generalized semistandard tableau 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), we can assign its row-coordinate matrix
𝛼 = rc(𝑃), defined by

𝛼𝑖, 𝑗 = # of 𝑖-cells at row 𝑗 of 𝑃. (2.17)

The set of such infinite matrices is

M𝑛×∞ � {(𝛼𝑖, 𝑗 ∈ N0 : 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ Z) : 𝛼𝑖, 𝑗 ≠ 0 for finitely many 𝑖, 𝑗}. (2.18)

Such encoding of tableaux was defined already in [22]. In case a tableau P is standard, we condense in
an array a information contained in the row-coordinate matrix. Define the row-coordinate array a of a
standard tableaux P as

a 𝑖 = row with the unique 𝑖-cell of 𝑃. (2.19)

We will abuse of the notation and write rc(𝑃) = a ∈ Z𝑘 rather than rc(𝑃) = 𝛼 ∈ M𝑛×∞ when it is clear
from the context that P is standard.

The map rc : 𝑃 ↦→ 𝛼 is not bijective since shifting rows of P laterally does not change its row-
coordinate matrix. It can nevertheless be refined into a bijection recording in a certain way relative
positions of rows of P. We do so in the next definition, where, for the sake of a simpler description, we only
consider the case of tableaux with classical shape. We will use the notation rc(𝑃, 𝑄) = (rc(𝑃), rc(𝑄)).

Definition 2.2. Let 𝜆, 𝜌 ∈ Y and 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛). The row-coordinate parameterization of (𝑃, 𝑄)
is the triple (𝛼, 𝛽; 𝜈) such that (𝛼, 𝛽) = rc(𝑃, 𝑄) and 𝜈 = ker(𝑃, 𝑄). In this case, we use the notation
(𝑃, 𝑄)

rc
←→ (𝛼, 𝛽; 𝜈). Choosing 𝑃 = 𝑄, we also define 𝑃

rc
←→ (𝛼; 𝜈) setting 𝛼 = rc(𝑃), 𝜈 = ker(𝑃).

In the definition above, we have assumed that tableaux 𝑃, 𝑄 have the same classical shape 𝜆/𝜌 and
that their labels belong to the same alphabet A𝑛. This forces their row-coordinate matrices to belong to
the set

M+
𝑛 =

{
(𝛼, 𝛽) ∈ M+𝑛×∞ ×M

+
𝑛×∞ :

𝑛∑
𝑖=1
(𝛼𝑖, 𝑗 − 𝛽𝑖, 𝑗 ) = 0 for all 𝑗 ∈ Z

}
, (2.20)

whereM+𝑛×∞ is the subspace ofM𝑛×∞ of matrices 𝛼 such that 𝛼𝑖, 𝑗 = 0 if 𝑗 ≤ 0.
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Proposition 2.3. The correspondence (𝑃, 𝑄)
rc
←→ (𝛼, 𝛽; 𝜈) is a bijection between the set of pairs (𝑃, 𝑄)

of classical semistandard tableaux with labels in A𝑛 and M+
𝑛 × Y.

Proof. We need to construct the inverse map (𝛼, 𝛽; 𝜈) → (𝑃, 𝑄). For this, define weakly increasing
words 𝑝 ( 𝑗) , 𝑞 ( 𝑗) as

𝑝 ( 𝑗) = 1𝛼1, 𝑗2𝛼2, 𝑗 · · · , 𝑞 ( 𝑗) = 1𝛽1, 𝑗2𝛽2, 𝑗 · · · . (2.21)

Since (𝛼, 𝛽) ∈ M+
𝑛, 𝑝 ( 𝑗) , 𝑞 ( 𝑗) have the same length denoted by 𝜃 𝑗 . Define also partition 𝜂 through

relations

𝜂𝑖 − 𝜂𝑖+1 = 𝜃 𝑗+1 −min
{
ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ), ov(𝑞 ( 𝑗) , 𝑞 ( 𝑗+1) )

}
. (2.22)

Then 𝑃, 𝑄 are the tableaux of shape 𝜆/𝜌 with 𝜆 = 𝜂 + 𝜃 + 𝜈 and 𝜌 = 𝜂 + 𝜈 and with j-th rows given by
words 𝑝 ( 𝑗) , 𝑞 ( 𝑗) . It is straightforward to check that maps (𝑃, 𝑄) ↦→ (𝛼, 𝛽; 𝜈) and (𝛼, 𝛽; 𝜈) ↦→ (𝑃, 𝑄)
are mutual inverses. �

Example 2.4. Consider the pair of semistandard tableaux

(𝑃, 𝑄) =

(
2

1 3
1 2

,
1

2 2
1 3

)
. (2.23)

Then we have (𝑃, 𝑄)
rc
←→ (𝛼, 𝛽; 𝜈), where

𝛼 =
��	
0 1 1 0 · · ·
1 0 1 0 · · ·
0 1 0 0 · · ·


�� , 𝛽 =
��	
1 0 1 0 · · ·
0 2 0 0 · · ·
0 0 1 0 · · ·


�� , 𝜈 = . (2.24)

For later use, we also introduce the set

Z+𝑛 =
{
(a, b) ∈ N𝑛 × N𝑛 : b 𝑖 = a 𝜎 (𝑖) for some 𝜎 ∈ S𝑛

}
, (2.25)

consisting on all pairs (a, b) that are row-coordinate arrays of pairs of standard tableaux. At times in
the text, we will also use sets M𝑛, Z𝑛 defined, respectively, as in equation (2.20), replacing M+𝑛×∞ by
M𝑛×∞ and equation (2.25) replacing N by Z.

2.6. Standardization

We define the operation of standardization [78] of semistandard tableaux

std : 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) ↦→ 𝑃′ ∈ 𝑆𝑇 (𝜆/𝜌). (2.26)

Let 𝛾 = (𝛾1, . . . , 𝛾𝑛) be the content of tableau P, and define Γ𝑖 = 𝛾1 + · · · + 𝛾𝑖 for 𝑖 = 1, . . . , 𝑛, where
Γ0 = 0 by convention. Then cells of 𝑃′ = std(𝑃) are labeled replacing i-cells of P, from the leftmost to
the right with Γ𝑖−1 + 1, . . . , Γ𝑖 . For instance, we have

2
1 3

1 2

std
−−−−−−−→

4
2 5

1 3
. (2.27)

It is clear that, remembering the content 𝛾 of the original tableaux P, one can recover P from its
standardization 𝑃′.
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We present the analog of standardization in the language of matrices. Rows of matrices inM𝑛×∞ are
compactly supported infinite arrays of nonnegative integers, and we denote their set by

V =

{
(𝑣 𝑗 ) 𝑗∈Z : 𝑣 𝑗 ∈ N0 and |𝑣 | =

∑
𝑗∈Z

𝑣 𝑗 < +∞

}
. (2.28)

We will write elements 𝑣 ∈ V via the expansion 𝑣 =
∑
𝑘∈Z 𝑣𝑘 𝑘 , where 𝑘 is the standard basis of the

infinite-dimensional vector space
⊕

𝑘∈Z C. Introducing the Weyl chamber

W
𝑘 = {(a 1, . . . , a 𝑘 ) ∈ Z𝑘 : a 1 ≥ · · · ≥ a 𝑘 }, (2.29)

we define the natural correspondenceW𝑘 ↔ {𝑣 ∈ V : |𝑣 | = 𝑘}, by the invertible mapping

a ↦→ 𝑣(a) =
𝑛∑
𝑖=1

a 𝑖 . (2.30)

Given 𝛼 ∈ M𝑛×∞ and denoting its rows by 𝛼1, 𝛼2, . . . , we define the standardization a = std(𝛼) as the
array

a = (a (1)1 , . . . , a (1)
|𝛼1 |

, . . . , a (𝑛)1 , . . . , a (𝑛)
|𝛼𝑛 |
), (2.31)

obtained joining smaller arrays a (1) ∈ W |𝛼1 | , . . . , a (𝑛) ∈ W |𝛼𝑛 | such that 𝑣(a (𝑖) ) = 𝛼𝑖 , under corre-
spondence (2.30). One can check that standardization of matrices is compatible with the row-coordinate
parameterization, or in other words

rc ◦ std(𝑃) = std ◦ rc(𝑃) (2.32)

for all semistandard tableaux P. An example of such commutation relation can be observed considering
the semistandard tableau P on the left-hand side of equation (2.27), whose row-coordinate matrix
𝛼 = rc(𝑃) was reported in Proposition 2.4. Then we see that both std(𝛼) and rc(std(𝑃)) give as a result
the array a = (3, 2, 3, 1, 2).

3. Skew RSK map and edge local rules

We revisit a combinatorial operation introduced by Sagan and Stanley in [73]. In order to fully describe
its properties, we will present different formulations of this construction.

3.1. Skew RSK map of tableaux

In this subsection, we define the skew RSK map as the result of consecutive operations on pairs of
tableaux 𝑃, 𝑄. In case 𝑃, 𝑄 share the same shape, this is equivalent to the definition RSK = 𝜄𝑛2 given in
the introduction, as proven in Proposition 3.6 below.

Let P be a semistandard tableau of generalized shape 𝜆/𝜌. A cell (𝑐, 𝑟) ∈ 𝜆/𝜌 is a corner cell if
(𝑐−1, 𝑟), (𝑐, 𝑟−1) ∉ 𝜆/𝜌. Consider an integer r such that P has a corner cell (𝑐, 𝑟) at row r. The internal
insertion R[𝑟 ] , first introduced in [73], is the operation that constructs tableau 𝑃′ = R[𝑟 ] (𝑃) vacating
cell (𝑐, 𝑟) of P and inserting value 𝑃(𝑐, 𝑟) at row 𝑟 + 1 following Schensted’s bumping algorithm. For
this, we first find 𝑐 = min{𝑘 : 𝑃(𝑘, 𝑟 + 1) > 𝑃(𝑐, 𝑟)}. If 𝑐 does not exist, we simply add a 𝑃(𝑐, 𝑟)-cell at
the right of row 𝑟 + 1 of P. Alternatively, if 𝑐 exists, we assign cell (𝑐, 𝑟 + 1) label 𝑃(𝑐, 𝑟) and we insert,
following the same mechanism, 𝑃(𝑐, 𝑟 + 1) at row 𝑟 + 2. Eventually, this algorithm stops, and the result
is the tableau 𝑃′. It could also happen that we try the internal insertion R[𝑟 ] at some row r with only
empty cells. In that case, the result is tableaux with an extra empty cell at row r.

The definition of the skew RSK map of tableaux is given below.
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Definition 3.1 (Skew RSK map of tableaux). Let 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), 𝑄 ∈ 𝑆𝑆𝑇 (𝜇/𝜌, 𝑚), for some
generalized Young diagrams 𝜆, 𝜇, 𝜌. Define the skew RSK map of 𝑃, 𝑄

RSK(𝑃, 𝑄) = (𝑃′, 𝑄 ′) ∈
⋃
𝜘

𝑆𝑆𝑇 (𝜘/𝜇, 𝑛) × 𝑆𝑆𝑇 (𝜘/𝜆, 𝑚) (3.1)

via the following algorithm. Set 𝑃 (0) = 𝑃 and 𝑄 (0) = 𝜆/𝜆, that is, 𝑄 (0) has empty shape and external
shape equal to 𝜆. For 𝑗 = 1, . . . , 𝑚, let 𝑟

( 𝑗)
1 ≥ · · · ≥ 𝑟

( 𝑗)
𝑘 𝑗

be the row coordinates of all j-cells of Q and
define

𝑃 ( 𝑗) = R
[𝑟
( 𝑗)
𝑘 𝑗
]
◦ · · · ◦R

[𝑟
( 𝑗)
1 ]
(𝑃 ( 𝑗−1) ). (3.2)

Then define 𝑄 ( 𝑗) , adding to 𝑄 ( 𝑗−1) 𝑗-cells so that the external shape of 𝑄 ( 𝑗) matches that of 𝑃 ( 𝑗) .
Finally, set 𝑃′ = 𝑃 (𝑚) and 𝑄 ′ = 𝑄 (𝑚) . Sometimes, we will consider the skew RSK map between
standard tableaux (𝑃, 𝑄), and in such case, we may call this operation skew RS map.

The reader can check the definition of the skew RSK map of tableaux with the following example,
where for simplicity we have taken 𝑃, 𝑄 of equal shape

(
2

1 3
1 2

,
1

2 2
1 3

)
RSK
−−−→

���	 2
1 1 3
2

, 1
1 2 2
3


��� . (3.3)

We also report step-by-step calculations

(
𝑃 (0) , 𝑄 (0)

)
=

(
2

1 3
1 2

,

)
�

(
𝑃 (1) , 𝑄 (1)

)
=

(
1 2

2 3
1

, 1
1

)

�
(
𝑃 (2) , 𝑄 (2)

)
=

(
1 2

1 2 3
, 1

1 2 2

)
�

(
𝑃 (3) , 𝑄 (3)

)
=
���	 2

1 1 3
2

, 1
1 2 2
3


��� .

Additional examples are given in Figure 6, right panel, and in Section 1.2.

Remark 3.2. The skew RSK map is essentially the same as the skew Knuth map in [73], with one
difference. In [73], the authors allowed the ‘external’ insertion of new cells, prescribed by a biword 𝜋,
in the original pair of classical tableaux (𝑃, 𝑄), so that the skew Knuth map had the form (𝑃, 𝑄; 𝜋) ↦→
(𝑃′, 𝑄 ′). In our case, we don’t consider external insertions, as we imagine that cells that would be
externally inserted from the biword 𝜋 are already present in generalized tableaux (𝑃, 𝑄), although
‘hidden’ at nonpositive rows. Therefore, external insertions in the skew Knuth map correspond, in the
skew RSK map, to cells that, following some internal insertion, move from row 0 to row 1 of the P
tableau. For instance, in Figure 6, right image, we can observe that during the second step of the skew
RSK map a 4-cell bumps into the first row of the P tableau, corresponding to column

(2
4
)

of the biword
denoted there by 𝜋 (1) .

Next, we present a symmetry of the skew RSK map of tableaux that was proven in [73] and that will
be useful in a number of cases.

Proposition 3.3 ([73], Theorem 3.3). If RSK(𝑃, 𝑄) = (𝑃′, 𝑄 ′), then RSK(𝑄, 𝑃) = (𝑄 ′, 𝑃′).

Proposition 3.3 says that, like 𝑃′ and P, also the recording tableau 𝑄 ′ is obtained from Q following
a number of internal insertion. This fact is not obvious from Proposition 3.1.
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The operation of standardization defined at the end of Section 2.2 is well behaved with respect to the
skew RSK map, as stated in the next proposition. This was already observed in [73] and such natural
reduction simplifies proofs of many statements.
Proposition 3.4. We have std ◦ RSK(𝑃, 𝑄) = RS ◦ std(𝑃, 𝑄).
Proof. From Proposition 3.1, it is clear that if (𝑃′, 𝑄 ′) = RSK(𝑃, 𝑄), then

RSK(𝑃, std(𝑄)) = (𝑃′, std(𝑄 ′)). (3.4)

Combining this with the symmetry of Proposition 3.3, we conclude the proof. �

3.2. Operations 𝜾1, 𝜾2: internal insertion with cycling

Here, we introduce two operations 𝜄1, 𝜄2 on pairs of tableaux sharing the same shape. They are the same
as in the introduction.
Definition 3.5 (Internal insertion with cycling). Let (𝑃, 𝑄) be a pair of semistandard tableaux with
same shape. Let 𝑟1 ≥ · · · ≥ 𝑟𝑘 be the row coordinates of all 1-cells of Q. Define

𝜄2 (𝑃, 𝑄) = (𝑃′, 𝑄 ′), (3.5)

where 𝑃′ = R[𝑟𝑘 ] · · ·R[𝑟1 ] (𝑃) and 𝑄 ′ is obtained from Q vacating first all 1-cells, subtracting 1 from
the remaining entries and finally adding n-cells so that the final shape equals that of 𝑃′. For an example,
see equation (1.5). We also define 𝜄1 = swap ◦ 𝜄2 ◦ swap, where swap(𝑥, 𝑦) = (𝑦, 𝑥).

The next proposition states that both 𝜄1 and 𝜄2 represent refinements of the skew RSK map and that
the definition of the skew RSK map of tableaux given in Proposition 3.1 is consistent with the one given
in Section 1.2, under the assumption that 𝑃, 𝑄 have same shape.
Proposition 3.6. For 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), we have

𝜄𝑛1 (𝑃, 𝑄) = RSK(𝑃, 𝑄) = 𝜄𝑛2 (𝑃, 𝑄). (3.6)

Proof. Denote (𝑃̃ ( 𝑗) , 𝑄̃ ( 𝑗) ) = 𝜄
𝑗
2 (𝑃, 𝑄) for 1 ≤ 𝑗 ≤ 𝑛. Comparing Proposition 3.1 and Proposition 3.5,

it is easy to see that 𝑃 ( 𝑗) = 𝑃̃ ( 𝑗) and that, for all 𝑘 = 1, . . . , 𝑗 , k-cells of 𝑄 ( 𝑗) correspond to (𝑘 + 𝑛 − 𝑗)-
cells in 𝑄̃ ( 𝑗) . Taking 𝑗 = 𝑛 proves 𝜄𝑛2 = RSK. The complementary statement 𝜄𝑛1 = RSK follows now
from the swap symmetry of Proposition 3.3. �

Proposition 3.7. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛). Recalling the content 𝛾, define 𝑁𝜖 = 𝛾1 (𝑃) if 𝜖 = 1 or
𝑁𝜖 = 𝛾1 (𝑄) if 𝜖 = 2. Then std ◦ 𝜄𝜖 (𝑃, 𝑄) = 𝜄𝑁𝜖

𝜖 ◦ std(𝑃, 𝑄).
Proof. This follows from the sequential definition of 𝜄1, 𝜄2 given in Proposition 3.5. �

Proposition 3.8. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) for some 𝜆, 𝜌 ∈ Y and define (𝑃̃, 𝑄̃) = 𝜄𝜖 (𝑃, 𝑄) for 𝜖 being
either 1 or 2. Then ker(𝑃, 𝑄) = ker(𝑃̃, 𝑄̃).
Proof. We will only prove our claim for pairs of standard tableaux 𝑃, 𝑄 and for 𝜖 = 2. This implies the
more general case with pairs of semistandard tableaux by Proposition 3.7. On the other hand, the case
𝜖 = 1 follows by the 𝜖 = 2 case since the kernel of a pair of tableaux is invariant under swap, that is,
ker(𝑃, 𝑄) = ker(𝑄, 𝑃).

The proof presented below consists in a case-by-case analysis of the insertion procedure, and although
rather technical, it is not conceptually involved. We will analyze the internal insertion of a cell in the
P tableaux, and we will follow modifications that such insertion imply, showing that, in all cases, the
result, paired with the corresponding changes in the Q tableau does not modify the quantity ker(𝑃, 𝑄).

For any j, let 𝑝 ( 𝑗) , 𝑞 ( 𝑗) , 𝑝 ( 𝑗) , 𝑞 ( 𝑗) be weakly increasing words recording, respectively, the j-th rows
of 𝑃, 𝑄, 𝑃̃, 𝑄̃. Assume that the 1-cell of Q lies at row r and that the n-cell of 𝑄̃ lies at row 𝑟 , that is,
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Figure 4. Notation used in the proof of Proposition 3.8. Here, 𝐿 = ov(𝑎, 𝑏) and 𝑎𝑥 > 𝑏𝑦 so that x and
y form a blocking pair of depth L.

1 ∈ 𝑝 (𝑟 ) and 𝑛 ∈ 𝑝 (𝑟 ) . Then we have 𝑃̃ = R[𝑟 ] (𝑃), and during the internal insertion a new cell gets
created at row 𝑟. Let 𝜈 = ker(𝑃, 𝑄) and 𝜈̃ = ker(𝑃̃, 𝑄̃). We aim to show that for each 𝑗 ≥ 1 we have
𝜈 𝑗 −𝜈 𝑗+1 = 𝜈̃ 𝑗 − 𝜈̃ 𝑗+1. For this, we use the explicit expression of the kernel of a pair of tableaux discussed
in Section 2.4, and we have

𝜈 𝑗 − 𝜈 𝑗+1 = 𝜌 𝑗 − 𝜆 𝑗+1 + ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ) ∧ ov(𝑞 ( 𝑗) , 𝑞 ( 𝑗+1) )

𝜈̃ 𝑗 − 𝜈̃ 𝑗+1 = 𝜌̃ 𝑗 − 𝜆̃ 𝑗+1 + ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ) ∧ ov(𝑞 ( 𝑗) , 𝑞 ( 𝑗+1) ),
(3.7)

where 𝜆̃/𝜌̃ is the the shape of 𝑃̃, 𝑄̃. Since

𝜌̃ 𝑗 = 𝜌 𝑗 + 𝛿 𝑗 ,𝑟 and 𝜆̃ 𝑗 = 𝜆 𝑗 + 𝛿 𝑗 ,𝑟 , (3.8)

to prove our proposition we need to show that

ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ) ∧ ov(𝑞 ( 𝑗) , 𝑞 ( 𝑗+1) ) = ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ) ∧ ov(𝑞 ( 𝑗) , 𝑞 ( 𝑗+1) ) − 𝛿 𝑗 ,𝑟 + 𝛿 𝑗 ,𝑟−1. (3.9)

We start by comparing overlaps between rows of Q and 𝑄̃. We find that

ov(𝑞 ( 𝑗) , 𝑞 ( 𝑗+1) ) = ov(𝑞 ( 𝑗) , 𝑞 ( 𝑗+1) ) − 11∈𝑞 ( 𝑗) + 1𝑛∈𝑞̃ ( 𝑗+1) , (3.10)

which follows from a simple inspection of cycling of letters in the Q tableau, and we only need to
take care of rows where a cell is vacated or created. The comparison between ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ) and
ov(𝑝 ( 𝑗) , 𝑝 ( 𝑗+1) ) is more laborious, and we need to check for all different choices of j. To simplify our
notation, we set 𝑎 = 𝑝 ( 𝑗) , 𝑏 = 𝑝 ( 𝑗+1) , 𝑎̃ = 𝑝 ( 𝑗) , 𝑏̃ = 𝑝 ( 𝑗+1) . If 𝐿 = ov(𝑎, 𝑏), then 𝑎𝑖 < 𝑏ℓ (𝑏)−𝐿+𝑖 for
all 𝑖 = 1, . . . , 𝐿 and there exists x such that 𝑎𝑥 > 𝑏ℓ (𝑏)−𝐿+𝑥−1. Assume that x is the smallest of such
indices, and call 𝑦 = ℓ(𝑏) − 𝐿 + 𝑥 − 1, as in Figure 4. We call (𝑥, 𝑦) a blocking pair of depth L. It is
clear that the existence of a blocking pair of depth L is equivalent to saying that ov(𝑎, 𝑏) = 𝐿. Notice
that such notation also covers extremal cases when 𝐿 = ℓ(𝑎), and 𝐿 = ℓ(𝑏) where we set, respectively,
𝑥 = ℓ(𝑎) + 1 and 𝑦 = 0. Let us now confirm equation (3.9) for all cases.

𝑗 < 𝑟 − 1. In this case, 𝑎 = 𝑎̃, 𝑏 = 𝑏̃ and by equations (3.10), (3.9) holds.
𝑗 = 𝑟−1. Here, we have 𝑎̃ = 𝑎 and 𝑏̃ = 𝑏2 · · · 𝑏ℓ (𝑏) . We set 𝑥 = 𝑥 and 𝑦̃ = 𝑦−1, and this is a blocking pair

of depth L for 𝑎̃, 𝑏̃, whenever 𝑦 ≠ 0. If on the other hand 𝑦 = 0, we have 𝐿 = ℓ(𝑏) and since 1 ∈ 𝑞 (𝑟 ) ,
then 𝐿 > ov(𝑞 (𝑟−1) , 𝑞 (𝑟 ) ) = ov(𝑞 (𝑟−1) , 𝑞 (𝑟 ) ), by equation (3.10). In both cases, equation (3.9) holds.

𝑗 = 𝑟 . In this case, 𝑎̃ = 𝑎2 . . . 𝑎ℓ (𝑎) and 𝑏̃ = 𝑏1 · · · 𝑏 𝑘̄ 𝑎1 𝑏 𝑘̄+2 · · · 𝑏ℓ (𝑏) for an index 𝑘̄ ∈ {0, . . . , ℓ(𝑏)}.
If 𝑘̄ = ℓ(𝑏), then ov(𝑎̃, 𝑏̃) = 𝐿 = 0 and by equation (3.10), equation (3.9) holds. Assume now that
𝑘̄ < ℓ(𝑏). If 𝑥 = 1, then necessarily 𝑘̄ = 𝑦 and 𝑥 = 1, 𝑦̃ = 𝑦 + 1 is a blocking pair of depth 𝐿 − 1 for
𝑎̃, 𝑏̃. If on the other hand 𝑥 ≠ 1, then 𝑘̄ ≤ 𝑦, and in such case we set 𝑥 = 𝑥 − 1, 𝑦̃ = 𝑦, which again is a
blocking pair of depth 𝐿 − 1 for 𝑎̃, 𝑏̃. Overall, we have shown that ov(𝑎̃, 𝑏̃) = ov(𝑎, 𝑏) − 1 + 𝛿𝑘̄ ,ℓ (𝑏) ,
which confirms equation (3.9).

𝑟 < 𝑗 < 𝑟 − 1. We have 𝑎̃ = 𝑎1 · · · 𝑎𝑚̄−1 𝑧 𝑎𝑚̄+1 · · · 𝑎ℓ (𝑎) for some letter z and some index 𝑚̄. Similarly,
we have 𝑏̃ = 𝑏1 · · · 𝑏 𝑘̄ 𝑎𝑚̄ 𝑏 𝑘̄+2 · · · 𝑏ℓ (𝑏) for an index 𝑘̄ ∈ {0, . . . , ℓ(𝑏)}. If 𝑚̄ > 𝑥, then 𝑘̄ ≥ 𝑦 and we
set 𝑥 = 𝑥, 𝑦̃ = 𝑦. If 𝑚̄ = 𝑥, then 𝑘̄ = 𝑦 and we set 𝑥 = 𝑥 + 1, 𝑦̃ = 𝑦 + 1. Lastly, if 𝑚̄ < 𝑥 necessarily
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𝑏̃𝑦 < 𝑎̃𝑥 and we set 𝑥 = 𝑥, 𝑦̃ = 𝑦. In all cases, 𝑥, 𝑦̃ form a blocking pair of depth L for 𝑎̃, 𝑏̃, confirming
equation (3.9).

𝑟 < 𝑗 = 𝑟 − 1. Observe that the case 𝑟 = 𝑗 = 𝑟 − 1 was already treated above. We have 𝑎̃ =
𝑎1 · · · 𝑎𝑚̄−1 𝑧 𝑎𝑚̄+1 · · · 𝑎ℓ (𝑎) for some letter z and some index 𝑚̄ and 𝑏̃ = 𝑏1 · · · 𝑏ℓ (𝑏) 𝑎𝑚̄. Since
𝑎𝑚̄ > 𝑏𝑘 for all k, we necessarily have 𝑚̄ > 𝐿 and 𝑥 = 𝑥, 𝑦̃ = 𝑦 becomes a blocking pair of depth
𝐿 + 1 for 𝑎̃, 𝑏̃. Hence, from equation (3.10), (3.9) holds.

𝑗 = 𝑟. In this case, 𝑎̃ = 𝑎1 · · · 𝑎ℓ (𝑎) 𝑧 for some letter z greater than all entries of a and 𝑏̃ = 𝑏. If ℓ(𝑎) < 𝐿
then necessarily ov(𝑎̃, 𝑏̃) = ov(𝑎, 𝑏), which implies equation (3.10). If on the other hand ℓ(𝑎) = 𝐿,
then it could happen that ov(𝑎̃, 𝑏̃) = 𝐿 +1, if entries of a are small and 𝑧 < 𝑏ℓ (𝑏) . Nevertheless, since

ℓ(𝑎) = ℓ(𝑞 (𝑟 ) ) ≥ ov(𝑞 (𝑟 ) , 𝑞 (𝑟+1) ) = ov(𝑞 (𝑟 ) , 𝑞 (𝑟+1) ), (3.11)

we always have ov(𝑞 (𝑟 ) , 𝑞 (𝑟+1) ) ≤ 𝐿 and equation (3.9) holds.
𝑗 > 𝑟 . Here, 𝑎̃ = 𝑎 and 𝑏̃ = 𝑏 so that equation (3.9) trivially holds.

The previous list of checks exhausts all the cases and completes the proof. �

3.3. The skew RS map of arrays

In this subsection, we introduce the skew RS map of pairs of arrays, following [89]. Due to the
correspondence between arrays and standard tableaux, it provides a diagrammatic realization of the
skew RS map for standard tableaux, as will be seen in Proposition 3.14. It represents a reformulation of
the shadow line construction by Viennot [88], as we see now.

Definition 3.9 (Shadow line construction). Let a ∈ Z𝑛, b ∈ Z𝑚 be a pair of arrays and Λ𝑚,𝑛 =
{1, . . . , 𝑚}×{1, . . . , 𝑛} be a finite rectangular lattice. From the left edge of each cell (1, 𝑖) for 𝑖 = 1, . . . , 𝑛
(resp. bottom edge of each cell ( 𝑗 , 1) for 𝑗 = 1, . . . , 𝑚), start drawing a line of color a 𝑖 to the right
(resp. of color b 𝑗 to the top). We draw the line configuration until every cell of Λ𝑚,𝑛 is crossed both
vertically and horizontally, using the following rules. Lines of different colors cross each other, while if
two lines of the same color C meet, then from the intersection point they will proceed in their rightward
and upward run with their color upgraded to 𝐶 + 1. The ensemble of lines on Λ𝑚,𝑛 generated with this
procedure is called shadow line construction.

For an example of a shadow line construction, see Figure 5. There in correspondence to intersection
points of lines with the same color C we drew bullets of color 𝐶+1. The rules of assigning colors to lines
in this construction can be translated into local rules of configurations on edges of the lattice [27, 89].

Definition 3.10 (Z-valued edge configurations). On a planar lattice Λ ⊆ Z × Z, Z-valued edge con-
figurations E are quadruples of functions (W, S, E, N) : Λ → Z such that E(𝑐) = W(𝑐 + e1) and
N(𝑐) = S(𝑐 + e2) for all points 𝑐 ∈ Λ where these conditions make sense. We say that E is admissible if
it satisfies the local rules

1. E(𝑐) = W(𝑐) and N(𝑐) = S(𝑐), if W(𝑐) ≠ S(𝑐); (3.12)
2. E(𝑐) = N(𝑐) = S(𝑐) + 1, if S(𝑐) = W(𝑐).

In this language, we define the skew RS map of arrays as follows.

Definition 3.11 (Skew RS map of arrays). Let a ∈ Z𝑛, b ∈ Z𝑚 be a pair of arrays. Consider the unique
admissible edge configuration on Λ𝑚,𝑛 with W(1, 𝑖) = a 𝑖 , S( 𝑗 , 1) = b 𝑗 for all 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚.
The skew RS map of a, b is the pair (a ′, b ′) = RS(a, b) given by a ′𝑖 = E(𝑚, 𝑖) and b ′𝑗 = N( 𝑗 , 𝑛) for
𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚.

For an example of edge configurations and an evaluation of the skew RS map of two arrays,
corresponding to Figure 5, see Figure 6, left panel. Note that positions ( 𝑗 , 𝑖) of bullets of color k are

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.23


26 T. Imamura, M. Mucciconi and T. Sasamoto

Figure 5. The shadow line construction for a = (0,−1, 1, 0, 1) and b = (1,−1, 1, 0), equivalent to the
skew RS map in the left panel of Figure 6

Figure 6. In the left panel, we see the graphical representation of the skew RS map (a ′, b ′) = RS(a, b)
between a = (0,−1, 1, 0, 1) ∈ Z5, b = (1,−1, 1, 0) ∈ Z4. We have colored each edge of the grid
based on its value. Black bullets denote faces where north and east edges take simultaneously value 1
defining partial permutation 𝜋 (1) =

( 2 4
4 1

)
. In the right panel, we reported on the left and bottom sides

the tableaux (𝑃, 𝑄) and on the right and top sides tableaux (𝑃′, 𝑄 ′) = RS(𝑃, 𝑄). One can check that
rc(𝑃, 𝑄) = (a, b) and rc(𝑃′, 𝑄 ′) = (a ′, b ′).

determined by the condition N( 𝑗 , 𝑖) = E( 𝑗 , 𝑖) = 𝑘 . We will encode the positions ( 𝑗1, 𝑖1), ( 𝑗2, 𝑖2), . . . of
bullets of color k in the partial permutation

𝜋 (𝑘) =

(
𝑗1 𝑗2 · · ·
𝑖1 𝑖2 · · ·

)
. (3.13)

Using edge configurations, we also define operators of 𝜄1, 𝜄2 on pairs of arrays.

Definition 3.12 (𝜄1, 𝜄2 on arrays). Let (a, b) ∈ Z𝑛 be a pair of arrays that are permutations of each other,
and consider on Λ𝑛,𝑛 the unique admissible edge configuration with W(1, 𝑖) = a 𝑖 , S(𝑖, 1) = b 𝑖 for all
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𝑖 = 1, . . . , 𝑛. Define 𝜄2 (a, b) = (ã, b̃) setting

ã 𝑖 = W(2, 𝑖) for 𝑖 = 1 . . . , 𝑛 and b̃ 𝑖 =

{
S(𝑖 + 1, 1) if 𝑖 = 1, . . . , 𝑛 − 1,

N(1, 𝑛) if 𝑖 = 𝑛.
(3.14)

Analogously, define 𝜄1 (a, b) = swap ◦ 𝜄2 ◦ swap(a, b).
Comparing 3.11 and 3.12, we see that RS = 𝜄𝑛1 = 𝜄𝑛2 holds as operations on pairs of arrays.
The next proposition shows that 𝜄1, 𝜄2, both as operations on pairs of standard tableaux and on pairs

of arrays, coincide, modulo row-coordinate parameterization.

Proposition 3.13. Let 𝑃, 𝑄 ∈ 𝑆𝑇 (𝜆/𝜌) and (𝑃, 𝑄)
rc
←→ (a, b; 𝜈). Then 𝜄𝜖 (𝑃, 𝑄)

rc
←→ (𝜄𝜖 (a, b); 𝜈), for

both 𝜖 = 1, 2.
Proof. We prove our statement only for the case 𝜖 = 2, as the remaining case is analogous. The fact that
𝜈 = ker(𝑃, 𝑄) does not change after the application of 𝜄2 was shown in Proposition 3.8. Therefore, we
need to show that if (𝑃̃, 𝑄̃) = 𝜄2 (𝑃, 𝑄) and (ã, b̃) = 𝜄2 (a, b), we have (ã, b̃) = rc(𝑃̃, 𝑄̃).

Call 𝑟 = b 1, so that 𝑃̃ = R[𝑟 ] (𝑃). Suppose that during the internal insertion bumping happens k
times and cells of P at location (𝑐 𝑗 , 𝑟 + 𝑗) move to (𝑐 𝑗+1, 𝑟 + 𝑗 + 1) for 𝑗 = 0, . . . , 𝑘 − 1. Denoting
𝑝 𝑗 = 𝑃(𝑐 𝑗 , 𝑟 + 𝑗), we have 𝑐0 ≥ 𝑐1 ≥ · · · ≥ 𝑐𝑘 and 𝑝0 < 𝑝1 < · · · < 𝑝𝑘−1. In the row-coordinate array
a, this implies that

a 𝑝 𝑗 = 𝑟 + 𝑗

and importantly a 𝑝 𝑗+ℓ ≠ 𝑟 + 𝑗 + 1 for ℓ = 1, . . . , 𝑝 𝑗+1 − 𝑝 𝑗 . We also have

rc(𝑃̃) =

{
a 𝑖 if 𝑖 ∉ {𝑝0, . . . , 𝑝𝑘−1},

a 𝑖 + 1 if 𝑖 ∈ {𝑝0, . . . , 𝑝𝑘−1}.
(3.15)

On the other hand, we now draw the edge configuration on Λ𝑛,𝑛 corresponding to the pair a, b as
for equation (3.12) and we see that 𝑆(1, 𝑖) = 𝑊 (1, 𝑖) = 𝑟 + 𝑗 , 𝑝 𝑗 ≤ 𝑖 < 𝑝 𝑗+1, 0 ≤ 𝑗 ≤ 𝑘 − 1 and
𝐸 (1, 𝑖) = 𝑁 (1, 𝑖) = 𝑟 + 𝑗 +1. Comparing this with the definition of 𝜄2 in equation (3.14), we can confirm
that ã = rc(𝑃̃) holds.

To show that rc(𝑄̃) = b̃ notice that, from the cycling of labels, the i-cell of 𝑄̃ lies at row b 𝑖+1 = b̃ 𝑖 for
𝑖 = 1, . . . , 𝑛 − 1. On the other hand, the n-cell of 𝑄̃ lies at row 𝑟 + 𝑘 , which, by the computation above
is also the value of N(1, 𝑛) = b̃ 𝑛. This completes the proof. �

The coincidence extends to the skew RS maps.

Corollary 3.14. Let 𝑃, 𝑄 ∈ 𝑆𝑇 (𝜆/𝜌) and (𝑃, 𝑄)
rc
←→ (a, b; 𝜈). Then RS(𝑃, 𝑄)

rc
←→ (RS(a, b); 𝜈).

Proof. This follows from Proposition 3.13 and from the fact that RS = 𝜄𝑛𝜖 , with 𝑛 = |𝜆/𝜌 | and 𝜖 = 1, 2,
both as operations on pairs of arrays or on pairs of tableaux. �

Corollary 3.15. Let 𝑃, 𝑄 ∈ 𝑆𝑇 (𝜆/𝜌) and (𝑃, 𝑄)
rc
←→ (a, b; 𝜈). Consider the admissible edge configu-

ration on Λ𝑛,𝑛 corresponding to the pair a, b as in Proposition 3.11. Fix 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝑘 ∈ Z.
Then, N( 𝑗 , 𝑖) = E( 𝑗 , 𝑖) = 𝑘 if and only if during the evaluation of the skew RS map (𝑃, 𝑄) → (𝑃′, 𝑄 ′),
at the step corresponding to internal insertions of j-cells of Q, the i-cell of the P-tableau moves from
row 𝑘 − 1 to row k.
Proof. For 𝑗 = 1 and 𝑖 ∈ {1, . . . , 𝑛}, this follows from the computations reported in the Proposition 3.13.
Iterating the operations 𝜄2 yields the general j case. �

We finally report a simple ‘restriction property’ of the shadow line construction. For the next
proposition, we need the notion of partial arrays, which are elements of (Z ∪ {∅})𝑛. Given an array
a ∈ Z𝑛, we denote by a [≥𝑘 ] the partial array with entries a [≥𝑘 ]𝑖 = a 𝑖 if a 𝑖 ≥ 𝑘 and a [≥𝑘 ]𝑖 = ∅ otherwise.
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Figure 7. Generalized shadow line construction on the lattice Λ3,3.

Proposition 3.16. Let (a, b) ∈ Z𝑛 and (ã, b̃) = RS(a, b). For a fixed k, let 𝜋 (𝑘) be the partial permutation
defined by equation (3.13). Then the partial arrays ã [≥𝑘 ] , b̃ [≥𝑘 ] depend uniquely on a [≥𝑘 ] , b [≥𝑘 ] and
𝜋 (𝑘) .

Proof. This is immediate from the definition of the shadow line construction or equivalently from
local rules (3.12). Entries of arrays ã [≥𝑘 ] , b̃ [≥𝑘 ] correspond to shadow lines with colors greater than or
equal to k. Such lines either enter the lattice from west or south and hence are given by a [≥𝑘 ] , b [≥𝑘 ] or
alternatively are created within the grid, in which case are determined by the knowledge of 𝜋 (𝑘) . �

Remark 3.17. In case a [≥𝑘 ] = b [≥𝑘 ] = ∅, the partial permutation 𝜋 (𝑘) determines completely
ã [≥𝑘 ] , b̃ [≥𝑘 ] . Setting 𝑘 = 1, this corresponds to the shadow line construction of the classical Robinson–
Schensted correspondence [74].

3.4. The skew RSK map of matrices

We extend the operation of skew RS map to include infinite matrices of integers. Thanks to the corre-
spondence between matrices and tableaux of Proposition 2.3, this provides a diagrammatic realization
of the skew RSK map for tableaux. By the standardization most of their properties follow directly from
the ones of the skew RS map.

We can generalize the shadow line construction of Proposition 3.9 by allowing edges of the lattice
Λ𝑚,𝑛 to be crossed by arbitrary many lines. We impose that on each cell for any two lines crossing the
same horizontal (resp. vertical) edge the one with higher color stays at the left (resp. below) of the one
with lower color; see Figure 7. This implies also that for each color bullets at a cell lie strictly to the
right of those at cells 𝑐 − 𝑘e2 and strictly above those at cells 𝑐 − 𝑘e1 for all 𝑘 ∈ N0. We record the list
of colored lines crossing a specific edge in an array 𝑣 ∈ V and for any 𝐶 ∈ Z the value 𝑣𝐶 will count
the number of C-colored lines; see Figure 8. Such discussion justifies the following definition.
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Figure 8. On the left panel, we see the equivalence between V-valued edge configurations and config-
urations of colored lines through a face. On the right panel, a graphical interpretation of local rules
(3.16)

Definition 3.18 (V-valued edge configurations). For a planar lattice Λ ⊆ Z × Z, define V-valued edge
configurations E as quadruples of functions (W, S, E, N) : Λ → V such that E(𝑐) = W(𝑐 + e1) and
N(𝑐) = S(𝑐 + e2) for all 𝑐 ∈ Λ. An edge configuration is admissible if it satisfies the local rules

1. E 𝑗 (𝑐) = W 𝑗 (𝑐) − S 𝑗 (𝑐) ∧W 𝑗 (𝑐) + S 𝑗−1(𝑐) ∧W 𝑗−1 (𝑐),

2. N 𝑗 (𝑐) = S 𝑗 (𝑐) − S 𝑗 (𝑐) ∧W 𝑗 (𝑐) + S 𝑗−1(𝑐) ∧W 𝑗−1 (𝑐),
(3.16)

for all 𝑐 ∈ Λ, 𝑗 ∈ Z. Here 𝑎 ∧ 𝑏 = min(𝑎, 𝑏).

Local rules (3.16) describe the arrangement of lines of the each color j around single faces of the
lattice. Namely, W 𝑗 (𝑐) is the number of j-colored lines entering face c from the left and similarly for
S 𝑗 , E 𝑗 , N 𝑗 . We report this statement in the next proposition, and we refer to Figure 8 for the graphical
interpretation of such rules.

Proposition 3.19. On the lattice Λ1,1, consisting of a single face, consider the admissible V-valued
edge configuration W = 𝑎, S = 𝑏, E = 𝑎′, N = 𝑏′. Consider arrays a, a ′ ∈ W |𝑎 | ,b, b ′ ∈ W |𝑏 | such that
𝑣(a) = 𝑎, 𝑣(b) = 𝑏, 𝑣(a ′) = 𝑎′, 𝑣(b ′) = 𝑏′ under the map 𝑣 :W𝑘 → V defined in equation (2.30). Then
(a ′, b ′) = RS(a, b).

Proof. This is straightforward after a comparison of local rules (3.16) with the skew RS map of weakly
decreasing arrays a, b corresponding to the generic edge values 𝑎, 𝑏. �

In line with Section 2.6, we can define the standardization of an admissible V-valued edge config-
uration E on a lattice Λ. This will be the admissible Z-valued edge configuration E ′ = std(E) on the
lattice Λ′ obtained from E ‘blowing up’ faces of Λ as prescribed by Proposition 3.19.

Definition 3.20 (Skew RSK map of matrices). Let 𝛼 ∈ M𝑛×∞, 𝛽 ∈ M𝑚×∞, and consider the unique
V-valued admissible edge configuration on Λ𝑚,𝑛 such that W𝑘 (1, 𝑖) = 𝛼𝑖,𝑘 , S𝑘 ( 𝑗 , 1) = 𝛽 𝑗 ,𝑘 , for all
𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚, 𝑘 ∈ Z. We define the skew RSK map

RSK(𝛼, 𝛽) = (𝛼′, 𝛽′) ∈ M𝑛×∞ ×M𝑚×∞,

as the pair of matrices 𝛼′𝑖,𝑘 = E𝑘 (𝑚, 𝑖), 𝛽′𝑗 ,𝑘 = N𝑘 ( 𝑗 , 𝑛), for all 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚, 𝑘 ∈ Z. From
the configuration, define also the family of matrices 𝑀 (𝑘) as

𝑀 (𝑘) ( 𝑗 , 𝑖) = N𝑘 ( 𝑗 , 𝑖) ∧ E𝑘 ( 𝑗 , 𝑖). (3.17)
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Example 3.21. Define matrices

𝛼 =

· · · −1 0 1 · · ·( )
· · · 1 1 0 · · ·

· · · 1 2 0 · · ·

· · · 0 1 1 · · ·

, 𝛽 =

· · · −1 0 1 · · ·( )
· · · 1 0 0 · · ·

· · · 1 1 0 · · ·

· · · 0 3 1 · · ·

. (3.18)

We evaluate (𝛼′, 𝛽′) = RSK(𝛼, 𝛽) computing the corresponding V-valued edge configuration on
Λ3,3. The result is reported in Figure 7, and we have

𝛼′ =

· · · 1 2 3 4 · · ·( )
· · · 1 1 0 0 · · ·

· · · 2 0 1 0 · · ·

· · · 0 1 0 1 · · ·

, 𝛽′ =

· · · 1 2 3 4 · · ·( )
· · · 0 1 0 0 · · ·

· · · 1 0 1 0 · · ·

· · · 2 1 0 1 · · ·

. (3.19)

To configuration of Figure 7, we associate matrices 𝑀 (𝑘) as described by equation (3.17). For instance,
from the same figure one can check that 𝑀 (1) =

( 0 1 0
1 0 2
0 1 1

)
or 𝑀 (2) =

( 1 0 1
0 1 0
0 0 1

)
.

Definition 3.22. For a pair of matrices (𝛼, 𝛽) ∈ M𝑛, construct on Λ𝑛,𝑛 the corresponding V-valued
edge configuration as in Proposition 3.20. We define 𝜄2 (𝛼, 𝛽) = (𝛼̃, 𝛽), setting for all 𝑘 ∈ Z

𝛼̃𝑖,𝑘 = W𝑘 (2, 𝑖) for 𝑖 = 1 . . . , 𝑛 and 𝛽𝑖,𝑘 =

{
S𝑘 (𝑖 + 1, 1) if 𝑖 = 1, . . . , 𝑛 − 1,

N𝑘 (1, 𝑛) if 𝑖 = 𝑛.
(3.20)

Operator 𝜄1 is defined by duality 𝜄1 (𝛼, 𝛽) = swap ◦ 𝜄2 ◦ swap(𝛼, 𝛽).

Notice that, in the previous definition, also the pair (𝛼̃, 𝛽) belongs to the set M𝑛.

Proposition 3.23. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) and (𝑃, 𝑄)
rc
←→ (𝛼, 𝛽; 𝜈). Then 𝜄𝜖 (𝑃, 𝑄)

rc
←→ (𝜄𝜖 (𝛼, 𝛽); 𝜈),

for both 𝜖 = 1, 2 and RSK(𝑃, 𝑄)
rc
←→ (RSK(𝛼, 𝛽); 𝜈).

Proof. This is a consequence of the analogous statement for standard tableaux and arrays stated in
Proposition 3.13 and of Proposition 3.19. �

Geometric interpretation of operators 𝜄1, 𝜄2 provided by Proposition 3.23 yields a visual proof of the
nontrivial fact that they commute with each other.

Proposition 3.24. We have 𝜄1◦𝜄2 = 𝜄2◦𝜄1, both as operations on pairs of tableaux or on pairs of matrices.

Proof. We first prove that 𝜄1 and 𝜄2 commute when they act on pairs of matrices. Consider the admissible
V-valued edge configuration on the lattice Λ𝑛+1,𝑛+1 such that for all 𝑘 ∈ Z

W𝑘 (1, 𝑖) = 𝛼𝑖,𝑘 , S𝑘 (1, 𝑖) = 𝛽𝑖,𝑘 , for 𝑖 = 1, . . . , 𝑛

and W𝑘 (1, 𝑛 + 1) = E𝑘 (𝑛, 1) S𝑘 (𝑛 + 1, 1) = N𝑘 (1, 𝑛).

In this lattice, 𝜄1 and 𝜄2 act, respectively, as upward and rightward shift so that defining 𝛼̃, 𝛽 as

𝛼̃𝑖,𝑘 = W𝑘 (2, 𝑖 + 1), 𝛽𝑖,𝑘 = N𝑘 (𝑖 + 1, 2), for 𝑖 = 1, . . . , 𝑛 and 𝑘 ∈ Z (3.21)

we easily see that (𝛼̃, 𝛽) = 𝜄1 ◦ 𝜄2 (𝛼, 𝛽) = 𝜄2 ◦ 𝜄1 (𝛼, 𝛽). This proves the proposition for the case of
action on pairs of matrices. By Proposition 3.23, the same commutation holds when 𝜄1, 𝜄2 act on pair of
semistandard tableaux. �
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Proposition 3.25. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) and (𝑃, 𝑄)
rc
←→ (𝛼, 𝛽; 𝜈). Consider the admissible V-valued

edge configuration on Λ𝑛,𝑛 corresponding to the pair 𝛼, 𝛽 as in Proposition 3.20. Fix 𝑖, 𝑗 ∈ {1, . . . , 𝑛}
and 𝑘 ∈ Z. Then, N𝑘 ( 𝑗 , 𝑖) ∧ E𝑘 ( 𝑗 , 𝑖) = 𝑚 if and only if during the evaluation of the skew RSK map
(𝑃, 𝑄) → (𝑃′, 𝑄 ′), at the step corresponding to internal insertions of j-cells of Q, exactly 𝑚 𝑖-cells of
the P-tableau move from row 𝑘 − 1 to row k.
Proof. The analogous property for standard tableaux was given in Proposition 3.15. Combining this
with Proposition 3.19 yields the statement for pairs of semistandard tableaux 𝑃, 𝑄. �

The next proposition gives a restriction property analogous to Proposition 3.16. For any matrix
𝛼 ∈ M𝑛,∞, we define its truncation 𝛿≥𝑘 (𝛼) = (1 𝑗≥𝑘𝛼𝑖, 𝑗 : 𝑖 = 1, . . . , 𝑛, 𝑗 ∈ Z).
Proposition 3.26. Let (𝛼, 𝛽) ∈ M𝑛 and (𝛼̃, 𝛽) = RSK(𝛼, 𝛽). For a fixed k, let 𝑀 (𝑘) be the partial
permutation defined by equation (3.17). Then the truncated matrices 𝛿≥𝑘 (𝛼̃), 𝛿≥𝑘 (𝛽) depend uniquely
on 𝛿≥𝑘 (𝛼), 𝛿≥𝑘 (𝛽) and 𝑀 (𝑘) . Moreover, for all k we have (𝛿≥𝑘 (𝛼̃), 𝛿≥𝑘 (𝛽)) ∈M𝑛.
Proof. This is again consequence of Proposition 3.16 and Proposition 3.19. �

4. Skew RSK and Viennot dynamics

In this section, we first introduce the skew RSK dynamics for a pair of tableaux by iterations of the skew
RSK maps studied in the previous section. A related dynamics, this time on the set of matrices M𝑛×𝑛,
which we call the Viennot dynamics, is also defined, and it will play an important role when describing
conservation laws in Section 6.

4.1. The skew RSK dynamics

The following definition was sketched in the introductory chapter.
Definition 4.1 (Skew RSK dynamics). We define a deterministic dynamics on the space of pairs of
generalized tableaux by iterating the skew RSK map. Fix 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), and define the skew
RSK dynamics with initial data (𝑃, 𝑄) as{

(𝑃𝑡+1, 𝑄𝑡+1) = RSK(𝑃𝑡 , 𝑄𝑡 ), 𝑡 ∈ Z,

(𝑃1, 𝑄1) = (𝑃, 𝑄).
(4.1)

Analogously, we define the skew RSK dynamics on the space of pairs of matrices. For a fixed initial
state (𝛼, 𝛽) ∈M𝑛, we have{

(𝛼 (𝑡+1) , 𝛽 (𝑡+1) ) = RSK(𝛼 (𝑡) , 𝛽 (𝑡) ), 𝑡 ∈ Z,

(𝛼 (1) , 𝛽 (1) ) = (𝛼, 𝛽).
(4.2)

Since the skew RSK map is invertible, we see that each realization of the dynamics is uniquely
characterized by its initial state. This observation is very powerful as it implies that specific properties of
tableaux (𝑃, 𝑄) can be deduced observing their state at an arbitrary time of the skew RSK dynamics. As
already pointed out in Section 1.2, dynamics (4.1) presents conservation laws, that we will characterize
in Section 6 and Section 9 below. Moreover, in Section 7 we will devise a linearization technique of the
dynamics, which one can regard as a combinatorial variant of the inverse scattering method for classical
integrable systems. The study of asymptotic states of the dynamics will be exceptionally revealing.

4.2. Edge configurations on the twisted cylinder

In the Section 3, we have seen the equivalence between the two versions of the skew RSK maps on
tableaux and on matrices through edge local rules on a finite rectangular lattice. Here, we introduce an
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Figure 9. Two graphical representation of the twisted cylinder 𝒞3. Blue line represents an up-right
path, while red line a down-right loop.

infinite lattice with certain periodicity and edge configurations compatible with it. This will lead us to
define a dynamics on the same lattice, which is closely related to the skew RSK dynamics.

Definition 4.2 (Twisted cylinder). The twisted cylinder is the periodic lattice 𝒞𝑛 = Z2/∼𝑛, where
( 𝑗 , 𝑖) ∼𝑛 ( 𝑗

′, 𝑖′) if ( 𝑗 ′, 𝑖′) = ( 𝑗 + 𝑘𝑛, 𝑗 − 𝑘𝑛) for some 𝑘 ∈ Z. Natural representations of 𝒞𝑛 we will use
are (see Figure 9):

the infinite vertical strip {1, . . . , 𝑛} × Z, where we impose faces (𝑛, 𝑖) and (1, 𝑖 + 𝑛) to be
adjacent for all 𝑗 .

(4.3)

the infinite horizontal strip Z × {1, . . . , 𝑛} where we impose faces ( 𝑗 , 𝑛) and ( 𝑗 + 𝑛, 1) to be
adjacent for all 𝑗 .

(4.4)

A down-right loop 𝜉 on 𝒞𝑛 is a sequence (𝜉𝑘 : 𝑘 ∈ {1, . . . , 2𝑛}) ⊂ 𝒞𝑛, such that

𝜉𝑘+1 ∼𝑛 𝜉𝑘 + e1, or 𝜉𝑘+1 ∼𝑛 𝜉𝑘 − e2, (4.5)

for 𝑘 = 1, . . . , 2𝑛, where indices are taken mod 2𝑛. An example of a down-right loop is the red path
drawn in Figure 9, having the form

𝑐 → 𝑐 + e1 → · · · → 𝑐 + 𝑛e1 → 𝑐 + 𝑛e1 − e2 → · · · → 𝑐 + 𝑛e1 − (𝑛 − 1)e2 → 𝑐

for some 𝑐 ∈ 𝒞𝑛. Assigning edge values along a down-right loop 𝜉 automatically determines the full
configuration E on 𝒞𝑛 as a result of local rules (3.16). We use this to visualize the skew RSK dynamics
on the set of matrices as an edge configuration on 𝒞𝑛. To any pair (𝛼, 𝛽) ∈M𝑛 we associate the edge
configuration E on 𝒞𝑛 identified by the assignment

(𝛼, 𝛽) ↦→ E : E𝑘 (𝑛, 𝑖) = 𝛼𝑖,𝑘 , N𝑘 (𝑖, 𝑛) = 𝛽𝑖,𝑘 , for 𝑖 = 1, . . . , 𝑛, 𝑘 ∈ Z. (4.6)

The subclass of admissible edge configurations accessible through mapping (4.6) is defined next.

Definition 4.3. Let E be a V-valued admissible edge configurations on 𝒞𝑛 and for any fixed 𝑐 ∈ 𝒞𝑛
define the pair (𝛼, 𝛽)𝑐 as 𝛼𝑖,𝑘 = W𝑘 (𝑐 + (𝑖 − 1)e2) and 𝛽𝑖,𝑘 = S𝑘 (𝑐 + (𝑖 − 1)e1) for 𝑖 = 1, . . . , 𝑛, 𝑘 ∈ Z.
We define the set 𝔈𝑛 consisting of all configurations E such that (𝛼, 𝛽)𝑐 ∈M𝑛 for all 𝑐 ∈ 𝒞𝑛.
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Figure 10. A visualization of the skew RSK dynamics of matrices (𝛼 (𝑡) , 𝛽 (𝑡) ) as edges of a configuration
E . Faces of 𝒞𝑛 have coordinates ( 𝑗 , 𝑖 − 𝑘𝑛).

Proposition 4.4. The sets M𝑛 and 𝔈𝑛 are in bijection.

Proof. We only need to show that configuration E defined by equation (4.6) belongs to 𝔈𝑛. Notice
first that, in the notation of Proposition 4.3 we have (𝛼, 𝛽) = (𝛼, 𝛽)(1,𝑛+1) . For fixed 𝑁1, 𝑁2 ∈ Z, let
(𝛼̃, 𝛽) = 𝜄𝑁1

1 ◦ 𝜄𝑁2
2 (𝛼, 𝛽). Then, by Proposition 3.22 and taking into account periodicity of 𝒞𝑛 we have

(𝛼̃, 𝛽) = (𝛼, 𝛽)(1+𝑁2 ,𝑛+𝑁1+1) . Since (𝛼̃, 𝛽) ∈M𝑛 for all 𝑁1, 𝑁2, by Proposition 3.23, then E ∈ 𝔈𝑛. �

Proposition 4.5. Let (𝛼 (𝑡) , 𝛽 (𝑡) ) be the skew RSK dynamics with initial data (𝛼 (1) , 𝛽 (1) ) = (𝛼, 𝛽) ∈
M𝑛, and let E be the configuration associated to (𝛼, 𝛽) by equation (4.6). Then, for all 𝑖 = 1, . . . , 𝑛 and
𝑡 ∈ Z we have (𝛼 (𝑡) , 𝛽 (𝑡) ) = (𝛼, 𝛽)(1,𝑡𝑛+1) ; see Figure 10.

4.3. Periodic shadow line construction and Viennot dynamics

Edge configurations E ∈ 𝔈𝑛, in analogy with the finite case, identify families of compactly supported
maps 𝑀

(𝑡) : 𝒞𝑛 → N0 assigning

𝑀
(𝑡)
(𝑐) = N𝑡 (𝑐) ∧ E𝑡 (𝑐). (4.7)

On the other hand, as proven in Proposition 4.9 below, for any map 𝑀 ∈ M𝑛×𝑛 we can construct the
family 𝑀

(𝑡) , with the convention that 𝑀
(1)

= 𝑀 and the configuration E such that equation (4.7) holds.
Such procedure constitutes a periodic variant of the Viennot shadow line construction [88] or of Fulton’s
matrix ball construction [31].

Definition 4.6 (Viennot map). Let 𝑀 ∈ M𝑛×𝑛. At each face 𝑐 ∈ 𝒞𝑛, allocate 𝑀 (𝑐) black bullets and
apply the shadow line construction explained at the beginning of Section 3.4, letting each bullet emanate
two black rays in the north and east directions. By periodicity of 𝒞𝑛 and the fact that there are only a
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Figure 11. In the left panel, we see the evaluation of Viennot map transforming 𝜋 of equation (4.9). This
is done through the periodic shadow line construction explained in Proposition 4.6 and represented in
the right panel. We made cells of 𝒞𝑛 fatter in order to allocate multiple bullets while letting them keep
the correct relative positions.

finite number of black bullets, each ray terminates somewhere intersecting with another. The collection
of such mutual intersections of rays determines a new generation of red bullets (see Figure 11, right
panel), and we define

𝑀
′
(𝑐) = # of new generation bullets at cell 𝑐. (4.8)

The map V : 𝑀 ↦→ 𝑀
′ takes the name of Viennot map. Using correspondence (2.6), we define the

action of Viennot map also on weighted biwords V(𝜋) = 𝜋′, imposing 𝑀 (𝜋′) = V(𝑀 (𝜋)).

An example of evaluation of map V is reported in Figure 11(a). There, we see the transition

𝜋 =
��	
1 1 2 2 2 2 3
1 2 1 1 1 1 3
0 1 1 1 0 0 1


�� −−−−→ V(𝜋) = ��	
1 1 2 2 2 2 3
1 3 1 1 1 2 1
0 0 0 −1 −1 1 0


�� . (4.9)

The shadow lines produced by the computation of 𝜋 ↦→ V(𝜋) consist in a sequence of connected broken
lines as we see in Figure 11(b). Recording the cells of 𝒞𝑛 visited by each of these broken lines, we
naturally define a sequence of down-right loops 𝜉 (1) , 𝜉 (2) , . . . . We will use these loops later in Section 6.
For instance, in Figure 11 (b), the two topmost loops have the same form

(1, 4) → (2, 4) → (2, 3) → (2, 2) → (2, 1) → (3, 1) → (1, 4). (4.10)

The map V can be thought as a generator of a deterministic dynamics on the spaceM𝑛×𝑛.
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Definition 4.7 (Viennot dynamics). Fix 𝑀 ∈ M𝑛×𝑛, and define the Viennot dynamics with initial data
𝑀 as {

𝑀
(𝑡+1)

= V(𝑀 (𝑡) ), 𝑡 ∈ Z

𝑀
(1)

= 𝑀.
(4.11)

Analogously, for 𝜋 ∈ A𝑛,𝑛, one defines the Viennot dynamics 𝜋 (𝑡+1) = V(𝜋 (𝑡) ) with initial data 𝜋 (1) = 𝜋.
Remark 4.8. This may be considered a generalization of shadow line construction on Λ𝑛,𝑛 of classical
RS correspondence; see Remark 3.17.
Proposition 4.9. The sets 𝔈𝑛, M𝑛 andM𝑛×𝑛 are in bijection
Proof. The bijection between 𝔈𝑛 and M𝑛 is proven in Proposition 4.4. We then need to prove that the
assignment

𝑀 (𝑐) = N1 (𝑐) ∧ E1(𝑐) (4.12)

defines a bijection 𝑀 ↦→ E betweenM𝑛×𝑛 and𝔈𝑛. Let 𝑀
(𝑡) be the Viennot dynamics with initial data 𝑀 .

Then for any 𝑐 ∈ 𝒞𝑛 we set W𝑡 (𝑐) as the number of lines of the construction 𝑀
(𝑡)
→ 𝑀

(𝑡+1) entering
the face c from west and similarly for S𝑡 , E𝑡 , N𝑡 . From such edge configuration, define (𝛼 (𝑡) , 𝛽 (𝑡) ) =
(𝛼, 𝛽)(1,𝑡𝑛+1) , following the notation of Proposition 4.3 and recall the truncation operator 𝛿≥1 from
Proposition 3.26. Since 𝑀 is compactly supported there exists 𝑘∗ > 0 such that 𝑀 𝑖, 𝑗 (𝑘) = 0 for all
𝑖, 𝑗 ∈ {1, . . . , 𝑛} and |𝑘 | > 𝑘∗. This implies that 𝛿≥1 (𝛼

(−𝑘∗) ) = 𝛿≥1 (𝛽
(−𝑘∗) ) = 0 and 𝛿≥1(𝛼

(𝑘∗) ) = 𝛼 (𝑘
∗) ,

𝛿≥1 (𝛽
(𝑘∗) ) = 𝛽 (𝑘∗) . By recursive application of Proposition 3.26, we find that (𝛼 (𝑘∗) , 𝛽 (𝑘

∗) ) ∈ M𝑛

and they are uniquely determined. This implies that E ∈ 𝔈𝑛 completing the proof. Now that we have
constructed the correspondence 𝑀 ↔ E , we can associate to the matrix 𝑀 the pair (𝛼, 𝛽) as in
equation (4.6). �

Remark 4.10. The notation 𝑀
(𝑡) appeared already in equation (4.7) before Proposition 4.7, but they are

consistent because, if a matrix 𝑀 and a configuration E are in correspondence and 𝑀
(𝑡) is the Viennot

dynamics with initial data 𝑀 , then equation (4.7) holds.
If a pair (𝛼, 𝛽) ∈M𝑛 and a matrix 𝑀 ∈ M𝑛×𝑛 are in correspondence through the bijection described

in Proposition 4.9, we will use the notation (𝛼, 𝛽)
SS
←→ 𝑀 . Moreover, composing such correspondence

with the row-coordinate parameterization (𝑃, 𝑄) −→ (𝛼, 𝛽) defines a projection denoted by

(𝑃, 𝑄)
SS
−−→ 𝑀. (4.13)

An analogous projection (𝑃, 𝑄)
SS
−−→ 𝜋 ∈ A𝑛,𝑛 is defined taking advantage of mapping (2.6).

By the same arguments as in proof of Proposition 4.9, M+
𝑛 andM+𝑛×𝑛 are also in bijection. Combining

this with the bijection between M+
𝑛 ×Y and pairs (𝑃, 𝑄) of classical semistandard tableaux reported in

Proposition 2.3 gives the Sagan–Stanley correspondence stated below.
Theorem 4.11 ([73], Theorem 6.6). There exists a canonical bijection

M
+

𝑛×𝑛 × Y
SS

←−−−−−→
⋃
𝜌,𝜆∈Y

𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) × 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), (4.14)

which we denote by (𝑀, 𝜈)
SS
←→ (𝑃, 𝑄). Moreover, the property

|𝜌 | = wt(𝑀) + |𝜈 | (4.15)

holds.
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4.4. Relations between skew RSK and Viennot dynamics

The Viennot dynamics enjoys a very simple relations with the skew RSK dynamics which we describe
in the two propositions below.

Proposition 4.12. Let 𝑀
(𝑡)

, (𝑃𝑡 , 𝑄𝑡 ) be, respectively, the Viennot and the skew RSK dynamics with
initial data 𝑀

(1)
= 𝑀 and (𝑃1, 𝑄1) = (𝑃, 𝑄). Additionally, assume that (𝑃, 𝑄)

SS
−−→ 𝑀 . Then 𝑀

(𝑡)
𝑖, 𝑗 (𝑘) =

𝑚 if and only if, during the update (𝑃−𝑘 , 𝑄−𝑘 ) → (𝑃−𝑘+1, 𝑄−𝑘+1), exactly 𝑚 𝑖-cells of 𝑃−𝑘 move from
row 𝑡 − 1 to row t during the internal insertion of j-cells of 𝑄−𝑘 .

Proof. This is an immediate consequence of Proposition 3.25. �

Proposition 4.13. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), and define (𝑃, 𝑄)
SS
−−→ 𝑀 . Construct tableaux 𝑃′, 𝑄 ′

shifting up by one unit each cell of 𝑃, 𝑄; that is, 𝑃′(𝑐, 𝑟) = 𝑃(𝑐, 𝑟 + 1) and same for 𝑄, 𝑄 ′. Then
(𝑃′, 𝑄 ′)

SS
−−→ 𝑀

′
= V(𝑀).

Proof. Let (𝛼, 𝛽) = rc(𝑃, 𝑄) and (𝛼′, 𝛽′) = rc(𝑃′, 𝑄 ′). Then, by definition, we have

𝛼′𝑖, 𝑗 = 𝛼𝑖, 𝑗+1, 𝛽′𝑖, 𝑗 = 𝛽𝑖, 𝑗+1. (4.16)

We now construct edge configurations (𝛼, 𝛽) ↦→ E , (𝛼′, 𝛽′) ↦→ E ′ as in equation (4.6). Thanks to the
relation (4.16), it is clear that all edge values of E ′ will differ by those of E by the same shift, or more
precisely

(W′𝑗 , S′𝑗 , E′𝑗 , N′𝑗 ) (𝑐) = (W 𝑗+1, S 𝑗+1, E 𝑗+1, N 𝑗+1) (𝑐), for all 𝑐 ∈ 𝒞𝑛, 𝑗 ∈ Z.

By equation (4.7) this implies that 𝑀
′
= V(𝑀). �

4.5. Asymptotic states of the skew RSK dynamics

We describe pairs of tableaux RSK𝑡 (𝑃, 𝑄) when t becomes large. Contents discussed in this subsection
were introduced, along with examples in Section 1.2.

Definition 4.14 (Asymptotic increments). Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), and consider the skew RSK dynam-
ics (𝑃𝑡 , 𝑄𝑡 ) with initial data (𝑃, 𝑄). We define the asymptotic increment 𝜇(𝑃, 𝑄), through its transpose
𝜇′ as

𝜇′𝑗 = lim
𝑡→∞
(𝜆𝑡 )′𝑗/𝑡, (4.17)

where 𝜆𝑡/𝜌𝑡 is the shape of 𝑃𝑡 , 𝑄𝑡 .

The next proposition justifies the definition of asymptotic increments.

Proposition 4.15. The limits (4.17) exist and numbers 𝜇′𝑗 form a weakly decreasing sequence of integers,
defining a partition.

Proof. Assume that tableaux 𝑃, 𝑄 are standard, and follow the evolution of the i-cell in 𝑃𝑡 , for
𝑡 = 1, 2, . . ., which has coordinate (𝑐𝑡 , 𝑟𝑡 ). From the bumping algorithm, it follows that 𝑟1 < 𝑟2 < · · ·
and also 𝑐1 ≥ 𝑐2 ≥ · · · > 0. Such weak monotonicity of column coordinates implies that from a certain
t onward 𝑐𝑡 = 𝑐𝑡+1 = · · · . Since this holds for any i, it follows that from a certain time 𝑡∗ onward the
content of each column of 𝑃𝑡 , for 𝑡 > 𝑡∗, stays constant and (𝜆𝑡 )′𝑗 = (𝜆

𝑡∗ )′𝑗 + (𝑡 − 𝑡∗) [(𝜆
𝑡∗ )′𝑗 − (𝜌

𝑡∗ )′𝑗 ], for
all 𝑗 ≥ 1. This proves that 𝜇′𝑗 = (𝜆

𝑡∗ )′𝑗 − (𝜌
𝑡∗ )′𝑗 and they form a sequence of nonnegative integers weakly

decreasing in j since (𝜆𝑡 )′𝑗 has to remain a weakly decreasing sequence for all t. �
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Definition 4.16 (Stable states). Consider a pair of semistandard tableaux (𝑃, 𝑄) with shape 𝜆/𝜌. For
𝑡 ≥ 0, let (𝑃𝑡 , 𝑄𝑡 ) = RSK𝑡 (𝑃, 𝑄) and denote their shape by 𝜆 (𝑡) /𝜌 (𝑡) and by 𝜇 = 𝜇(𝑃, 𝑄) the asymptotic
increment. We say that the pair (𝑃, 𝑄) is RSK-stable if for all 𝑡 ≥ 0 we have

(𝜆 (𝑡) )′ = 𝜆′ + 𝑡 × 𝜇′ and (𝜌 (𝑡) )′ = 𝜌′ + 𝑡 × 𝜇′. (4.18)

Reading off columns of pairs of RSK-stable tableaux, we can associate pairs of vertically strict
tableaux.

Definition 4.17 (Asymptotic vertically strict tableaux). Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), and consider the skew
RSK dynamics (𝑃𝑡 , 𝑄𝑡 ) with initial data (𝑃, 𝑄). Denote by 𝜇 = 𝜇(𝑃, 𝑄) the asymptotic increment. The
asymptotic vertically strict tableaux 𝑉, 𝑊 ∈ 𝑉𝑆𝑇 (𝜇, 𝑛) associated to (𝑃, 𝑄) have j-th column entries
given by

𝑉 ( 𝑗 , 𝑖) = lim
𝑡→∞

𝑃𝑡 ( 𝑗 , 𝜌 (𝑡) ′ + 𝑖), (4.19)

𝑊 ( 𝑗 , 𝑖) = lim
𝑡→∞

𝑄𝑡 ( 𝑗 , 𝜌 (𝑡) ′ + 𝑖), (4.20)

where 𝜆 (𝑡) /𝜌 (𝑡) denotes the shape of 𝑃𝑡 , 𝑄𝑡 .

Definition 4.18. The projection map

Φ :
⋃
𝜌,𝜆

𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) × 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) →
⋃
𝜇∈Y

𝑉𝑆𝑇 (𝜇, 𝑛) ×𝑉𝑆𝑇 (𝜇, 𝑛) (4.21)

assigns to a pair of (generalized) skew tableaux their asymptotic vertically strict tableaux Φ : (𝑃, 𝑄) ↦→
(𝑉, 𝑊).

Remark 4.19. Composing map Φ with the Sagan–Stanley correspondence would generate a projection
Φ̃ : 𝜋 ↦→ (𝑉, 𝑊) resembling Pak’s asymptotic construction of Shi’s affine Robinson–Schensted’s (RS)
correspondence [79]; see [69]. There, pairs of tabloids, along with an array of weights are put in
correspondence with periodic permutations, which we can see as weighted permutations 𝜋 with total
weight wt(𝜋) = 0. In recent works [19–21], authors studied symmetries of the affine RS correspondence
which include Knuth relations and crystals. It would be interesting to clarify similarities between
projection Φ̃, or rather bijection Υ̃ we will introduce in Section 8, and Shi’s affine RS correspondence.
We leave this investigation for a future work.

4.6. Asymptotic states of Viennot dynamics

For any fixed weighted biword 𝜋, we aim now to characterize V𝑡 (𝜋) for large t. To describe the limiting
form of such biwords, we need the following definitions.

Definition 4.20 (Strict down-right loops). A strict down-right loop 𝜍 is a sequence of points 𝜍 = (𝜍 𝑗 :
𝑗 = 1, . . . , 𝐽) ⊂ 𝒞𝑛 such that 𝜍 ⊂ 𝜉 for some down-right loop 𝜉 and

𝜍𝑘+1 ∼𝑛 𝜍𝑘 + 𝑎𝑘e1 − 𝑏𝑘e2, (4.22)

for some numbers 𝑎𝑘 , 𝑏𝑘 ∈ {1, . . . , 𝑛} and 𝑘 = 1, . . . , 𝐽. Indices here are taken mod 𝐽 and 𝜍𝐽+1 = 𝜍1.
The length of the loop 𝜍 is ℓ(𝜍) = 𝐽. Notice that we necessarily have 𝐽 ≤ 𝑛 and that strict down-right
loops are ‘localized’ in the sense that 𝜍 is always contained in a band {1, . . . , 𝑛} × { 𝑗 , . . . , 𝑗 + 𝑛} ⊂ 𝒞𝑛
for some 𝑗 ∈ Z.

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.23


38 T. Imamura, M. Mucciconi and T. Sasamoto

Figure 12. A weighted biword 𝜋 viewed as a configuration of points on 𝒞𝑛. Localized decreasing
subsequences, as 𝜎 (•) form down-right loops around 𝒞𝑛. Increasing subsequences as 𝜎 (•) form up-
right path winding around the cylinder.

Given a biword 𝜋, written in the usual notation (2.1), we will associate to its columns 𝜋𝑖 points on
𝒞𝑛 as

[𝜋𝑖] = (𝑞𝑖 , 𝑝𝑖 − 𝑛𝑤𝑖) ∈ 𝒞𝑛. (4.23)

We also denote by [𝜋] the collections of points [𝜋𝑖] for 𝑖 = 1, . . . , ℓ(𝜋). We will confuse at times points
𝑐 ∈ 𝒞𝑛 and elements of a weighted biword and write 𝑐 ∈ 𝜋 if [𝜋𝑖] ∼𝑛 𝑐 for some i.

Definition 4.21 (Localized decreasing sequences). A weighted biword 𝜋 ∈ A𝑛,𝑛 is a localized decreas-
ing sequence, LDS for short, if the set of points ([𝜋𝑖] : 𝑖 = 1, . . . , ℓ(𝜋)) forms a strict down-right loop
on 𝒞𝑛.

For the sake of future discussion, we also define increasing sequences on 𝒞𝑛. They will be used at
length in Section 6.

Definition 4.22 (Increasing sequences). A weighted biword 𝜋 ∈ A𝑛,𝑛 is an increasing sequence if the
set of points ([𝜋𝑖] : 𝑖 = 1, . . . , ℓ(𝜋)) is contained in an up-right path of 𝒞𝑛.

If two weighted biwords are such that 𝜎 ⊆ 𝜋 we will say that 𝜎 is a subsequence of 𝜋. Analogously,
we refer to weighted biwords as sequences. An example of a localized decreasing subsequence of a
weighted biword is given by 𝜎 (•) in Figure 12. In the same figure, 𝜎 (•) is an increasing subsequence of 𝜋.

Let us now discuss asymptotic states of the Viennot dynamics. Starting from an initial state 𝜋,
it is possible to observe that, after a sufficiently large number of application of the Viennot map,
the weighted biword 𝜋 (𝑡+1) = V𝑡 (𝜋) separates into subsequences which evolve independently from
each other. Drawing the weighted biwords as points on the twisted cylinder, we observe that such
subsequences identify clusters of localized decreasing sequences of the same length, as portrayed in
Figure 13. This phenomenon is clearly related to the existence of asymptotic states in the skew RSK
dynamics, and we use the interplay between the two dynamics to formalize these observations in the next
proposition.
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Figure 13. Schematic representation of asymptotic state of the Viennot dynamics. For large times t,
the point configuration corresponding to 𝜋 (𝑡) separates into several clusters of points, each composed
of localized decreasing subsequences of the same length. For this reason each cluster evolves with its
characteristic speed given by n divided by the length of LDSs in the cluster.

Proposition 4.23. Let 𝜋 ∈ A𝑛,𝑛. Then there exist 𝑡∗ ∈ N0 and localized decreasing sequences
𝜉
(1)

, . . . , 𝜉
(𝑘) such that, for all 𝑡 > 0 we have

V𝑡∗+𝑡 (𝜋) = V𝑡 (𝜉 (1) ) ·∪ · · · ·∪ V𝑡 (𝜉 (𝑘) ). (4.24)

Moreover, if 𝜇 = 𝜇(𝑃, 𝑄) is the asymptotic increment of any pair such that (𝑃, 𝑄)
SS
−−→ 𝜋, then, listing

the 𝜉
(𝑖) ’s decreasingly in length, we have ℓ(𝜉

(𝑖)
) = 𝜇′𝑖 for 𝑖 = 1, . . . , 𝜇1 and in particular 𝑘 = 𝜇1.

Proof. We are going to use the notion of asymptotic increments for skew tableaux and the relation
between skew RSK dynamics and Viennot dynamics presented in Proposition 4.12. With no loss of
generality, we assume that 𝜋 is a weighted permutation since such choice simplifies the notation. The
general case 𝜋 ∈ A𝑛,𝑛 is, as usual, recovered by standardization.

Let (𝑃, 𝑄) be a pair of standard tableaux such that (𝑃, 𝑄)
SS
−−→ 𝜋, and consider (𝑃𝑡 , 𝑄𝑡 ) the skew

RSK dynamics with initial data (𝑃, 𝑄). Let 𝑇 ∈ N be large enough so that the pair (𝑃𝑇 , 𝑄𝑇 ) is RSK-
stable, and call 𝜇 = 𝜇(𝑃, 𝑄) its asymptotic increment. Let 0 = 𝑅0, 𝑅1, 𝑅2, . . . define a rectangular
decomposition of 𝜇 as in equation (2.9), and set 𝑟𝑖 = 𝑅𝑖 − 𝑅𝑖−1. Then, when 𝑡 ≥ 𝑇 , during the update
(𝑃𝑡 , 𝑄𝑡 ) → (𝑃𝑡+1, 𝑄𝑡+1) columns 𝑅𝑖−1 + 1, . . . , 𝑅𝑖 are shifted down by 𝜇′𝑅𝑖 cells. If 𝜆/𝜌 is the skew
shape of (𝑃𝑇 , 𝑄𝑇 ), the vertical displacement between labeled boxes at columns 𝑅𝑖 and 𝑅𝑖 + 1 can be
assumed to be arbitrarily large, or in other words 𝜌′𝑅𝑖 � 𝜆′𝑅𝑖+1, choosing T sufficiently large.

Consider an integer 𝐾 > 𝜆′1. Then by choosing K large enough there exist times 𝑇1 < 𝑇2 < · · · ,
with 𝑇 < 𝑇1, such that in the skew shape of (𝑃𝑇𝑖 , 𝑄𝑇𝑖 ) columns 1, . . . , 𝑅𝑖 have only cells with a row
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coordinate larger than K, while cells at columns 𝑅𝑖 + 1, 𝑅𝑖 + 2, . . . have a row coordinate smaller than
K. By choosing K large enough, we can assume that the differences 𝑇𝑖+1 − 𝑇𝑖 are arbitrarily large.

Consider now the Viennot dynamics 𝜋 (𝑡) with initial data 𝜋. Recall that, by Proposition 4.12, the
weighted permutation 𝜋 (𝐾 ) encodes the times at which specific entries of (𝑃, 𝑄) reach the K-th row
during the skew RSK dynamics. By the discussion above, taking 𝑇1, 𝑇2, . . . sufficiently large and spread
apart we find that 𝜋 (𝐾 ) can be written as 𝜋 (𝐾 ) = 𝜎 (1) ·∪ 𝜎 (2) ·∪ · · · , where 𝜎 ( 𝑗) ’s are weighted biwords
encoding information about columns of length 𝜇′𝑅 𝑗

of (𝑃𝑇 , 𝑄𝑇 ). More in detail, denoting

𝜎 ( 𝑗) =

�����	
𝑞
( 𝑗)
1 · · · 𝑞

( 𝑗)
𝐼 𝑗

𝑝
( 𝑗)
1 · · · 𝑝

( 𝑗)
𝐼 𝑗

𝑤
( 𝑗)
1 · · · 𝑤

( 𝑗)
𝐼 𝑗


�����
, (4.25)

we have 𝐼 𝑗 = 𝜇′𝑅 𝑗
𝑟 𝑗 and max1≤𝑖≤𝐼 𝑗 𝑤

( 𝑗)
𝑖 � min1≤𝑖≤𝐼 𝑗−1 𝑤

( 𝑗−1)
𝑖 . By stability of (𝑃𝑇 , 𝑄𝑇 ), we can also

conclude that under the action of Viennot map, 𝜎 (1) , 𝜎 (2) , . . . evolve independently from each other, or
in other words

V𝑠
(
𝜋 (𝐾 )

)
= V𝑠

(
𝜎 (1)

)
·∪ V𝑠

(
𝜎 (2)

)
·∪ · · · , (4.26)

for all 𝑠 ≥ 0. To prove our proposition, we need to show that there exist LDSs 𝜉
( 𝑗 ,1)

, . . . , 𝜉
( 𝑗 ,𝑟 𝑗 ) such that

𝜎 ( 𝑗) = 𝜉
( 𝑗 ,1)
·∪ · · · ·∪ 𝜉

( 𝑗 ,𝑟 𝑗 ) , having length ℓ(𝜉
( 𝑗 ,𝑟 )
) = 𝜇′𝑅 𝑗

for 1 ≤ 𝑟 ≤ 𝑟 𝑗 and that evolve autonomously
under Viennot dynamics

V𝑠
(
𝜎 ( 𝑗)

)
= V𝑠

(
𝜉
( 𝑗 ,1) )

·∪ · · · ·∪ V𝑠
(
𝜉
( 𝑗 ,𝑟 𝑗 )

)
. (4.27)

Figure 13 helps us visualize the quantities defined above. Namely, the 𝜎 ( 𝑗) ’s correspond to different
clusters of the point configuration, whereas the 𝜉

( 𝑗 ,𝑟 ) ’s will be the localized decreasing subsequences
of length 𝜇′𝑅 𝑗

forming each cluster.
We now use Proposition 4.12. For any j such that 𝑟 𝑗 > 0 let 𝑐 ∈ {𝑅 𝑗−1 + 1, . . . , 𝑅 𝑗 } and denote

𝜇′𝑅 𝑗
= 𝑚. Let 𝑝1 < · · · < 𝑝𝑚 and 𝑞1 < · · · < 𝑞𝑚 be entries of c-th columns of 𝑃𝑡 , 𝑄𝑡 for t large enough.

Let 𝑡̃ ∈ {𝑇𝑗−1 + 1, . . . , 𝑇𝑗 } be the first time 𝑝𝑚 reaches a row greater than K. Since columns evolve
autonomously in stable states, the only possibility is that 𝑝𝑚 reached row K as a result of the internal
insertion at cell corresponding to the 𝑞𝑠-cell in 𝑄 𝑡̃−1 for some 𝑠 ∈ {1, . . . , 𝑚}. Moreover, internal
insertion corresponding to 𝑞𝑠+1, . . . , 𝑞𝑚 during the update will result in 𝑝𝑚−1, . . . , 𝑝𝑠 reaching row K.
This implies that (𝑞𝑆 , 𝑝𝑚+𝑠−𝑆 + 𝑛𝑡 ) ∈ [𝜎 ( 𝑗) ] for all 𝑆 = 𝑠, . . . , 𝑚. During the update (𝑃 𝑡̃ , 𝑄 𝑡̃ ) →

(𝑃 𝑡̃+1, 𝑄 𝑡̃+1) the remaining cells 𝑝1, . . . , 𝑝𝑠−1 will reach row K and they will do so in correspondence
of internal insertion of 𝑞1, . . . , 𝑞𝑠−1-cells in 𝑄 𝑡̃ . Therefore, also (𝑞𝑆 , 𝑝𝑆 + 𝑛 (̃𝑡 + 1) ) ∈ [𝜎 ( 𝑗) ] for all
𝑆 = 1, . . . , 𝑠 − 1 and this implies that

[𝜉
( 𝑗 ,1)
] = (𝑞1, 𝑝1 + 𝑛 (̃𝑡 + 1)) → · · · → (𝑞𝑠−1, 𝑝𝑠−1 + 𝑛 (̃𝑡 + 1))

→ (𝑞𝑠 , 𝑝1 + 𝑛𝑡) → · · · → (𝑞𝑚, 𝑝𝑠 + 𝑛𝑡)

is a strict down-right loop identifying a subsequence of 𝜎 ( 𝑗) . Repeating the argument for all columns
𝑐 = 𝑅 𝑗−1 + 1, . . . , 𝑅 𝑗 , we find disjoint localized decreasing subsequences of 𝜎 ( 𝑗) , which we might
denote by 𝜉

( 𝑗 ,1)
, . . . , 𝜉

( 𝑗 ,𝑟 𝑗 ) , all having length equal to 𝜇′𝑅 𝑗
. One also easily sees that since columns of

tableaux (𝑃𝑡 , 𝑄𝑡 ) evolve autonomously, then also the corresponding LDSs 𝜉 ( 𝑗 ,𝑟 ) evolve independently
under Viennot map and this completes the proof. �

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.23


Forum of Mathematics, Pi 41

5. Affine crystal structures

In this section, we first review basic notions in the theory of Kashiwara crystals, focusing only on
the type 𝐴(1)𝑛−1 case. Many of the objects encountered in the previous sections possess affine bicrystal
graph structures, such as the set of pairs (𝑉, 𝑊) of vertically strict tableaux, the set of pairs (𝑃, 𝑄) of
semistandard tableaux or the set of matricesM𝑛×𝑛. Vertically strict tableaux are a standard combinatorial
model of an affine (bi)crystal, whereas the affine bicrystal structure on pairs (𝑃, 𝑄) or on matrices 𝑀
described in Sections 5.4 and 5.5 is new. The main result of this section is given by Proposition 5.7, which
asserts the 𝔰𝔩𝑛 bicrystal symmetry of the skew RSK map. This symmetry will allow to characterize the
skew RSK dynamics completely in later sections; see Proposition 5.8.

5.1. Crystals and bicrystals

Most of the material in this subsection is contained in [16, 42]. For a short introductory account on the
subject, the reader may consult [81].

An 𝔰𝔩𝑛 crystal graph5, or equivalently for us an affine crystal graph, is a set of vertices B, equipped
with a function 𝛾 : 𝐵 → N𝑛0 (commonly referred to as weight, but here called content), and colored

directed edges 𝑏
𝑖
−→ 𝑏′, with colors i ranging in {0, . . . , 𝑛 − 1} satisfying the following two properties.

1. There are no multiple edges. In case 𝑏
𝑖
−→ 𝑏′, we write

𝑏′ = 𝑓̃𝑖 (𝑏), or 𝑏 = 𝑒̃𝑖 (𝑏
′),

where 𝑓̃𝑖 , 𝑒̃𝑖 are, respectively, the i-th lowering and raising Kashiwara operators. When 𝑓̃𝑖 is not
defined for an element b we will write 𝑓̃𝑖 (𝑏) = ∅ and similarly for 𝑒̃𝑖 . Kashiwara operators define
numbers 𝜑𝑖 , 𝜀𝑖 : 𝐵→ N0 as

𝜑𝑖 (𝑏) = max{𝑚 : 𝑓̃ 𝑚𝑖 (𝑏) ≠ ∅},

𝜀𝑖 (𝑏) = max{𝑚 : 𝑒̃𝑚𝑖 (𝑏) ≠ ∅}.

2. Let ℎ0 = e𝑛 − e1 and ℎ𝑖 = e𝑖 − e𝑖+1, 𝑖 = 1, . . . , 𝑛 − 1. Then, for all 𝑏 ∈ 𝐵 we have

〈ℎ𝑖 , 𝛾(𝑏)〉 = 𝜑𝑖 (𝑏) − 𝜀𝑖 (𝑏)

and, whenever 𝑓̃𝑖 (𝑏) ≠ ∅, we have

𝛾( 𝑓̃𝑖 (𝑏)) = 𝛾(𝑏) − ℎ𝑖 .

Here, e𝑖 and 〈·, ·〉 are, respectively, the standard basis and the standard scalar product of C𝑛.

The set B in this case is called crystal, but unless necessary we will not distinguish between the notion
of crystal and its graph. An example of an affine crystal graph is reported in Figure 18 below. We also
define 𝔰𝔩𝑛 crystals graphs, which we refer to as classical crystals graphs, removing from the description
above all statements concerning 0-edges. For instance, in Figure 18 the classical crystal graph is given
erasing red and blue edges.

Lowering and raising operators 𝑓̃𝑖 , 𝑒̃𝑖 are partial mutual inverses; that is, if 𝑒̃𝑖 (𝑏) ≠ ∅, then 𝑓̃𝑖◦ 𝑒̃𝑖 (𝑏) =
𝑏 and same for the opposite case. For this reason, in case h is an operator written as

ℎ = (𝑒̃𝑖1)
𝑁1 ◦ ( 𝑓̃𝑖2)

𝑁2 ◦ · · · ◦ (𝑒̃𝑖𝑘−1)
𝑁𝑘−1 ◦ ( 𝑓̃𝑖𝑘 )

𝑁𝑘 ,

5also called affine crystal graph of type 𝐴(1)
𝑛−1 in the Dynkin diagram language
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then we will denote by ℎ−1 the operator

ℎ−1 = (𝑒̃𝑖𝑘 )
𝑁𝑘 ◦ ( 𝑓̃𝑖𝑘−1)

𝑁𝑘−1 ◦ · · · ◦ (𝑒̃𝑖2)
𝑁2 ◦ ( 𝑓̃𝑖1)

𝑁1 .

Clearly, if ℎ(𝑏) ≠ ∅, then ℎ−1 ◦ ℎ(𝑏) = 𝑏.
An 𝔰𝔩𝑛 bicrystal graph is a set of vertices B possessing two commuting 𝔰𝔩𝑛 crystal graph structures,

that is, two commuting families of Kashiwara operators. We will denote the two sets of Kashiwara
operators for bicrystals with the notation 𝐸 (1)𝑖 , 𝐹 (1)𝑖 and 𝐸 (2)𝑖 , 𝐹 (2)𝑖 , 𝑖 = 0, . . . , 𝑛 − 1. For instance, if B
is an 𝔰𝔩𝑛 crystal, then the Cartesian product 𝐵 × 𝐵 is an 𝔰𝔩𝑛 bicrystal setting

𝐸 (1)𝑖 = 𝑒̃𝑖 × 1, 𝐸 (2)𝑖 = 1 × 𝑒̃𝑖 , 𝐹 (1)𝑖 = 𝑓̃𝑖 × 1, 𝐹 (2)𝑖 = 1 × 𝑓̃𝑖 , (5.1)

and letting content function 𝛾 act independently on single components. We will introduce below a more
elaborate example of bicrystal. Also, in the case of bicrystals we will adopt the same convention as
above for inverse operators. If h is a combinations of Kashiwara operators 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 , then ℎ−1 will be
the operator obtained reading the expansion of h backward and substituting each 𝐸 (𝜖 )𝑖 with 𝐹 (𝜖 )𝑖 and
vice versa.

Definition 5.1. Let 𝔤 be either 𝔰𝔩𝑛 or 𝔰𝔩𝑛 and 𝐵, 𝐵′ be 𝔤 crystals. A map 𝜙 : 𝐵 → 𝐵′ is a morphism of
crystals if

𝜙 ◦ 𝑒̃𝑖 = 𝑒̃𝑖 ◦ 𝜙, 𝜙 ◦ 𝑓̃𝑖 = 𝑓̃𝑖 ◦ 𝜙 for all 𝑖 = 0, . . . , 𝑛 − 1 (5.2)

and 𝛾(𝜙(𝑏)) = 𝛾(𝑏) for all 𝑏 ∈ 𝐵. An isomorphism of crystals is a bijective morphism of crystals whose
inverse is also a morphism of crystals. We use the convention that 𝜙(∅) = ∅.

Analogously, we define a morphism of affine bicrystals 𝐵, 𝐵′ as a map 𝜙 : 𝐵→ 𝐵′ that is a morphism
of crystal for both crystal graphs structures. If 𝜙 is invertible and its inverse is a morphism of bicrystals,
then 𝜙 is an isomorphism of bicrystals.

5.2. Classical Kashiwara operators

On the set of words A∗𝑛, we can define the action of Kashiwara operators 𝑒̃𝑖 , 𝑓̃𝑖 for 𝑖 = 1, . . . , 𝑛 − 1. The
raising operator 𝑒̃𝑖 acts replacing an entry 𝑖 + 1 with i following the so-called signature rule. It goes as
follows:

1. Replace every 𝑖 in 𝜋 with the ‘)’ symbol and every 𝑖 + 1 with ‘(’.
2. Sequentially match all pairs of consecutive symbols ‘(’, ‘)’. At the end of this procedure

the subword made of unmatched parentheses will have the form ) · · · ) ( · · · (.
3. Replace the leftmost unmatched ‘(’ parenthesis with ‘)’.
4. Substitute back ‘)’ with 𝑖’s and ‘(’ with 𝑖 + 1.

(5.3)

Sometimes, this operation is impossible (e.g., when 𝜋 ∈ A∗𝑛 has no (𝑖 + 1)’s) and in that case we impose
𝑒̃𝑖 (𝜋) = ∅.

The lowering operator 𝑓̃𝑖 is defined analogously to 𝑒̃𝑖 with the difference that the third step of equation
(5.3) becomes

(3′) Replace the rightmost unmatched ‘)’ parenthesis with ‘(’. (5.4)

As before, when the procedure is impossible we set 𝑓̃𝑖 (𝜋) = ∅. It is easy to see that 𝑒̃𝑖 and 𝑓̃𝑖 are mutual
inverses, when both their operations are defined. We illustrate the action of Kashiwara operators with
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an example. Here, 𝑖 = 2:

𝜋 = 4 2 3 2 1 2 3 1 4 3 3 2 1 2 4 1 2 3 3
) ( ) ) ( ( ( ) ) ) ( (
) ( ) ) ( ( ( ) ) ) ( (

𝑒̃2(𝜋) = 4 2 3 2 1 2 3 1 4 3 3 2 1 2 4 1 2 2 3
𝑓̃2(𝜋) = 4 2 3 2 1 3 3 1 4 3 3 2 1 2 4 1 2 3 3.

(5.5)

In the third line, matched parentheses were drawn in light gray, while in the last two lines we highlighted
in red the letters of 𝜋 that were changed by 𝑒̃2 and 𝑓̃2.

The action of Kashiwara operators endows the setA∗𝑛 with an 𝔰𝔩𝑛 crystal graph structure, the content 𝛾
being defined as in Section 2.1. For any word 𝜋, 𝜑𝑖 (𝜋) counts the number of unmatched ‘)’ parentheses
we find while computing the action of i-th Kashiwara operators on 𝜋 and 𝜀𝑖 (𝜋) is the number of
unmatched ‘(’ parentheses. For instance in equation (5.5), 𝜑2 (𝜋) = 𝜀2 (𝜋) = 2.

The action of Kashiwara operators extends to the set of semistandard tableaux. If 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜇, 𝑛),
denoting 𝜋col

𝑃 its column reading word, we define 𝑒̃𝑖 (𝑃) as the tableaux with shape 𝜆/𝜇 and column
reading word 𝑒̃𝑖 (𝜋

col
𝑃 ). The action of 𝑓̃𝑖 is defined equivalently. For example, we have

1 2
1 2 2

2 3 3

𝑒̃1
−−−−−−−−−−−−−−−→

1 2
1 1 2

2 3 3
, (5.6)

where we highlighted in red the cell that changed its label.
The study of 𝔰𝔩𝑛 crystal structure of the set of semistandard tableaux has a long history rooted in

the seminal paper [72]. In fact, as recalled in [81], the first instance of the RSK correspondence, was
realized by Robinson imposing that map 𝜋 ↦→ 𝑃 would commute with the action of 𝑒̃𝑖 , 𝑓̃𝑖 . In general,
Kashiwara operators are coplactic transformations, which means that they commute with jeu de taquin
moves; see Appendix A.1. This known result is stated in the following proposition. In order to make the
text self-contained all ingredients necessary to its proof, along with a short review of theory of Knuth
relations, are reported in Appendix A.

Proposition 5.2. Let h be an operator in the set {𝑒̃1, 𝑓̃1, . . . , 𝑒̃𝑛−1, 𝑓̃𝑛−1} and let P be a semistandard
tableau. Then for any transformation J that performs a sequence of jeu de taquin slides we have
ℎ(𝐽 (𝑃)) = 𝐽 (ℎ(𝑃)).

Proof. Combining Proposition A.7 and Proposition A.9 (1) we find that ℎ(𝐽 (𝑃))
∗
� 𝐽 (ℎ(𝑃)). On the

other hand, thanks to Proposition A.2 and Proposition A.9 (2) we have ℎ(𝐽 (𝑃)) � 𝐽 (ℎ(𝑃)). Therefore,
ℎ(𝐽 (𝑃)) = 𝐽 (ℎ(𝑃)) by Proposition A.8. �

We will utilize result of Proposition 5.2 in a slightly weaker form reported next. Recall that R[𝑟 ]
denotes the internal insertion.

Corollary 5.3. Let h be an operator in the set {𝑒̃1, 𝑓̃1, . . . , 𝑒̃𝑛−1, 𝑓̃𝑛−1}, and let P be a semistandard
tableau. Then for all 𝑟 ∈ Z we have ℎ ◦R[𝑟 ] (𝑃) = R[𝑟 ] ◦ ℎ(𝑃).

Proof. Internal insertion transformation 𝑃 ↦→ R[𝑟 ] (𝑃) can be realized through jeu de taquin moves, as
a consequence of Proposition A.4, Proposition A.2 and hence it commutes with 𝑒̃𝑖 , 𝑓̃𝑖 , 𝑖 = 1, . . . , 𝑛 − 1
by Proposition 5.2. �

5.3. Vertically strict tableaux as affine crystals

Denote by 𝐵𝑟 ,1 the set of semistandard Young tableaux of single column shape 1𝑟 and entries from A𝑛.
Following [80], on 𝐵𝑟 ,1 we define the 0-th Kashiwara operators 𝑒̃0, 𝑓̃0 as

𝑒̃0 = pr−1 ◦ 𝑒̃1 ◦ pr and 𝑓̃0 = pr−1 ◦ 𝑓̃1 ◦ pr, (5.7)
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where pr is the promotion operator. For any 𝑏 ∈ 𝐵𝑟 ,1, its promotion 𝑏′ = pr(𝑏) ∈ 𝐵𝑟 ,1 is the only
tableau with content 𝛾𝑖 (𝑏

′) = 𝛾𝑖−1(𝑏), where indices i are taken mod 𝑛. In words, 𝑒̃0(𝑏) is obtained
replacing the 1-cell of b with an n-cell and reordering the result. For example, if 𝑛 = 6, we have

1
3
4
5

𝑒̃0
−−−−−−−→

3
4
5
6

. (5.8)

Such operation is impossible if b has an n-cell or if it does not have a 1-cell, in which cases we set
𝑒̃0 (𝑏) = ∅. An analogous description may be given for 𝑓̃0. By convention, we define 𝐵0,1 = {0} and we
assume 𝑒̃𝑖 , 𝑓̃𝑖 : 0 → ∅, for all 𝑖 = 0, . . . , 𝑛 − 1 and pr(0) = 0. Naturally, the column word of 0 is the
empty word.

For any composition 𝜘 = (𝜘1, . . . , 𝜘𝑁 ), define 𝐵𝜘 = 𝐵𝜘1 ,1⊗· · ·⊗𝐵𝜘𝑁 ,1. Classical Kashiwara operators
𝑒̃𝑖 , 𝑓̃𝑖 , 𝑖 = 1, . . . , 𝑛−1 are defined on any element 𝑏 = (𝑏1⊗ · · ·⊗𝑏𝑁 ) ∈ 𝐵𝜘 by their action on the column
word of b. The action of 𝑒̃0, 𝑓̃0 is also well posed forcing pr(𝑏1 ⊗ · · · ⊗ 𝑏𝑁 ) = pr(𝑏1) ⊗ · · · ⊗ pr(𝑏𝑁 )
and the same for pr−1. Notice that for any 𝑖 = 0, 1, · · · , 𝑛 − 1, we have

𝑒̃𝑖 (𝑏1 ⊗ · · · ⊗ 𝑏𝑁 ) = 𝑏1 ⊗ · · · ⊗ 𝑏𝑘−1 ⊗ 𝑒̃𝑖 (𝑏𝑘 ) ⊗ 𝑏𝑘+1 ⊗ · · · ⊗ 𝑏𝑁 , (5.9)

for some k, which is prescribed by the signature rule. Naturally, the same holds for operators 𝑓̃𝑖 . The
content function is given by 𝛾(𝑏) = (𝛾1, . . . , 𝛾𝑛), where 𝛾𝑖 counts the total number of i-cells in the
different tensor factors of b. We define the affine crystal graph 𝐵(𝜘) as the graph having set of vertices
𝐵𝜘 and edges defined by operators 𝑒̃𝑖 , 𝑓̃𝑖 , 𝑖 = 0, . . . , 𝑛 − 1. Denote with 𝐵(𝜘) the subgraph of 𝐵(𝜘)
obtained erasing all edges generated by 𝑒̃0, 𝑓̃0. We refer to 𝐵(𝜘) as the classical crystal subgraph and its
connected components are called classical connected components. When 𝜘 is a partition we identify 𝐵𝜘

with 𝑉𝑆𝑇 (𝜘 ′, 𝑛) and so the set of vertically strict tableaux possesses an affine crystal graph structure.
Moreover, for any partition 𝜇, we endow the set 𝑉𝑆𝑇 (𝜇, 𝑛) × 𝑉𝑆𝑇 (𝜇, 𝑛) of an 𝔰𝔩𝑛 bicrystal structure
defining families of Kashiwara operators as in equation (5.1).

A remarkable property of the affine crystal graph 𝐵(𝜘) is that it is connected. Such result holds
in much broader generality and for Kirillov–Reschetikhin crystals of type 𝐴(1) was proven in [1]. An
algorithmic proof of this statement can be found, for instance, in [29, 77].

Proposition 5.4 [1]. For any composition 𝜘, the affine crystal graph 𝐵(𝜘) is connected.

Proposition 5.4 will be very important to us as it allows to prove general statements about affine
crystal graphs by simply checking that special properties hold for particular elements. With this purpose,
we introduce the leading vector, or dominant extremal vector [51], 𝜘lv ∈ 𝐵𝜘 as

𝜘lv = 𝜘lv
1 ⊗ · · · ⊗ 𝜘lv

𝑁 , with 𝑘 lv =
1
2
...

𝑘

∈ 𝐵𝑘,1. (5.10)

We observe that 𝜘lv is the unique element of the crystal 𝐵𝜘 with content equal to 𝜘+.
An immediate consequence of connectedness of affine crystal graphs is that, if two affine crystals

𝐵(𝜘), 𝐵(𝜂) are isomorphic, then such isomorphism 𝜙 is unique and moreover 𝜂+ = 𝜘+.

Proposition 5.5. For two compositions 𝜘 and 𝜂, let 𝜙 : 𝐵𝜘 → 𝐵𝜂 be an isomorphism between the
crystal graphs, 𝐵𝜘 and 𝐵𝜂 . Then 𝜙 is unique and can be expressed as

𝜙(𝑏) = ℎ−1
𝑏 (𝜂

lv), (5.11)

where ℎ𝑏 is any composition of Kashiwara operators such that ℎ𝑏 : 𝑏 ↦→ 𝜘lv.
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Proof. The image of the leading vector 𝜘lv must be 𝜂lv by content considerations, and this uniquely
determines 𝜙(𝑏) for all 𝑏 ∈ 𝐵𝜘. Let 𝑏′ = 𝜙(𝑏) and consider a map ℎ𝑏 . Since 𝜙 is a morphism, we have

𝑏′ = 𝜙(𝑏) = ℎ−1
𝑏 ◦ ℎ𝑏 ◦ 𝜙(𝑏) = ℎ−1

𝑏 ◦ 𝜙 ◦ ℎ𝑏 (𝑏) = ℎ−1
𝑏 ◦ 𝜙(𝜘lv) = ℎ−1

𝑏 (𝜂
lv). (5.12)

This proves the proposition. �

5.4. Pairs of tableaux as affine bicrystals

In this subsection, we present a novel realization of an affine bicrystal structure on the set of pairs
of (generalized) semistandard Young tableaux. Let us define the action of two families of Kashiwara
operators 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 , 𝜖 = 1, 2 on a pair of semistandard Young tableaux (𝑃, 𝑄) as follows. For 𝑖 =
1, . . . , 𝑛 − 1, they are given by equation (5.1), whereas for 𝑖 = 0 we set

𝐸 (1)0 = 𝜄1 ◦ (𝑒̃1 × 1) ◦ 𝜄−1
1 , 𝐹 (1)0 = 𝜄1 ◦ ( 𝑓̃1 × 1) ◦ 𝜄−1

1 ,

𝐸 (2)0 = 𝜄2 ◦ (1 × 𝑒̃1) ◦ 𝜄−1
2 , 𝐹 (2)0 = 𝜄2 ◦ (1 × 𝑓̃1) ◦ 𝜄−1

2 .
(5.13)

Compare equation (5.13) with equation (5.7). Below in Corollary 5.9 we will show a consistency of
these under the projection Φ (4.21).

Proposition 5.6. The two families of Kashiwara operators defined above equip the set⋃
𝜌,𝜆

𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) × 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) (5.14)

with an 𝔰𝔩𝑛 bicrystal structure.

Proof. It is straightforward to verify that each of the families 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 satisfy the hypothesis listed in
Section 5.1 so that they both endow the set of pairs (𝑃, 𝑄) of an affine crystal structure. It remains to
show that these two families are commuting. Clearly, for all 𝑖, 𝑗 = 1, . . . , 𝑛 − 1, we have

𝐸 (1)𝑖 ◦ 𝐸 (2)𝑗 = 𝐸 (2)𝑗 ◦ 𝐸 (1)𝑖 (5.15)

and similarly for other relations involving also 𝐹 (1)𝑖 , 𝐹 (2)𝑗 . Let us now show that equation (5.15) holds
for 𝑗 = 0 and 𝑖 = 0, 1, . . . , 𝑛 − 1. Following Proposition 3.24, 𝜄1, 𝜄2 commute, so we need to show that
𝜄2 commutes with 𝐸 (1)𝑖 for 𝑖 = 1, . . . , 𝑛 − 1. This last statement is a consequence of Proposition 5.3
yielding the proof. �

The following theorem gives a characterization of symmetries of the skew RSK map.

Theorem 5.7. The skew RSK map is an isomorphism of 𝔰𝔩𝑛 bicrystals.

Proof. The skew RSK map clearly commutes with 𝜄1, 𝜄2 as a result of Proposition 3.6. If 𝑃, 𝑄 ∈
𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) and (𝑃′, 𝑄 ′) = RSK(𝑃, 𝑄), again by Proposition 3.6, 𝑃′, 𝑄 ′ are obtained, respectively,
from 𝑃, 𝑄 after a sequence of internal insertions. By Proposition 5.3, this implies that the skew RSK
map commutes with classical operators 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 for 𝑖 = 1, . . . , 𝑛−1, 𝜖 = 1, 2. This shows that RSK is
a morphism of bicrystals. Analogously, one can show that the inverse RSK−1, which is always defined,
is a morphism of bicrystals, concluding the proof. �

In the example reported in Figure 14, the statement of Proposition 5.7 is expressed in the form of a
commutative diagram that the reader can easily check.

Remark 5.8. We will show in Section 7.5 that, modulo symmetries prescribed by Proposition 5.7, the
skew RSK map is in fact a linear transformation. This implies that the affine bicrystal structure completely
characterizes the skew RSK map and hence the Sagan–Stanley correspondence of Proposition 4.11.
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Figure 14. The skew RSK map commutes with the two families of Kashiwara operators 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 , 𝑖 =
0, . . . , 𝑛 − 1, 𝜖 = 1, 2.

Corollary 5.9. The projection Φ : (𝑃, 𝑄) ↦→ (𝑉, 𝑊) defined by equation (4.21) is a morphism of affine
crystal graphs.

Proof. Composition of morphisms of crystals is clearly a morphism of crystals and so is RSK𝑡 for any
t. This implies that 𝐸 (𝜖 )𝑖 ◦ RSK𝑡 (𝑃, 𝑄) = RSK𝑡 ◦ 𝐸 (𝜖 )𝑖 (𝑃, 𝑄) and hence

𝐸 (𝜖 )𝑖 ◦Φ(𝑃, 𝑄) = Φ ◦ 𝐸 (𝜖 )𝑖 (𝑃, 𝑄), (5.16)

for all 𝑖 = 1, . . . , 𝑛 − 1, 𝜖 = 1, 2 since classical operators 𝐸 (𝜖 )𝑖 are defined in the same way for
semistandard tableaux and vertically strict tableaux. To prove that equation (5.16) holds also for 𝑖 = 0,
we compare the action of 𝜄1, 𝜄2 and the promotion operator. We call (𝑃𝑡 , 𝑄𝑡 ) = RSK𝑡−1(𝑃, 𝑄), and
(𝑃̃𝑡 , 𝑄̃𝑡 ) = 𝜄−1

2 (𝑃𝑡 , 𝑄𝑡 ). Also, denote by 𝜇 the asymptotic increment of (𝑃, 𝑄). Then, when t is very
large, say large enough so that (𝑃𝑡−1, 𝑄𝑡−1) is RSK-stable, we see that

1. The contents at column j of 𝑃𝑡 and 𝑃̃𝑡 are equal;
2. Defining 𝑏 𝑗 , 𝑏̃ 𝑗 ∈ 𝐵𝜇

′
𝑗 ,1 as j-th columns respectively of 𝑄𝑡 , 𝑄̃𝑡 , we have 𝑏̃ 𝑗 = pr(𝑏 𝑗 ), for all

𝑗 = 1, 2, . . . . This is because during inverse internal insertion with cycling 𝜄−1
2 , i-cells of 𝑄𝑡 become

(𝑖 + 1)-cells of 𝑄̃𝑡 for 𝑖 = 1, . . . , 𝑛 − 1, while n-cells of 𝑄𝑡 are vacated and new 1-cells are created at
the same column as a result of RSK-stability. This operation is nothing but promotion on individual
columns; see Section 5.3.

Therefore, assuming Φ(𝑃, 𝑄) = (𝑉, 𝑊), we have Φ◦ 𝜄−1
2 (𝑃, 𝑄) = (𝑉, pr(𝑊)) and by a similar argument

Φ ◦ 𝜄−1
1 (𝑃, 𝑄) = (pr(𝑉), 𝑊). Comparing the definition of the 0-th Kashiwara operators for pairs of

semistandard tableaux and vertically strict tableaux, we can now conclude that equation (5.16) holds
also for 𝑖 = 0 and Φ is a morphism of 𝔰𝔩𝑛 bicrystals. �

The result of Proposition 5.9 establishes consistency between the bicrystal structure for pairs of
vertically strict tableaux and that of pairs of semistandard tableaux. This consideration justifies the
following definition.
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Definition 5.10. Let (𝑉, 𝑊) = Φ(𝑃, 𝑄) and consider an operator

ℎ =
(
𝐸 (𝜖1)
𝑖1

)𝑁1
◦
(
𝐹 (𝜖2)
𝑖2

)𝑁2
◦ · · · , (5.17)

that is an arbitrary composition of Kashiwara operators such that ℎ(𝑉, 𝑊) ≠ ∅. Then the action of the
operator h is defined also on the pair (𝑃, 𝑄), replacing Kashiwara operators for vertically strict tableaux
by the corresponding operators for skew tableaux. Under these assumptions, ℎ(𝑃, 𝑄) ≠ ∅ and we call
such map the Φ-pullback of h. For simplicity, we will not introduce a special notation to denote pullback
maps.
Remark 5.11. The 𝔰𝔩𝑛 bicrystal structure on the set of pairs (𝑃, 𝑄) defines an 𝔰𝔩𝑛 crystal structure on
the set of single semistandard Young tableaux of generalized shape. This is done defining Kashiwara
operators 𝐸𝑖 (𝑃) = 𝑃′, if 𝐸 (1)𝑖 ◦ 𝐸 (2)𝑖 (𝑃, 𝑃) = (𝑃′, 𝑃′). This yields an affine crystal structure different
than the one described in [80], whose 0-th operators were given by equation (5.7), where pr becomes
the Lascoux-Schützenberger promotion operator. For instance, we can check that

𝐸0 :
1

1 2
2 3

↦→

1
2
3

2
3

. (5.18)

In general, it is not simple to describe concretely the effect of the action of 0-th Kashiwara operators
on the shape of skew tableaux (𝑃, 𝑄). The next proposition does this in the case of pairs that are RSK-
stable.
Proposition 5.12. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) such that 𝜄−1

1 (𝑃, 𝑄) is an RSK-stable pair of tableaux. Define
also Φ(𝑃, 𝑄) = (𝑉, 𝑊). Identify V with the tensor product of its columns 𝑣1 ⊗ · · · ⊗ 𝑣𝑁 and assume that

𝑓̃0(𝑉) = 𝑣1 ⊗ · · · ⊗ 𝑓̃0(𝑣𝑘 ) ⊗ · · · ⊗ 𝑣𝑁 , (5.19)

for some k. Define (𝑃, 𝑄) = 𝐹 (1)0 (𝑃, 𝑄) and let 𝜆/𝜌̃ be the shape of 𝑃, 𝑄. Then

𝜆′𝑗 = 𝜆′𝑗 + 1 𝑗=𝑘 and 𝜌̃′𝑗 = 𝜌′𝑗 + 1 𝑗=𝑘 . (5.20)

Relations (5.20) hold also for the action of 𝐹 (2)0 if we assume that (𝑃, 𝑄) = 𝐹 (2)0 (𝑃, 𝑄), 𝑓̃0(𝑊) =

𝑤1⊗· · ·⊗ 𝑓̃0(𝑤𝑘 ) ⊗ · · ·⊗𝑤𝑁 , where 𝑤𝑖’s are columns of W. For the action of inverse operators 𝐸 (1)0 , 𝐸 (2)0
relations (5.20) hold replacing 1 𝑗=𝑘 by −1 𝑗=𝑘 if we assume that 𝑒̃0(𝑉) = 𝑣1 ⊗ · · · ⊗ 𝑒̃0 (𝑣𝑘 ) ⊗ · · · ⊗ 𝑣𝑁 .

Proof. Let (𝑃, 𝑄) = 𝜄−1
1 (𝑃, 𝑄), and call 𝜆/𝜌̂ the shape of the pair. Define 𝜃 (𝑖) (𝑃) =

(𝜃 (𝑖)1 (𝑃), . . . , 𝜃 (𝑖)𝜆1
(𝑃)) as

𝜃 (𝑖)𝑐 (𝑃) = 1{there is an 𝑖-cell at column 𝑐 of 𝑃 } . (5.21)

Then, by definition of 𝜄−1
1 and by the property of RSK-stability of (𝑃, 𝑄), we have

𝜆′ = 𝜆′ − 𝜃 (𝑛) (𝑃) and 𝜌̂′ = 𝜌′ − 𝜃 (𝑛) (𝑃). (5.22)

Clearly, if (𝑃, 𝑄) is RSK-stable so is ( 𝑓̃ 𝑗 (𝑃), 𝑄) whenever 𝑗 = 1, . . . , 𝑛 − 1 and 𝑓̃ 𝑗 (𝑃) ≠ ∅. Then as
above we have

𝜆′ = 𝜆′ + 𝜃 (1) ( 𝑓̃1(𝑃)) = 𝜆′ − 𝜃 (𝑛) (𝑃) + 𝜃 (1) ( 𝑓̃𝑖 (𝑃)) (5.23)

and similarly for 𝜌̃, which is exactly the claim (5.20). The proof of relations (5.20) for the action of
operators 𝐹 (2)0 , 𝐸 (1)0 , 𝐸 (2)0 is analogous and therefore is omitted. �
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Figure 15. An example of the signature rule determining 𝑘̂ and 𝑘̃ as in (5.26), (5.28).

5.5. MatricesM𝒏×𝒏 as affine bicrystals

We equip the set of matrices M𝑛×𝑛 of an 𝔰𝔩𝑛 bicrystal structure, transporting, via the Sagan–Stanley
correspondence, the structure on the set of pairs of tableaux discussed in Section 5.4. Similar investi-
gations were recently pursued in [35], where authors considered the set of infinite binary matrices as
affine bicrystals. For the case of integral matricesM𝑛×𝑛 classical bicrystal structure had been discussed
in [23, 86].

We start defining the action of two families of classical Kashiwara operators on the set of matrices
M𝑛×𝑛. For a given 𝑀 ∈ M𝑛×𝑛 and 𝑖 = 1, . . . , 𝑛 − 1, we set

𝐸 (1)𝑖 (𝑀) = 𝑀
′
, (5.24)

where 𝑀
′, as a map on 𝒞𝑛, is

𝑀
′
(𝑐) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀 ( 𝑘̂ , 𝑖 + 1) − 1 if 𝑐 ∼𝑛 ( 𝑘̂ , 𝑖 + 1),
𝑀 ( 𝑘̂ , 𝑖) + 1 if 𝑐 ∼𝑛 ( 𝑘̂ , 𝑖),

𝑀 (𝑐) else .

(5.25)

The value of 𝑘̂ is determined by the signature rule, that in this case reads

𝑘̂ = min
⎧⎪⎨⎪⎩𝑘 :

𝑠∑
𝑗=𝑘

𝑀 ( 𝑗 , 𝑖 + 1) >
𝑠+1∑
𝑗=𝑘+1

𝑀 ( 𝑗 , 𝑖), ∀𝑠 ≥ 𝑘
⎫⎪⎬⎪⎭ . (5.26)

See Figure 15 for an example.
Analogously, we define 𝐹 (1)𝑖 as the (partial) inverse of 𝐸 (1)𝑖 , that is,

𝐹 (1)𝑖 (𝑀) = 𝑀
′
, 𝑀

′
(𝑐) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀 ( 𝑘̃ , 𝑖 + 1) + 1 if 𝑐 ∼𝑛 ( 𝑘̃ , 𝑖 + 1),
𝑀 ( 𝑘̃ , 𝑖) − 1 if 𝑐 ∼𝑛 ( 𝑘̃ , 𝑖),

𝑀 (𝑐) else ,

(5.27)

where this time

𝑘̃ = max
⎧⎪⎨⎪⎩𝑘 :

𝑘∑
𝑗=𝑠

𝑀 ( 𝑗 , 𝑖) >
𝑘−1∑
𝑗=𝑠−1

𝑀 ( 𝑗 , 𝑖 + 1), ∀𝑠 ≤ 𝑘
⎫⎪⎬⎪⎭ . (5.28)
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In order to define the 0-th Kashiwara operators, we introduce the shifts

𝑇𝜖 ( 𝑓 ) (𝑐) = 𝑓 (𝑐 − e𝜖 ), (5.29)

for 𝜖 = 1, 2, acting on any map f from the twisted cylinder 𝒞𝑛. We set

𝐸 (1)0 = 𝑇2 ◦ 𝐸 (1)1 ◦ 𝑇−1
2 , 𝐹 (1)0 = 𝑇2 ◦ 𝐹 (1)1 ◦ 𝑇−1

2 . (5.30)

The second family of Kashiwara operators is defined by duality,

𝐸 (2)𝑖 (𝑀
𝑇
) = 𝐸 (1)𝑖 (𝑀)

𝑇 , 𝐹 (2)𝑖 (𝑀
𝑇
) = 𝐹 (1)𝑖 (𝑀)

𝑇 . (5.31)

Remark 5.13. We can translate the definitions for matrices above to those for weighted biwords through
identification (2.6). For instance, classical Kashiwara operators become

𝐸 (1)𝑖 (𝜋) = 𝜎, : 𝑞(𝜎) = 𝑞(𝜋), 𝑤(𝜎) = 𝑤(𝜋), 𝑝(𝜎
^
) = 𝑒̃𝑖 (𝑝(𝜋

^
)) (5.32)

and analogously for the 𝐹 (1)𝑖 operator for 𝑖 = 1, . . . , 𝑛 − 1. Notice that defining the signature rule on
matrices 𝑀 concatenating slices 𝑀 (𝑘)’s in decreasing order in k results in the appearance of the timetable
ordering of 𝜋

^ in the language of weighted biwords; see Figure 15. The second family 𝐸 (2)𝑖 , 𝐹 (2)𝑖 , again
for 𝑖 = 1, . . . , 𝑛 − 1, is defined by duality

𝐸 (2)𝑖 (𝜋
−1) = 𝐸 (1)𝑖 (𝜋)

−1, (5.33)

and similarly for the 𝐹 (2)𝑖 operators.

Proposition 5.14. The two families {𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 : 𝑖 = 0, . . . , 𝑛 − 1}, 𝜖 = 1, 2 defined above equip the set
M𝑛×𝑛 of an 𝔰𝔩𝑛 bicrystal structure.

Proof. Defining the content functions 𝛾 (1) , 𝛾 (2) as

𝛾 (1)𝑖 (𝑀) =
∑
𝑗∈Z

𝑀 ( 𝑗 , 𝑖), 𝛾 (2)𝑖 (𝑀) =
∑
𝑗∈Z

𝑀 (𝑖, 𝑗), (5.34)

it is straightforward to verify that 𝐸 (1)𝑖 , 𝐹 (1)𝑖 and 𝐸 (2)𝑖 , 𝐹 (2)𝑖 fulfill hypothesis enumerated in Section 5.1.
Commutativity of the two families of Kashiwara operators can also be checked directly. This was done
for finite integral matrices in [23, 86]. �

The affine bicrystal structure we impose on the set of matrices M𝑛×𝑛 is by design compatible with
the bicrystal structure defined on set of pairs of tableaux.

Proposition 5.15. The map (4.13) (𝑃, 𝑄)
SS
−−→ 𝑀 is a morphism of 𝔰𝔩𝑛 bicrystals.

Proof. We first show that (𝑃, 𝑄)
SS
−−→ 𝑀 is a morphism of 𝔰𝔩𝑛 bicrystals. For this, it is convenient to

use the formalism of weighted biwords 𝜋(𝑀), whose bicrystal structure was given in Proposition 5.13,
rather than matrices. If (𝑃, 𝑄)

SS
−−→ 𝜋, call 𝜋𝑃 the row reading word of P and 𝑝 = 𝑝(𝜋

^
). By Proposition

A.6, we have 𝜋𝑃 � 𝑝, where � denotes the Knuth equivalence. Notice that, the statement in Proposition
A.6 requires that tableau P is of classical shape for simplicity, but it is straightforward to understand
this assumption is not needed. Since 𝜋𝑃 � 𝑝, the map 𝑃 ↦→ 𝑝 can be realized as a sequence of jeu de
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taquin moves, identifying the word p with its antidiagonal strip tableau

𝑝𝑘
...

𝑝2
𝑝1

. (5.35)

This implies, by Proposition 5.2 that 𝑒̃𝑖 (𝑃) ↦→ 𝑒̃𝑖 (𝑝) and hence

𝐸 (1)𝑖 (𝑃, 𝑄) = 𝐸 (1)𝑖 (𝜋), (5.36)

for 𝑖 = 1, . . . , 𝑛 − 1. The same can be said for the family 𝐸 (2)𝑖 , 𝐹 (1)𝑖 , 𝐹 (2)𝑖 , 𝑖 = 1, . . . , 𝑛 − 1 and hence

(𝑃, 𝑄)
SS
−−→ 𝜋 is a morphism of 𝔰𝔩𝑛 bicrystals and so is equation (4.13). To prove that (𝑃, 𝑄)

SS
−−→ 𝑀 is

a morphism of affine bicrystals, we use Proposition 4.4, which along with Proposition 4.9 implies that
𝜄1 (𝑃, 𝑄)

SS
−−→ 𝑇2 (𝑀), 𝜄2(𝑃, 𝑄)

SS
−−→ 𝑇1 (𝑀). This proves that for both 𝜖 = 1, 2, 𝐸 (𝜖 )𝑖 (𝑃, 𝑄) ↦→ 𝐸 (𝜖 )𝑖 (𝑀),

𝐹 (𝜖 )𝑖 (𝑃, 𝑄) ↦→ 𝐹 (𝜖 )𝑖 (𝑀) also for 𝑖 = 0.
�

Theorem 5.16. The Viennot map V is an isomorphism of 𝔰𝔩𝑛 bicrystals.

Proof. This is a consequence of Proposition 5.15. For any matrix 𝑀 , there always exists a pair of
tableaux (𝑃, 𝑄) such that (𝑃, 𝑄)

SS
−−→ 𝑀 under map (4.13). This is a consequence of Proposition 4.9 and

Figure 16. The Viennot map commutes with the two families of Kashiwara operators 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 , 𝑖 =
0, . . . , 𝑛 − 1, 𝜖 = 1, 2.
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of construction reported (only for tableaux of classical shape for brevity) in Proposition 2.3. Let (𝑃′, 𝑄 ′)

be tableaux obtained rigidly shifting 𝑃, 𝑄 one row up. Then, by Proposition 4.13 we have (𝑃′, 𝑄 ′)
SS
−−→

V(𝑀). Since the transformation (𝑃, 𝑄) ↦→ (𝑃′, 𝑄 ′) is realized through a sequence of jeu de taquin moves
we have 𝐸 (𝜖 )𝑖 (𝑃, 𝑄) ↦→ 𝐸 (𝜖 )𝑖 (𝑃

′, 𝑄 ′) and using Proposition 5.15, 𝐸 (𝜖 )𝑖 ◦ V(𝑀) = V ◦ 𝐸 (𝜖 )𝑖 (𝑀). �

In Figure 16, we report an example of commutation relations prescribed by Proposition 5.16.
We could extend the description of crystal operators to matrices of integers (𝛼, 𝛽). Such considerations

will not play important role in this paper, and therefore we do not discuss them here. The interested
reader can consult [22], where similar ideas were investigated by the authors.

6. Generalized Greene invariants

In this section, we study increasing subsequences and localized decreasing subsequences of weighted
biwords or of infinite matrices. These were defined in Section 4.6 and represent generalizations of the
classical increasing and decreasing subsequences which in the RSK correspondence capture the shape of
the tableaux. We show that the maximal increasing and localized decreasing subsequences are invariant
under the action of Kashiwara operators in Proposition 6.4 and that they are preserved by the Viennot
map in Proposition 6.5. Their interpretation in the language of tableaux is given in Proposition 6.6, and
they describe the asymptotic increment of (𝑃, 𝑄) under skew RSK dynamics. From this last fact, we
deduce a generalization of Schensted’s theorem describing the first row of the shape of a pair of skew
tableaux (𝑃, 𝑄) ↔ (𝜋; 𝜈) in terms of the longest increasing subsequence of 𝜋 and of 𝜈1.

6.1. Passage times and subsequences

In Section 4.6, we defined increasing and localized decreasing subsequences of a weighted biword 𝜋.
We now extend these definitions considering decompositions of 𝜋 into multiple subsequences.

Definition 6.1. A weighted biword 𝜋 ∈ A𝑛,𝑛 is k-increasing if it can be written as a disjoint union of k
increasing weighted biwords 𝜋 = 𝜋 (1) ·∪ · · · ·∪ 𝜋 (𝑘) . Analogously, 𝜋 is k-localized decreasing if it can be
written as a disjoint union of k localized decreasing weighted biwords 𝜋 = 𝜋 (1) ·∪ · · · ·∪ 𝜋 (𝑘) .

Definition 6.2 (Greene invariants). For a weighted biword 𝜋 ∈ A𝑛,𝑛, we define statistics

𝐼𝑘 (𝜋) � length of the longest 𝑘-increasing subsequence of 𝜋,

𝐷𝑘 (𝜋) � length of the longest 𝑘-localized decreasing subsequence of 𝜋.

If 𝑀 ∈ M𝑛×𝑛 is the matrix corresponding to 𝜋, we will denote 𝐼𝑘 (𝑀) = 𝐼𝑘 (𝜋) and the same for
𝐷𝑘 (𝑀) = 𝐷𝑘 (𝜋).

It is straightforward to notice that the notion of 𝐼𝑘 (𝑀), defined in Section 1.3 in terms of last passage
times of up-right paths is equal to the one given in Proposition 6.2.

Remark 6.3. In case 𝜋 is such that 𝑤𝑖 (𝜋) = 0 for all i notions of increasing and localized decreasing
become respectively the usual notions of increasing and decreasing for words [74, Chapter 3.3].

Statistics 𝐼𝑘 (𝜋), 𝐷𝑘 (𝜋), as we will prove in Proposition 6.4 are invariants under the action of
Kashiwara operators. Moreover, in Appendix A.3 we will define a generalized notion of Knuth relations
and we will prove in Proposition A.17, that also with respect to these transformations 𝐼𝑘 , 𝐷𝑘 are
invariants. Therefore, they represent generalizations in skew setting of Greene invariants, which should
justify the terminology used.
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6.2. Greene invariants and crystal operators

In classical setting Greene invariants of a biword 𝜋, or equivalently of an integral matrix M, are known
to be invariant under the action of classical Kashiwara operators. This can be proven either using the fact
that the RSK algorithm 𝑀 ↦→ (𝑃, 𝑄) is a morphism of classical crystals and leveraging Greene’s theorem
[16] or through a direct check [23, 86]. In a skew/affine setting, we find that analogous invariances hold,
as stated in the next theorem.
Theorem 6.4. Let 𝜋 ∈ A𝑛,𝑛. Let ℎ = 𝐸 (𝜖 )𝑖 or ℎ = 𝐹 (𝜖 )𝑖 for some 𝜖 = 1, 2, 𝑖 = 0, 1, . . . , 𝑛−1, and assume
ℎ(𝜋) ≠ ∅. Then, for all k, we have

𝐼𝑘 (ℎ(𝜋)) = 𝐼𝑘 (𝜋) and 𝐷𝑘 (ℎ(𝜋)) = 𝐷𝑘 (𝜋). (6.1)

Proof of Proposition 6.4 is reported in Appendix B. Arguments we use are rather straightforward
and consist in direct checks of conservation laws (6.1). Similar strategies were elaborated in [23, 86] in
classical setting. Compared to these previous works, our approach is conceptually equivalent, although
technically more involved.

6.3. Greene invariants, Viennot map and skew RSK dynamics

Here, we describe two main results of this section. The first, given in Proposition 6.5, illustrates
fundamental conservation laws of the Viennot map V. The second, presented in Proposition 6.6,
characterizes the asymptotic shape 𝜇(𝑃, 𝑄) of a pair of skew tableaux (𝑃, 𝑄) in terms of the Greene
invariants 𝐼𝑘 , 𝐷𝑘 . This second result gives a generalization of Greene’s theorem [36] in skew setting.
Proofs of Proposition 6.5 and Proposition 6.6 are reported in Section 6.5 below.
Theorem 6.5. Let 𝜋 ∈ A𝑛,𝑛. Then for all k we have

𝐼𝑘 (V(𝜋)) = 𝐼𝑘 (𝜋) and 𝐷𝑘 (V(𝜋)) = 𝐷𝑘 (𝜋). (6.2)

For our next statement, associate to each weighted biword 𝜋 two a priori different partitions 𝜇(𝜋)
and 𝜇(𝜋). They are defined through the Greene invariants of 𝜋 as

𝜇′1 + · · · + 𝜇′𝑘 = 𝐷𝑘 (𝜋), (6.3)

𝜇1 + · · · + 𝜇𝑘 = 𝐼𝑘 (𝜋). (6.4)

Theorem 6.6. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), and consider the projection (𝑃, 𝑄)
SS
−−→ 𝜋. Denote by 𝜇(𝑃, 𝑄)

the asymptotic increment of (𝑃, 𝑄) under skew RSK dynamics. Then 𝜇(𝑃, 𝑄) = 𝜇(𝜋) = 𝜇(𝜋).
We will see, in Proposition 6.8 below, that establishing invariance of statistics 𝐷𝑘 is relatively

straightforward and it follows from an intuitive graphical argument. Proving invariance of the length of
longest k-increasing subsequences 𝐼𝑘 from the shadow line construction seems to be less elementary.
Therefore, we will prove the slightly less direct fact that partitions 𝜇 = 𝜇. For this, we will take advantage
of symmetries with respect to crystal operators, provided by Proposition 6.4 and we will also evoke the
connectedness property of the affine crystal graph 𝐵(𝜘) recalled in Proposition 5.4.

6.4. An extension of Schensted’s theorem

We present a generalization of Schensted’s theorem [76]. In a classical setting, this relates the length of
the first row of a pair of straight standard tableaux (𝑃, 𝑄) with the longest increasing subsequence of
the corresponding permutation 𝜋.

Theorem 6.7. Let 𝜋 ∈ A
+

𝑛,𝑛 be a weighted biword and 𝜈 a partition. Let 𝜆/𝜌 be the skew shape of

tableaux (𝑃, 𝑄)
SS
←→ (𝜋; 𝜈). Then 𝜆1 = 𝜈1 + 𝐼1(𝜋).
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Figure 17. An example of the construction described in the proof of Proposition 6.8. Green circled
black bullets correspond to LDS 𝜎 (1) , while blue circled correspond to 𝜎 (2) . Red bullets falling on
green and blue broken lines determine LDSs 𝜉

(1) and 𝜉
(2) of V(𝜋).

Proof. This is a simple corollary of Proposition 6.6. By Proposition 3.23, the application of skew RSK
map does not change partition 𝜈 = ker(𝑃, 𝑄). Let (𝑃, 𝑄)

rc
←→ (𝛼, 𝛽; 𝜈), then if (𝑃, 𝑄) = RSK𝑡 (𝑃, 𝑄)

and (𝛼̃, 𝛽) = RSK𝑡 (𝛼, 𝛽), we have (𝑃, 𝑄)
rc
←→ (𝛼̃, 𝛽; 𝜈). When t is large enough the pair (𝑃, 𝑄) becomes

RSK-stable and calling 𝜆/𝜌̃ its shape and 𝜇 the asymptotic increment, we have 𝜆1 = 𝜈1 + 𝜇1. Since
the skew RSK map does not modify the length of the first row of tableaux 𝑃, 𝑄, we conclude that
𝜆1 = 𝜈1 + 𝜇1 and hence the claim of the theorem by Proposition 6.6. �

6.5. Proofs of Proposition 6.5 and of Proposition 6.6

We start by proving that the Viennot map preserves the length of the longest localized decreasing
subsequences.
Lemma 6.8. Let 𝜋 ∈ A𝑛,𝑛. Then for all k, we have 𝐷𝑘 (V(𝜋)) = 𝐷𝑘 (𝜋).

Proof. Let 𝜎 = 𝜎 (1) ·∪ · · · ·∪ 𝜎 (𝑘) be a k-LDS of 𝜋. Consider the shadow line construction of 𝜎, which
by Proposition B.4 consists of at most k down-right loops 𝜍 (1) , . . . , 𝜍 (𝑘) (note the last few of them could
be empty). With no loss of generality we can assume that 𝜎 ( 𝑗) consists of points in 𝜎 ∩ 𝜍 ( 𝑗) without
multiplicity. For instance, in Figure 17 black bullets correspond to 𝜋 and 𝜎 = 𝜎 (1) ·∪ 𝜎 (2) , where 𝜎 (1)

(resp. 𝜎 (2) ) corresponds to green (resp. blue) circled bullets, while 𝜍 (1) (resp. 𝜍 (2) ) identifies the green
(resp. blue) broken line. We now compute the shadow line construction of 𝜋 to determine V(𝜋) and we
define 𝜉

( 𝑗)
= V(𝜋) ∩ 𝜍 ( 𝑗) , again without multiplicity. If [𝜎 ( 𝑗)𝑚 ] = (𝑎1, 𝑎2), [𝜎

( 𝑗)
𝑚+1] = (𝑏1, 𝑏2) are two

consecutive points of 𝜎 ( 𝑗) , then the union of two segments [𝜎 ( 𝑗)𝑚 ] → (𝑏1, 𝑎2) → [𝜎
( 𝑗)
𝑚+1] necessarily

hosts at least one point of V(𝜋). Since there are ℓ(𝜎 ( 𝑗) ) such pairs (the last and the first point are
consecutive by periodicity), we conclude that ℓ(𝜎 ( 𝑗) ) ≤ ℓ(𝜉

( 𝑗)
). See the example of Figure 17 where

𝜉
(1) and 𝜉

(2) are given by red bullets lying, respectively, on the green and blue broken lines. Therefore
defining 𝜉 = 𝜉

(1)
·∪ · · · ·∪ 𝜉

(𝑘) we have ℓ(𝜎) ≤ ℓ(𝜉) and in general 𝐷𝑘 (𝜋) ≤ 𝐷𝑘 (V(𝜋)) for all 𝜋. An
analogous argument shows that the same monotonicity property holds for the map V−1, which is realized
through a shadow line construction inverse to that of V. Therefore, we have 𝐷𝑘 (𝜋

′) ≤ 𝐷𝑘 (V−1(𝜋′))
for all 𝜋′. Combining the two inequalities we find 𝐷𝑘 (𝜋) ≤ 𝐷𝑘 (V(𝜋)) ≤ 𝐷𝑘 (𝜋), which completes the
proof. �

Proposition 6.9. Adopting the notation of Proposition 6.6, we have 𝜇(𝑃, 𝑄) = 𝜇(𝜋).
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Proof. We will match 𝜇(𝑃, 𝑄) with 𝜇(V𝑡 (𝜋)) a large enough t. This will prove our claim since by
Proposition 6.8 we have 𝜇(𝜋) = 𝜇(V𝑡 (𝜋)) for all t. Let 𝜋 (𝑡) be the Viennot dynamics with initial data 𝜋
and analogously let (𝑃𝑡 , 𝑄𝑡 ) be the skew RSK dynamics with initial data (𝑃, 𝑄). In Proposition 4.23,
we have proven that for a large enough 𝑡∗, there exist weighted biwords 𝜎 (1) , 𝜎 (2) , . . . such that

V𝑠
(
𝜋 (𝑡

∗)
)
= V𝑠 (𝜎 (1) ) ·∪ V𝑠 (𝜎 (2) ) ·∪ · · · , (6.5)

for all 𝑠 ≥ 0. Moreover, 𝜎 ( 𝑗) ’s can be further decomposed as 𝜎 ( 𝑗) = 𝜉
( 𝑗 ,1)

·∪ 𝜉
( 𝑗 ,2)

·∪ · · · ·∪ 𝜉
( 𝑗 ,𝑟 𝑗 ) ,

where 𝜉
( 𝑗 ,𝑟 ) ’s are localized decreasing sequences of length ℓ(𝜉

( 𝑗 ,𝑟 )
) = 𝜇′𝑅 𝑗

and evolve independently
under Viennot dynamics. Here, we are assuming that the numbers 𝑅 𝑗 give a rectangular decomposition
of 𝜇 and 𝑟𝑖 are as in Figure 3. To prove our theorem, we need to show that the longest LDS of 𝜎 ( 𝑗) is
no longer than 𝜇′𝑅 𝑗

, implying that 𝐷𝑠 (𝜎
( 𝑗) ) = 𝑠 × 𝜇′𝑅 𝑗

, for 𝑠 = 1, . . . , 𝑟 𝑗 . Since point configurations
corresponding to each 𝜎 ( 𝑗) are far apart in 𝒞𝑛, each LDS of 𝜋 is necessarily contained in one of the
𝜎 ( 𝑗) . This implies that

𝐷𝑘 (𝜋) =
𝑗∑
𝑖=1

𝐷𝑟𝑖 (𝜎
(𝑖) ) + 𝐷𝑘−𝑅 𝑗 (𝜎

( 𝑗) ) (6.6)

when 𝑅 𝑗 < 𝑘 ≤ 𝑅 𝑗+1, which proves that 𝜇(𝑃, 𝑄) = 𝜇(𝜋).
To prove the claimed bound on the length of LDSs of 𝜎 ( 𝑗) , we utilize an argument similar to the one

presented in the proof of Proposition 6.8. The guiding principle here is that in the Viennot dynamics
longer LDSs are ‘slower’ than shorter ones. Define the upward translation in 𝒞𝑛 as

T : (𝑎, 𝑏) → (𝑎, 𝑏 + 𝑛). (6.7)

By the fact that columns of tableaux 𝑃𝑡 , 𝑄𝑡 , for t large enough evolve autonomously and during any
update their c-th columns receive a downward shift of 𝜇′𝑐 cells we have, using Proposition 4.12

V𝜇′𝑅𝑗 (𝜎 ( 𝑗) ) = T (𝜎 ( 𝑗) ). (6.8)

Assume that there exists an LDS 𝜂 of 𝜎 ( 𝑗) of length ℓ(𝜂) = 𝐿 > 𝜇′𝑅 𝑗
. Then, by Proposition 6.8 there

will exist an LDS 𝜂 (𝑠) ⊂ V𝑠 (𝜎 ( 𝑗) ) such that ℓ(𝜂 (𝑠) ) = 𝐿, for all 𝑠 ≥ 1. Additionally, elements of 𝜂 (1)

can be assumed to lie on the only down-right loop 𝜍 resulting from the shadow line construction of
points of 𝜂. In particular, 𝜂 (1) lies weakly ‘below’ V(𝜂) in the sense that if

𝜂 (1) = (𝑎′1, 𝑏′1) → · · · → (𝑎
′
𝐿 , 𝑏′𝐿) and V(𝜂) = (𝑎1, 𝑏1) → · · · → (𝑎𝐿 , 𝑏𝐿), (6.9)

then 𝑏′1 ≤ 𝑏1, . . . , 𝑏′𝐿 ≤ 𝑏𝐿 . Inductively, one can show that for any s, 𝜂 (𝑠) lies ‘below’ V𝑠 (𝜂) in the
same sense. We can now compare the evolution of 𝜎 ( 𝑗) with that of 𝜂 under iteration of the Viennot
map. Since 𝜂 is a localized decreasing subsequence, it is true that

V𝐿 (𝜂) = T (𝜂). (6.10)

Combining this last equality with equation (6.8), we have

V
𝑁𝐿𝜇𝑅′

𝑗 (𝜎 ( 𝑗) ) = T 𝑁𝐿 (𝜎 ( 𝑗) ), V
𝑁𝐿𝜇𝑅′

𝑗 (𝜂) = T 𝑁 𝜇𝑅′
𝑗 (𝜂), (6.11)

which for N large enough implies that T 𝑁𝐿 (𝜎 ( 𝑗) ) and T 𝑁 𝜇𝑅′
𝑗 (𝜂) lie far apart from each other, since

𝐿 > 𝜇′𝑅 𝑗
. This is a contradiction since elements of 𝜂

(𝑁𝐿𝜇𝑅′
𝑗
)

should lie below T 𝑁 𝜇𝑅′
𝑗 (𝜂). Therefore,
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there cannot exist any LDS of 𝜎 ( 𝑗) strictly longer than 𝜇′𝑅 𝑗
. This shows that 𝐷𝑠 (𝜎

( 𝑗) ) = 𝑠 × 𝜇′𝑅 𝑗
and

hence completes the proof of our proposition. �

In the following proposition, we prove that partitions 𝜇, 𝜇 defined through Greene invariants 𝐷𝑘 , 𝐼𝑘
are in fact equal.

Proposition 6.10. Let 𝜇, 𝜇 be as in equations (6.3), (6.4). Then, for all 𝜋 ∈ A𝑛,𝑛, we have 𝜇(𝜋) = 𝜇(𝜋).

For the sake of the proof of Proposition 6.10, we introduce now statistics of weighted biwords 𝜋
which are ‘dual’ to the Greene invariants 𝐷𝑘 . Let 𝔇(𝜋) denote the set of decompositions of 𝜋 into
localised decreasing subsequences

𝔇(𝜋) = {𝔡 = (𝜎 (1) , 𝜎 (2) , . . . ) : 𝜋 = 𝜎 (1) ·∪ 𝜎 (2) ·∪ · · · and 𝜎 ( 𝑗) is LDS for all 𝑗}. (6.12)

Given 𝔡 = (𝜎 (1) , 𝜎 (2) , . . . ) ∈ 𝔇(𝜋), define

𝑔𝑘 (𝔡) =
∑
𝑖≥1

min
{
𝑘, ℓ(𝜎 (𝑖) )

}
(6.13)

and

𝐺𝑘 (𝜋) = min
𝔡∈𝔇(𝜋)

𝑔𝑘 (𝔡). (6.14)

In words, 𝑔𝑘 tells us how ‘spread out’ the decomposition 𝔡 is, as in the summation localized decreasing
subsequences longer than k contribute with a penalized weight. On the other hand, statistics 𝐺𝑘 record
how likely it is to decompose 𝜋 in the least number of localized decreasing subsequences. We have the
following.

Lemma 6.11. Let 𝜋 ∈ A𝑛,𝑛, take 𝜇 as in equation (6.3), and define 𝜘 as

𝜘1 + · · · + 𝜘𝑘 = 𝐺𝑘 (𝜋). (6.15)

Then 𝜇 = 𝜘.

Proof. Let 𝜎 (1) ·∪ · · · ·∪𝜎 (𝑘) be a maximising k-LDS of 𝜋, or in other words assume that ℓ(𝜎 (1) ) + · · · +
ℓ(𝜎 (𝑘) ) = 𝜇′1 + · · · + 𝜇′𝑘 . It is clear that ℓ(𝜎 ( 𝑗) ) ≥ 𝜇′𝑘 for all j. Otherwise, say ℓ(𝜎 (𝑘) ) ≤ 𝜇′𝑘 −1, then this
would imply that ℓ(𝜎 (1) ) + · · · + ℓ(𝜎 (𝑘−1) ) ≥ 𝜇′1 + · · · + 𝜇′𝑘−1 + 1, which contradicts the definition of 𝜇.
Let 𝔡 = (𝜎 (1) , . . . , 𝜎 (𝑘) , 𝜂 (𝑘+1) , . . . ) ∈ 𝔇(𝜋), where 𝜂 (𝑙) , 𝑙 > 𝑘 are LDSs formed with elements of 𝜋 \𝜎
and notice that ℓ(𝔡) = |𝜇 |. Similarly as above, each 𝜂 (𝑙) has length which is no longer than 𝜇′𝑘 . Then

𝑔𝜇′
𝑘
(𝔡) =

𝑘∑
𝑖=1

min{𝜇′𝑘 , ℓ(𝜎 (𝑖) )} +
∑
𝑖>𝑘

min{𝜇′𝑘 , ℓ(𝜂 (𝑖) )}

= 𝑘𝜇′𝑘 + 𝜇′𝑘+1 + 𝜇′𝑘+2 + · · ·

= 𝜇1 + · · · + 𝜇𝜇′
𝑘
,

(6.16)

which implies 𝜘1 + · · · + 𝜘𝜇′
𝑘
≤ 𝜇1 + · · · + 𝜇𝜇′

𝑘
. Assume that this last inequality can be made strict. This

means that we can find 𝔡′ = (𝜉
(1)

, 𝜉
(2)

, . . . ), with LDSs arranged decreasingly in length, such that

𝑔𝜇′
𝑘
(𝔡′) = 𝑚𝜇′𝑘 + ℓ(𝜉

(𝑚+1)
) + ℓ(𝜉

(𝑚+2)
) + · · · < 𝑘𝜇′𝑘 + 𝜇′𝑘+1 + 𝜇′𝑘+2 + · · · , (6.17)

where m is the number of LDSs 𝜉
( 𝑗) with length greater than or equal to 𝜇′𝑘 . Since ℓ(𝜉

(1)
)+· · ·+ℓ(𝜉

(𝑚)
) ≤

𝜇′1 + · · · + 𝜇′𝑚 we have
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𝜇′𝑚+1 + 𝜇′𝑚+2 + · · · ≤ ℓ(𝜉
(𝑚+1)
) + ℓ(𝜉

(𝑚+2)
) + · · · , (6.18)

which implies the inequality

(𝜇′𝑚+1 + 𝜇′𝑚+2 + · · · ) − (𝜇
′
𝑘+1 + 𝜇′𝑘+2 + · · · ) < (𝑘 − 𝑚)𝜇′𝑘 . (6.19)

In case 𝑚 < 𝑘 , equation (6.19) becomes 𝜇′𝑚+1+· · ·+𝜇′𝑘 < (𝑘−𝑚)𝜇′𝑘 , which is impossible since terms of 𝜇
are weakly decreasing. Alternatively, in case 𝑚 ≥ 𝑘 , equation (6.19) becomes (𝑚−𝑘)𝜇′𝑘 < 𝜇′𝑘+1+· · ·+𝜇′𝑚,
which is also impossible for the same reason. Therefore, 𝜘1 + · · · + 𝜘𝜇′

𝑘
= 𝜇1 + · · · + 𝜇𝜇′

𝑘
for all k and

this completes the proof. �

Lemma 6.12. Let 𝜋 ∈ A𝑛,𝑛, and consider partitions 𝜇, 𝜇 as in equations (6.3), (6.4). Then 𝜇 � 𝜇,
where “�” is the dominance order 𝜇1 + · · · + 𝜇𝑘 ≤ 𝜇1 + · · · + 𝜇𝑘 for all k.

Proof. Let 𝔡 = (𝜎 (1) , 𝜎 (2) , . . . ) ∈ 𝔇(𝜋), and consider k disjoint increasing subsequences 𝜂 (1) , . . . , 𝜂 (𝑘)

of 𝜋. For any i and j, the intersection 𝜂 (𝑖) ∩ 𝜎 ( 𝑗) has at most one element; therefore, we have

ℓ(𝜂 (1) ) + · · · + ℓ(𝜂 (𝑘) ) =
∑
𝑖, 𝑗

'''𝜂 (𝑖) ∩ 𝜎 ( 𝑗)
'''

≤
∑
𝑗≥1

min{𝑘, ℓ(𝜎 ( 𝑗) )} = 𝑔𝑘 (𝔡).
(6.20)

Minimizing the right-hand side over 𝔡 we obtain that ℓ(𝜂 (1) ) + · · · +ℓ(𝜂 (𝑘) ) ≤ 𝐺𝑘 (𝜋) and hence 𝐼𝑘 (𝜋) ≤
𝐺𝑘 (𝜋) maximizing over the choice of increasing subsequences 𝜂 (𝑖) . We can now use Proposition 6.11
to identify 𝐺𝑘 (𝜋) with 𝜇1 + · · · + 𝜇𝑘 , completing the proof. �

Lemma 6.13. Consider 𝜋 ∈ A𝑛,𝑛 as in equation (2.1), its p-word 𝑝(𝜋) = 𝑝1 · · · 𝑝ℓ (𝜋) and its content
𝛾 = 𝛾(𝑝(𝜋)). Then, in the dominance order, 𝛾+ � 𝜇, where 𝜇 is given by (6.4).

Proof. Consider the subwords 𝜎 (𝑖) ⊆ 𝜋 formed by all elements of 𝜋 of the form
( 𝑞 𝑗
𝑖
𝑤𝑗

)
. Then 𝜎 (𝑖) are

increasing subsequences as each cell [𝜎 (𝑖)𝑗 ] is contained in the up-right path 𝜛 (𝑖) = Z × {𝑖}. Since
ℓ(𝜎 (𝑖) ) = 𝛾𝑖 we have, for all k

𝛾+1 + · · · + 𝛾+𝑘 ≤ 𝐼𝑘 (𝜋) (6.21)

and hence 𝛾+ � 𝜇. �

Lemma 6.14. Consider 𝜋 ∈ A𝑛,𝑛, and let 𝜇 = 𝜇(𝜋) be as in (6.3). Then there exists a transformation
h, which is composition of Kashiwara operators 𝐸 (1)𝑖 , 𝐹 (1)𝑖 for 𝑖 = 0, . . . , 𝑛 − 1 such that, denoting
𝜋′ = ℎ(𝜋), we have 𝛾(𝑝(𝜋′)) = 𝜇.

Proof. Let (𝑃, 𝑄) be a pair of tableaux such that (𝑃, 𝑄)
SS
−−→ 𝜋 and denote by 𝜇 the asymptotic increment.

By Proposition 6.9, we have 𝜇 = 𝜇(𝜋). The projection Φ acts on such pair as Φ(𝑃, 𝑄) = (𝑉, 𝑊) with
𝑉, 𝑊 ∈ 𝑉𝑆𝑇 (𝜇, 𝑛). Viewed as an affine crystal graph, 𝑉𝑇𝑆(𝜇, 𝑛) is connected, by Proposition 5.4 and
hence there exists a map ℎ𝑉 = 𝑒̃𝑁1

𝑖1
◦ 𝑓̃ 𝑁2
𝑖2
◦· · · such that ℎ𝑉 (𝑉) = 𝜇lv, where as in Section 5.3, 𝜇lv denotes

the unique vertically strict tableau of shape 𝜇 and content 𝜇. We can lift the action of the map ℎ𝑉 to
the set of pairs (𝑉 ′, 𝑊 ′) defining ℎ = ℎ𝑉 × 1 : (𝑉 ′, 𝑊 ′) ↦→ (ℎ𝑉 (𝑉 ′), 𝑊 ′). Further, as in Section 5.4 we

consider the Φ-pullback map of h that acts on pairs of skew tableaux as ℎ =
(
𝐸 (1)𝑖1

)𝑁1
◦
(
𝐹 (1)𝑖2

)𝑁2
◦ · · · .

Then, by Proposition 5.9, we have ℎ(𝑃, 𝑄) = (𝑃′, 𝑄 ′) with 𝛾(𝑃′) = 𝜇. By the fact that projection
(𝑃, 𝑄)

SS
−−→ 𝜋 is a morphism of bicrystals, we define (𝑃′, 𝑄 ′)

SS
−−→ 𝜋′ and 𝛾(𝑝(𝜋′)) = 𝜇. �

This leads up to the proof of Proposition 6.10.
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Proof of Proposition 6.10. By Proposition 6.12, we have 𝜇(𝜋) � 𝜇(𝜋). Moreover, by Proposition 6.14,
we can always find a composition of Kashiwara operators h such that ℎ(𝜋) = 𝜋′ and 𝛾(𝑝(𝜋′)) = 𝜇(𝜋).
By Proposition 6.4, we have 𝜇(𝜋′) = 𝜇(𝜋) so that by Proposition 6.13 we can conclude that also
𝜇(𝜋) � 𝜇(𝜋). Therefore, 𝜇(𝜋) = 𝜇(𝜋). �

We can finally prove our main results of the section.

Proof of Proposition 6.5. The fact that the Viennot map preserves statistics 𝐷𝑘 is the result of Proposi-
tion 6.8. This also implies that the partition 𝜇(𝜋) defined as in equation (6.3) is invariant. The fact that
also 𝐼𝑘 ’s are invariant under V follows from Proposition 6.10, which implies the chain of equalities

𝜇(V(𝜋)) = 𝜇(V(𝜋)) = 𝜇(𝜋) = 𝜇(𝜋). (6.22)

This concludes the proof. �

Proof of Proposition 6.6. By Proposition 6.9, the asymptotic increment 𝜇(𝑃, 𝑄) is always equal to the
partition 𝜇(𝜋), whenever (𝑃, 𝑄)

SS
−−→ 𝜋. Proposition 6.10 then provides the equalities 𝜇(𝑃, 𝑄) = 𝜇(𝜋) =

𝜇(𝜋). �

7. Energy function, Demazure crystals and linearization of dynamics

7.1. Combinatorial 𝓡 matrix and energy function

For any 𝑟1, 𝑟2 ∈ N, crystal graphs 𝐵(𝑟1, 𝑟2) and 𝐵(𝑟2, 𝑟1) are isomorphic, via a unique isomorphism of
crystal graphs called combinatorial ℛ matrix

ℛ : 𝐵𝑟1 ,1 ⊗ 𝐵𝑟2 ,1 → 𝐵𝑟2 ,1 ⊗ 𝐵𝑟1 ,1. (7.1)

There exists a number of equivalent definitions of ℛ (see [48, 65, 80]), and the one reported below is a
reformulation of the original algorithm by Nakayashiki and Yamada as in Rule 3.10 of [65]. Consider
𝑏𝑖 ∈ 𝐵𝑟𝑖 ,1 for 𝑖 = 1, 2 and we want to find 𝑏̃𝑖 ∈ 𝐵𝑟𝑖 ,1 such that

ℛ(𝑏1 ⊗ 𝑏2) = 𝑏̃2 ⊗ 𝑏̃1 (7.2)

by shifting cells from one column to the other. The procedure goes as follows.

1. Prepare the word 𝑤 = 1𝑚1 (𝑏1)1𝑚1 (𝑏2)2𝑚2 (𝑏1)2𝑚2 (𝑏2) · · · writing in increasing order all
entries, with multiplicities, appearing in 𝑏1 and 𝑏2. Associate to each entry of 𝑏1 an
opening parenthesis ‘(’ and to each entry of 𝑏2 a closing parenthesis ‘)’. In case a letter
𝑖 appears twice in 𝑤, we follow the convention that the leftmost one belongs to 𝑏1.

2. Sequentially match all pairs of consecutive symbols ‘(’, ‘)’. At the end of this process,
the subword made of unmatched parentheses will have the form ) · · · ) (· · · (.

3. Assuming periodic boundary conditions sequentially match all leftmost unmatched (7.3)
symbols ‘)’ with rightmost unmatched ‘(’. Call these winding pairs of 𝑏1 ⊗ 𝑏2.

4. After matching winding pairs, the list of unmatched parentheses will form a sequence of
𝑟1 − 𝑟2 symbols ‘(’ or 𝑟2 − 𝑟1 symbols ‘)’, depending on whether 𝑟1 ≥ 𝑟2 or vice versa.
Either way, swap the orientation of all remaining unmatched parentheses.

5. Construct 𝑏̃1 from letters of 𝑤 associated with ‘(’ symbols and 𝑏̃2 from those associated
with ‘)’.

We also define the energy function

𝐻 (𝑏1 ⊗ 𝑏2) = number of winding pairs of 𝑏1 ⊗ 𝑏2. (7.4)

To have a better understanding of the algorithm for ℛ consider the following example.
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Example 7.1. In the evaluation below, we have 𝑟1 = 3 and 𝑟2 = 4:

2
3
6
⊗

1
2
4
5

ℛ
−−−−−−→

2
3
5
6
⊗

1
2
4

. (7.5)

This follows from the construction

1 2 2 3 4 5 6
) ( ) ( ) ) (
) ( ) ( ) ) (
) ( ) ( ) ) (
) ( ) ( ) ( (
) ( ) ( ) ( (

. (7.6)

Notice that in the fourth line we matched the only winding pair of parenthesis as for (3) of equation
(7.3). This in particular implies that in this case we have 𝐻 (𝑏1 ⊗ 𝑏2) = 1.
Remark 7.2. The combinatorial ℛ matrix, as the name suggests, satisfies the Yang–Baxter equation

(ℛ ⊗ 1) (1 ⊗ℛ) (ℛ ⊗ 1) = (1 ⊗ℛ) (ℛ ⊗ 1) (1 ⊗ℛ) (7.7)

and can be also defined as the 𝑞 → 0 limit of the fused ℛ matrix of U𝑞 (𝑠𝑙𝑛). We will not make use of
this fact in this paper, but the interested reader can consult [48, 80].

We use the notation ℛ𝑖 to denote the ℛ-matrix acting only on the i-th and (𝑖 + 1)-th component of a
tensor product 𝑏1 ⊗ · · · ⊗ 𝑏𝑁

ℛ𝑖 = 1⊗(𝑖−1) ⊗ℛ ⊗ 1⊗(𝑁−𝑖) . (7.8)

Proposition 7.3. Consider a permutation 𝜎 = 𝜎𝑖1 · · ·𝜎𝑖𝑀 written as a product of elementary transpo-
sitions 𝜎𝑖 that exchange i and 𝑖 + 1. Fix compositions 𝜘 = (𝜘1, . . . , 𝜘𝑁 ), 𝜂 = (𝜘𝜎 (1) , . . . , 𝜘𝜎 (𝑁 ) ). Then,

ℛ𝜎 = ℛ𝑖1 · · ·ℛ𝑖𝑀 : 𝐵𝜘 → 𝐵𝜂 (7.9)

is the unique isomorphism of crystal graphs 𝐵𝜘 → 𝐵𝜂 .
Proof. Composition of isomorphisms of crystal graphs is still an isomorphism of crystal graphs.
This shows that ℛ𝜎 : 𝐵𝜘 → 𝐵𝜂 is an isomorphism of crystal graphs and it is the only one, by
Proposition 5.5. �

A theorem in [48] describes how the energy function changes under the action of the crystal operators.
Assuming that ℛ(𝑏1 ⊗ 𝑏2) = 𝑏̃2 ⊗ 𝑏̃1, we have

𝐻 (𝑒̃𝑖 (𝑏1 ⊗ 𝑏2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐻 (𝑏1 ⊗ 𝑏2) − 1 if 𝑖 = 0, 𝜑0(𝑏1) ≥ 𝜀0 (𝑏2) and 𝜑0(𝑏̃2) ≥ 𝜀0 (𝑏̃1),

𝐻 (𝑏1 ⊗ 𝑏2) + 1 if 𝑖 = 0, 𝜑0(𝑏1) < 𝜀0 (𝑏2) and 𝜑0(𝑏̃2) < 𝜀0 (𝑏̃1),

𝐻 (𝑏1 ⊗ 𝑏2) else.

(7.10)

Just as we associate an energy function to a tensor product of two elements 𝑏1 ⊗ 𝑏2, there exists a
canonical way of defining an energy on arbitrary finite products 𝑏1 ⊗ · · · ⊗ 𝑏𝑁 .
Definition 7.4 (Intrinsic energy). Consider a composition 𝜘 = (𝜘1, . . . , 𝜘𝑁 ). For any 𝑏 = 𝑏1⊗· · ·⊗𝑏𝑁 ∈
𝐵𝜘, the local energies ℋ𝑖 and the intrinsic energy ℋ are the functions

ℋ𝑖 (𝑏) =
𝑁∑
𝑗=𝑖+1

𝐻 (𝑏
( 𝑗−1)
𝑖 ⊗ 𝑏 𝑗 ), (7.11)
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Figure 18. The affine crystal graph 𝐵(𝜘), for 𝜘 = (2, 1, 1). Edges 𝑖
−→ are defined by the action of

𝑓̃𝑖 . Black arrows define the classical crystal graph 𝐵(𝜘). Blue arrows denote 0-Demazure arrows so
that the Demazure subgraph 𝐵(𝜘) consists in black and blue edges. Red arrows are 0-arrows that are
not Demazure arrows. Notice the defining property of 0-Demazure arrows, that always originate from
vertices b that are endpoints of 0-arrows.

ℋ(𝑏) =
𝑁−1∑
𝑖=1

ℋ𝑖 (𝑏), (7.12)

where 𝑏 (𝑖)𝑖 = 𝑏𝑖 and 𝑏
( 𝑗−1)
𝑖 is defined recursively by

ℛ(𝑏
( 𝑗−2)
𝑖 ⊗ 𝑏 𝑗−2) = 𝑏̃ 𝑗−2 ⊗ 𝑏

( 𝑗−1)
𝑖 . (7.13)

The intrinsic energyℋ is, as all the local energiesℋ𝑖 are, constant on classical connected components
of 𝐵(𝜘). This is a consequence of equation (7.10) and of the fact that the combinatorial ℛ matrix
commutes with Kashiwara operators.

7.2. Demazure subgraph

For an affine crystal graph 𝐵(𝜘), we define its Demazure subgraph 𝐵(𝜘). Its set of vertices is 𝐵𝜘, while
its edges, called Demazure arrows, are defined next.

Definition 7.5 (Demazure arrows). Let 𝑏 ∈ 𝐵𝜘. We say that 𝑏 → 𝑓̃𝑖 (𝑏) is a Demazure arrow if
𝑖 = 1, . . . , 𝑛 − 1, or if 𝑖 = 0 and 𝜀0 (𝑏) > 0. Equivalently, 𝑏 → 𝑒̃𝑖 (𝑏) is a Demazure arrow if
𝑖 = 1, . . . , 𝑛 − 1, or if 𝑖 = 0 and 𝜀0 (𝑏) > 1.

An example of a Demazure subgraph is shown in Figure 18. Notice that the Demazure subgraph is
not a crystal graph as in the definition given in Section 5.1. In fact, 𝐵(𝜘) is the image under a canonical
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isomorphsm, denoted by j in [77], of the corresponding Demazure crystal [16, Chapter 13]. For this
reason, 𝐵(𝜘), just as the affine crystal graph 𝐵(𝜘), is connected, as stated next.

Proposition 7.6. For any 𝜘, the Demazure subgraph 𝐵(𝜘) is connected.

Result of Proposition 7.6 follows from the general result [29, Theorem 4.4], [77, Theorem 6.1]. The
structure of subgraph 𝐵(𝜘) defines a grading function 𝐷 : 𝐵𝜘 → Z that associates to any element
𝑏 ∈ 𝐵𝜘 the difference between the number of 0-Demazure arrows # 𝑓̃0 − #𝑒̃0 found in any map h such
that h is composition of only Demazure arrows and ℎ(𝑏) = 𝜘lv. It was found in [77] that such grading
function 𝐷 (𝐵) equals, at least in 𝐴(1)𝑛 type, the intrinsic energy function ℋ(𝑏). This is a consequence
of the following proposition, which again is a particular case of [77, Lemma 7.3]

Proposition 7.7. Let 𝑏 = 𝑏1 ⊗ · · · ⊗ 𝑏𝑁 ∈ 𝐵𝜘 and

𝑏′ = 𝑓̃0(𝑏) = 𝑏1 ⊗ · · · ⊗ 𝑓̃0(𝑏𝑘 ) ⊗ · · · ⊗ 𝑏𝑁 (7.14)

be such that 𝑏 → 𝑏′ is a Demazure arrow. Then, for the local energies ℋ𝑖 , we have

ℋ𝑖 (𝑏
′) =

{
ℋ𝑖 (𝑏), for 𝑖 ≠ 𝑘,

ℋ𝑘 (𝑏) − 1, for 𝑖 = 𝑘.
(7.15)

In particular, ℋ(𝑏′) = ℋ(𝑏) − 1.

We give the following natural definition.

Definition 7.8 (Leading map). For any 𝑏 ∈ 𝐵𝜘, a leading map L𝑏 is a composition of Demazure arrows
𝑓̃𝑖 , 𝑒̃𝑖 , 𝑖 = 0, . . . , 𝑛 − 1 such that L𝑏 (𝑏) = 𝜘 lv.

The fact that for any element 𝑏 ∈ 𝐵𝜘 a leading map L𝑏 exists is a consequence of connectedness
of the Demazure subgraph stated in Proposition 7.6. Leading maps can be visualized as walks on the
Demazure subgraph 𝐵(𝜘) starting at b and terminating at 𝜘lv. For instance, from Figure 18 we see that
a leading map for 𝑏 = 2 1 3

3 is given by

L𝑏 = 𝑓̃0 ◦ 𝑒̃1 ◦ 𝑒̃2. (7.16)

Remark 7.9. When there are multiple walks from b to 𝜘lv on 𝐵(𝜘), the leading map L𝑏 does not admit a
unique expansion in terms of Kashiwara operators. However, following the convention on inverse maps
established in Section 5.1, given 𝑏 ∈ 𝐵𝜘 and a leading map L𝑏 it is always true that 𝑏 = L−1

𝑏 (𝜘
lv).

Result of Proposition 7.7 implies that ℋ(𝑏) is the difference between the number of 𝑒̃0 and 𝑓̃0 in any
leading map L𝑏 . A more precise version of this statement is given by the next proposition, for which we
need to prepare some notation. For any 𝑏 ∈ 𝐵𝜘, consider a leading map L𝑏 = ℎ𝑚 ◦ · · · ◦ ℎ1, where ℎ 𝑗
are Demazure arrows. Denote by 𝑏 ( 𝑗) = ℎ 𝑗 ◦ · · · ◦ ℎ1 (𝑏) the partial evaluations of L𝑏 for 𝑗 = 1, . . . , 𝑚.
Let 𝑢𝑘 (L𝑏) be the number of 0-Demazure arrows ℎ 𝑗 = 𝑓̃0 in L𝑏 such that

ℎ 𝑗 : 𝑏 ( 𝑗−1) ↦→ 𝑏
( 𝑗−1)
1 ⊗ · · · ⊗ 𝑓̃0(𝑏

( 𝑗−1)
𝑘 ) ⊗ · · · ⊗ 𝑏

( 𝑗−1)
𝑁 . (7.17)

Analogously, define 𝑑𝑘 (L𝑏) as the number of 0-Demazure arrows ℎ 𝑗 = 𝑒̃0 such that

ℎ 𝑗 : 𝑏 ( 𝑗−1) ↦→ 𝑏
( 𝑗−1)
1 ⊗ · · · ⊗ 𝑒̃0(𝑏

( 𝑗−1)
𝑘 ) ⊗ · · · ⊗ 𝑏

( 𝑗−1)
𝑁 . (7.18)

In other words, 𝑢𝑘 (L𝑏) (resp. 𝑑𝑘 (L𝑏)) counts the number of 𝑓̃0 Demazure arrows in L𝑏 that during
the evaluation of L𝑏 act as 𝑓̃0 (resp 𝑒̃0) on the k-th tensor factor of the argument. The next proposition
relates 𝑢𝑘 and 𝑑𝑘 with the local energy ℋ𝑘 .
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Proposition 7.10. In the notation introduced above, we have

ℋ𝑘 (𝑏) = 𝑢𝑘 (L𝑏) − 𝑑𝑘 (L𝑏). (7.19)

Proof. This follows from Proposition 7.7 and from the fact that ℋ𝑘 (𝜘
lv) = 0 for all k. �

One can verify Proposition 7.10 looking at Figure 18. Setting 𝑏 = 2 2 1
3 , local energies can be

computed as

ℋ1(𝑏) = 1, ℋ2(𝑏) = 1, ℋ3(𝑏) = 0, (7.20)

either following Proposition 7.4 or checking the action of 0-Demazure arrows throughout any path on
the Demazure subgraph connecting b to 1 1 1

2 .

Remark 7.11. It is not true that for any 𝑏 ∈ 𝐵𝜘 there always exist a choice of a leading map L𝑏 that
does not contain 𝑒̃0 Demazure arrows. For example, taking

𝑏 = 1
2 ⊗

1
3 ⊗

1
2 ⊗

1
2 , (7.21)

one can verify that in the classical connected component of b there does not exist 𝑏′ such that 𝜀0 (𝑏
′) ≠ 0

and 𝜑0(𝑏
′) ≠ 0. Hence in this case L𝑏 must contain at least one 𝑒̃0 operator.

Given a pair of vertically strict tableaux (𝑉, 𝑊) we define the leading map of the pair L𝑉 ,𝑊 as

L𝑉 ,𝑊 : (𝑉 ′, 𝑊 ′) ↦→ (L𝑉 (𝑉 ′),L𝑊 (𝑊 ′)), (7.22)

whenever the operation is defined. Clearly maps L𝑉 and L𝑊 are defined through the usual identification
of vertically strict tableaux with crystals.

7.3. Leading map for pairs of skew tableaux

On the affine bicrystal graph of pairs of skew semistandard tableaux of generalized shape⋃
𝜌,𝜆

𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) × 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), (7.23)

we define the Demazure subgraph similarly as in Section 7.2. For either 𝜖 = 1, 2, we say that (𝑃, 𝑄) →

𝐹 (𝜖 )𝑖 (𝑃, 𝑄) is a Demazure arrow if 𝑖 = 1, . . . , 𝑛 − 1 or if 𝑖 = 0 and 𝐸 (𝜖 )0 (𝑃, 𝑄) ≠ ∅. Analogously,

(𝑃, 𝑄) → 𝐸 (𝜖 )𝑖 (𝑃, 𝑄) is a Demazure arrow if 𝑖 = 1, . . . , 𝑛 − 1 or if 𝑖 = 0 and
(
𝐸 (𝜖 )0

)2
(𝑃, 𝑄) ≠ ∅.

We extend the notion of leading map presented for single vertically strict tableaux in Proposition
7.8 to pairs of semistandard tableaux. This produces a new transformation which, as the other notions
related to the affine bicrystal structure of pairs of skew tableaux, is new in this paper.

Definition 7.12 (Leading map for skew tableaux). Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) and consider the projection
(𝑉, 𝑊) = Φ(𝑃, 𝑄). A leading map for the pair (𝑃, 𝑄), denoted by L𝑃,𝑄, is defined as the Φ-pullback
of a leading map L𝑉 ,𝑊 . In other words, if

L𝑉 =
(
𝑒̃𝑖1
)𝑎1 ◦

(
𝑓̃ 𝑗1

)𝑏1
◦ · · · ◦

(
𝑒̃𝑖𝑁

)𝑎𝑁 ◦ ( 𝑓̃ 𝑗𝑁

)𝑏𝑁
, L𝑊 =

(
𝑒̃𝑘1

)𝑐1 ◦
(
𝑓̃ℓ1

)𝑑1
◦ · · · ◦

(
𝑒̃𝑘𝑀

)𝑐𝑀 ◦ ( 𝑓̃ℓ𝑀

)𝑑𝑀
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are leading maps for V and W, then we define

L𝑃,𝑄 =
(
𝐸 (1)𝑖1

)𝑎1
◦
(
𝐸 (1)𝑗1

)𝑏1
◦ · · · ◦

(
𝐸 (1)𝑖𝑁

)𝑎𝑁
◦
(
𝐹 (1)𝑗𝑁

)𝑏𝑁
◦
(
𝐸 (2)𝑘1

)𝑐1
◦
(
𝐹 (2)ℓ1

)𝑑1
◦ · · · ◦

(
𝐸 (2)𝑘𝑀

)𝑐𝑀
◦
(
𝐹 (2)ℓ𝑀

)𝑑𝑀
.

(7.24)

We report an example of a leading map for a simple pair of skew tableaux.

Example 7.13. Consider the pair of skew tableaux and the projection

(𝑃, 𝑄) =

( 1 3
2

3
,

1 1
3

3

)
, Φ(𝑃, 𝑄) = (𝑉, 𝑊) =

(
2 1 3
3 , 1 3 1

3

)
, (7.25)

which can be easily computed. A possible leading map for V was computed in (7.16), whereas a leading
map for W is given by 𝑒̃2 ◦ 𝑓̃0 as it can be seen from Figure 18. This defines the leading map L𝑃,𝑄 as

L𝑃,𝑄 = 𝐸 (2)2 ◦ 𝐹 (2)0 ◦ 𝐹 (1)0 ◦ 𝐸 (1)1 ◦ 𝐸 (1)2 (7.26)

so that

L𝑃,𝑄 (𝑃, 𝑄) =
(

1 1
1 2 , 1 1

1 2

)
. (7.27)

Remark 7.14. As pointed out in Proposition 7.9 a leading map L𝑃,𝑄 for a pair (𝑃, 𝑄) always exists, but
its expression in terms of Kashiwara operators is not unique. The nonuniqueness of leading map for a
pair (𝑃, 𝑄) might allow, in principle, that the evaluation of two different leading maps L𝑃,𝑄 (𝑃, 𝑄) and
L′𝑃,𝑄 (𝑃, 𝑄) could give different results. This is indeed not the case as proved in Proposition 7.21 below.
As a result of this fact, the image (𝑇, 𝑇) of any leading map L𝑃,𝑄 does not depend on the realization of
L𝑃,𝑄 and moreover (𝑃, 𝑄) = L−1

𝑃,𝑄 (𝑇, 𝑇). We recall that the convention on inverse maps was discussed
in Section 5.1.

7.4. Leading tableaux

In this subsection, we aim to characterize the image of a pair (𝑃, 𝑄) of skew tableaux under a leading
map L𝑃,𝑄. This result is reported in Proposition 7.21, while its proof is given later in Section 7.5
as it uses the concept of linearization of the skew RSK map discussed in the same section. For our
description, we define the following class of tableaux.

Definition 7.15 (Leading tableaux). A semistandard tableau T is leading if, whenever T has 𝑘 𝑖-cells at
row r, then it has at least 𝑘 (𝑖 − 1)-cells at row 𝑟 − 1 for all r and 𝑖 = 2, 3, . . . . The content of a leading
tableau is hence a partition. We denote the set of leading tableau with classical skew shape and with
fixed content 𝜇 as LdT(𝜇).

An example of a leading tableaux is given below in equation (7.43).

Remark 7.16. To keep the notation simple, below we will focus only on the case where 𝑃, 𝑄 are tableaux
of classical skew shape, leaving the case when their shape is a generalized skew Young diagram as an
easy exercise.

The notion of leading can be translated to matrices, recalling equation (2.17). A matrix 𝛼 ∈ M𝑛,+∞
is called leading when it satisfies

𝛼1, 𝑗 ≥ 𝛼2, 𝑗+1 ≥ 𝛼3, 𝑗+2 ≥ · · · for all 𝑗 ∈ N. (7.28)
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The set of leading matrices is denoted by ML𝑑 . To get a more explicit description of leading tableaux,
we introduce the following notion.

Definition 7.17. For any partition 𝜇, define the set

K(𝜇) = {(𝜅1, . . . , 𝜅𝜇1 ) ∈ N
𝜇1
0 : 𝜅𝑖 ≥ 𝜅𝑖+1 if 𝜇′𝑖 = 𝜇′𝑖+1}. (7.29)

If 0 = 𝑅0, 𝑅1, 𝑅2, . . . is a rectangular decomposition of 𝜇 as defined around equation (2.9), then we will
sometimes write elements of K(𝜇) as lists of subarrays (𝜅 (1) , 𝜅 (2) , . . . ), gathering together the weakly
decreasing components 𝜅 (𝑖) = (𝜅𝑅𝑖−1+1, . . . 𝜅𝑅𝑖 ). As usual, 𝜅+ will denote the unique partition that can
be formed sorting elements of 𝜅 and |𝜅 | =

∑
𝑖 𝜅𝑖 .

In the following, we will construct a bijection between K(𝜇) × Y and LdT(𝜇). This is most conve-
niently done through row-coordinate matrices. For numbers 𝑘 ∈ N0, 𝑚 ∈ {1, . . . , 𝑛}, define matrices
𝐴(𝑚, 𝑘) ∈ M𝑛,+∞ as

𝐴(𝑚, 𝑘)𝑖, 𝑗 = 𝛿𝑖, 𝑗−𝑘𝛿𝑖≤𝑚. (7.30)

That is, 𝐴(𝑚, 𝑘)’s only nonzero values are the first m entries in the (𝑘 + 1)-th upper diagonal
𝐴(𝑚, 𝑘)1,𝑘+1 = · · · = 𝐴(𝑚, 𝑘)𝑚,𝑘+𝑚 = 1. For a given 𝜅 ∈ K(𝜇), construct a matrix

𝛼 = 𝛼𝜇 (𝜅) =
𝜇1∑
𝑖=1

𝐴(𝜇′𝑖 , 𝜅𝑖). (7.31)

This is obviously leading, but in fact the opposite is also true as stated in the next proposition. For a
given 𝜇, let us denote by ML𝑑 (𝜇) the set of leading matrices 𝛼 such that 𝛼𝑖,1 +𝛼𝑖,2 + · · · = 𝜇𝑖 for all i. In
other words, ML𝑑 (𝜇) represents the set of row-coordinate matrices of leading tableaux T with content
𝛾(𝑇) = 𝜇. Then we have the following.

Proposition 7.18. For a given 𝜇, the map 𝛼𝜇 defined in equation (7.31) is a bijection between K(𝜇)
and ML𝑑 (𝜇).

Proof. We will indeed establish the bijection between the set {(𝜇, 𝜅), 𝜇 ∈ Y, 𝜅 ∈ K(𝜇)} and ML𝑑 .
Restriction to a fixed 𝜇 gives the bijection in the statement of the lemma. We only have to show that any
leading matrix 𝛼 ∈ M𝑛,+∞ can be uniquely written in the form of equation (7.31). We peel off matrix
𝛼 with the help of the 𝐴(𝑚, 𝑘)’s removing maximal diagonals of nonzero entries. Define numbers
𝑘1, 𝑚1 as

𝑘1 = min{𝑘 : 𝛼1,𝑘+1 > 0}, 𝑚1 = max{𝑚 : 𝛼𝑚,𝑘1+𝑚 > 0} (7.32)

and let

𝛼 (1) = 𝛼 − 𝐴(𝑚1, 𝑘1). (7.33)

Then, by equation (7.28) and by the fact that 𝑚1 is maximal, also 𝛼 (1) is a leading matrix. We can now
recursively construct

𝑘 𝑗 = min{𝑘 : 𝛼
( 𝑗−1)
1,𝑘+1 > 0}, 𝑚 𝑗 = max{𝑚 : 𝛼

( 𝑗−1)
𝑚,𝑘 𝑗+𝑚

> 0} (7.34)

and 𝛼 ( 𝑗) = 𝛼 ( 𝑗−1) − 𝐴(𝑚 𝑗 , 𝑘 𝑗 ), until for some 𝑗 ′ we exhaust all positive entries and 𝛼 ( 𝑗
′) = 0. This

proves that there exist 𝑘1, 𝑘2, . . . and 𝑚1, 𝑚2, . . . such that

𝛼 = 𝐴(𝑚1, 𝑘1) + 𝐴(𝑚2, 𝑘2) + · · · . (7.35)
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It is clear that 𝜇′𝑖 = 𝑚 𝑗𝑖 for some 𝑗1, 𝑗2, · · · . To avoid ambiguity, we choose 𝑗𝑖 such that 𝑘 𝑗𝑖 > 𝑘 𝑗𝑖+1
whenever 𝜇′𝑖 = 𝜇′𝑖+1. Defining the new sequence 𝑘̃1 = 𝑘 𝑗1 , 𝑘̃2 = 𝑘 𝑗2 , . . . , we can finally identify
𝜅 = (𝜅 (1) , 𝜅 (2) , . . . ) as

𝜅 (𝑖) = ( 𝑘̃𝑅𝑖−1+1, . . . , 𝑘̃𝑅𝑖 ). (7.36)

�

As we mentioned below, Proposition 2.4, there is a bijection (𝛼; 𝜈)
rc
←→ 𝑃 between a pair (𝛼, 𝜈) of a

row-coordinate matrix 𝛼 and a partition 𝜈, and a classical tableau P. Restriction to leading ones gives
a bijection between ML𝑑 (𝜇) × Y and LdT(𝜇). Combining this with the bijection between K(𝜇) and
ML𝑑 (𝜇) in Proposition 7.18, we get the desired characterization of the set of leading tableaux.

Proposition 7.19. For a given 𝜇 ∈ Y, the map

𝑇 (𝜇, ·; ·) : K(𝜇) × Y −→ LdT(𝜇), (7.37)

defined by

𝑇 (𝜇, 𝜅; 𝜈)
rc
←→ (𝛼; 𝜈) w𝑖𝑡ℎ 𝛼 = 𝛼𝜇 (𝜅) =

𝜇1∑
𝑖=1

𝐴(𝜇′𝑖 , 𝜅𝑖), (7.38)

where 𝜅 ∈ K(𝜇), 𝜈 ∈ Y, is a bijection. Moreover, if 𝜆/𝜌 is the shape of 𝑇 (𝜇, 𝜅; 𝜈), then 𝜌 = (𝜅+)′ + 𝜈.

Proof. The first part has already been shown in the arguments above. We are left to check that (𝜅, 𝜈) ↦→
𝑇 (𝜇, 𝜅; 𝜈) satisfies relation 𝜌 = (𝜅+)′ + 𝜈. By the fact that 𝜈 = ker(𝑇 (𝜇, 𝜅; 𝜈)), we only need to show that
such property holds for 𝜈 = ∅. For this notice that if 𝑝 (1) , 𝑝 (2) , . . . are the first, second, . . .row words
of 𝑇 = 𝑇 (𝜇, 𝜅;∅), then, since T is leading, we have

ov(𝑝 ( 𝑗+1) , 𝑝 ( 𝑗) ) = ℓ(𝑝 ( 𝑗+1) ) − 𝑚1 (𝑝
( 𝑗+1) ), (7.39)

where ℓ, 𝑚1 denote, respectively, the length and the multiplicity of letter 1 in the word 𝑝 ( 𝑗+1) . Calling
𝜂 the empty shape of T, we have, by equation (2.22)

𝜂 𝑗 − 𝜂 𝑗+1 = 𝑚1 (𝑝
( 𝑗+1) ). (7.40)

This implies that 𝜂 = (𝜅+)′. �

Example 7.20. First, let us construct a leading tableaux for a given triple 𝜇, 𝜅, 𝜈. Consider the case
𝜇 = (4, 2, 2, 1), 𝜅 = ((1), (3), (2, 1)), 𝜈 = (1, 1) and for the sake of a better visualization we present
these quantities in a colored form as

𝜇 = 𝜅 = ((1), (3), (2, 1)), 𝜈 = . (7.41)

Then we determine, using equation (7.37), the row-coordinate matrix 𝛼 as

𝛼 =
����	
0 1 + 1 1 1 0 0 0 · · ·
0 0 1 0 1 0 0 · · ·
0 0 0 1 0 1 0 · · ·
0 0 0 0 1 0 0 · · ·


���� =
����	
0 2 1 1 0 0 0 · · ·
0 0 1 0 1 0 0 · · ·
0 0 0 1 0 1 0 · · ·
0 0 0 0 1 0 0 · · ·


���� , (7.42)
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resulting in the tableau 𝑇
rc
←→ (𝛼; 𝜈)

𝑇 (𝜇, 𝜅; 𝜈) =
1 1

1 2
1 3
2 4
3

=
1 1

1 2
1 3
2 4
3

. (7.43)

One can also check that the procedure can be reversed to recover 𝜇, 𝜅, 𝜈 from the leading tableau above.

Before ending the subsection, we state a result for the image of (𝑃, 𝑄) under a leading map L.

Theorem 7.21. Let 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), for 𝜆, 𝜌 ∈ Y. Then for any leading map L𝑃,𝑄 we have
(𝑇, 𝑇) = L𝑃,𝑄 (𝑃, 𝑄), where T is a leading tableau independent of the particular choice of L𝑃,𝑄.
Moreover, 𝑇 ∈ LdT(𝜇), where 𝜇 is the Greene invariant corresponding to 𝑃, 𝑄.

A proof of this theorem will be given in the next subsection because it uses a linearization of the
skew RSK map for leading tableaux which is explained below.

7.5. Linearization

The property of being leading for a tableau is preserved by the skew RSK map. Moreover, the action of
the skew RSK map on leading tableaux reduces to a simple shift of 𝜅 by 𝜇′. This is the main result we
state and prove in this subsection.

Theorem 7.22 (Skew RSK map on leading tableaux). Let 𝑇 = 𝑇 (𝜇, 𝜅; 𝜈) ∈ LdT(𝜇) and (𝑇 ′, 𝑇 ′) =
RSK(𝑇, 𝑇). Then 𝑇 ′ is also a leading tableau and we have 𝑇 ′ = 𝑇 (𝜇, 𝜅 + 𝜇′; 𝜈).

The proof of Proposition 7.22 is based on a direct inspection of the skew RSK map on a pair (𝑇, 𝑇),
for a leading tableau T. We will need the following preliminary result.

Lemma 7.23. Fix a weakly decreasing array a = (a1, . . . , a𝑁 ) ∈ W𝑁 . Let b = (b1, . . . , b𝑀 ) be a
subarray of a with b𝑖 = a 𝑗𝑖 for 𝑗1 > · · · > 𝑗𝑀 . Consider the skew RS map (a ′, b ′) = RS(a, b). Then we
have

b ′ = (b1 + 1, . . . , b𝑀 + 1) (7.44)

and there exists indices 𝐽 ′ = { 𝑗 ′1, . . . , 𝑗 ′𝑀 } such that

a ′ = (a ′1, . . . , a ′𝑁 ) with a ′𝑘 =

{
a𝑘 if 𝑘 ∉ 𝐽 ′

a 𝑗𝑖 + 1 if 𝑘 = 𝑗 ′𝑖 .
(7.45)

Proof. Define index 𝑗 ′1 as the position of the leftmost element of a equal to b1 and then, sequentially
define 𝑗 ′𝑖+1 = min{ 𝑗 > 𝑗𝑖 : a 𝑗 = b𝑖+1}. Since b is a subarray of a and a is weakly decreasing indices
𝑗 ′1, . . . , 𝑗 ′𝑀 exist. To compute the skew RS map of a and b, we produce the edge configuration in the
rectangle {1, . . . , 𝑁} × {1, . . . , 𝑀} with boundary data

W(1, 𝑗) = b 𝑗 and S(𝑖, 1) = a𝑖 . (7.46)

Consider the edge configuration along the bottom row of the rectangle. From local rules (3.12) and from
the fact that a is weakly decreasing, it is clear that

S(1, 𝑗) = N(1, 𝑗) = a 𝑗 , E(1, 𝑗) = W(1, 𝑗) = b1 for 𝑗 = 1, . . . , 𝑗 ′1 − 1,

S(1, 𝑗 ′1) = N(1, 𝑗 ′1) = a 𝑗′1 + 1, E(1, 𝑗 ′1) = W(1, 𝑗 ′1) + 1 = b1 + 1,

S(1, 𝑗) = N(1, 𝑗) = a 𝑗 , E(1, 𝑗) = W(1, 𝑗) = b1 + 1 for 𝑗 = 𝑗 ′1 + 1, . . . , 𝑁,
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Figure 19. The skew RS map of a weakly decreasing array a with an element b1 = a 𝑗′1 .

where in the second line we used the fact that b1 = a 𝑗′1 ; see Figure 19. Moreover, by definition of index
𝑗 ′1 the array (a1, . . . , a 𝑗′1−1, a 𝑗′1 + 1, a 𝑗′1+1, . . . a𝑁 ) is still weakly decreasing. We now move on with the
evaluation of the edge configuration along the second row of the rectangle. Just as for the first row case,
we have

S(2, 𝑗) = N(2, 𝑗) = a 𝑗 , E(2, 𝑗) = W(2, 𝑗) = b2 for 𝑗 = 1, . . . , 𝑗 ′2 − 1,

S(2, 𝑗 ′2) = N(2, 𝑗 ′2) = a 𝑗′2 + 1, E(2, 𝑗 ′2) = W(2, 𝑗 ′2) + 1 = b2 + 1,

S(2, 𝑗) = N(2, 𝑗) = a 𝑗 , E(2, 𝑗) = W(2, 𝑗) = b2 + 1 for 𝑗 = 𝑗 ′2 + 1, . . . , 𝑁.

Repeating the same argument M times yields the proof. �

Proof of Proposition 7.22. We know, by Proposition 3.8, that if 𝜈 = ker(𝑇) = ker(𝑇, 𝑇), then 𝜈 =
ker(𝑇 ′) = ker(𝑇 ′, 𝑇 ′), so we reduce to prove our statement in the case 𝜈 = ∅. Let 𝛼 = rc(𝑇). To prove
our claim we need to compute (𝛼′, 𝛼′) = RSK(𝛼, 𝛼). We use, as usual, standardization and we encode
matrix 𝛼, in an array

a = (a (1) , . . . , a (𝑛) ), a (𝑖) = (a𝑀𝑖−1+1, . . . , a𝑀𝑖 ), (7.47)

with 𝑀𝑖 = 𝜇1 + · · · + 𝜇𝑖 . Subarrays a (𝑖) record row coordinates of i-cells of T and are weakly decreasing
a𝑀𝑖−1+1 ≥ · · · ≥ a𝑀𝑖 . The leading property of T implies that

𝑚𝑟 (a (𝑖) ) ≥ 𝑚𝑟+1(a (𝑖+1) ), (7.48)

for 𝑖, 𝑟 ≥ 1, where again 𝑚𝑟 is the multiplicity of letter r in a word. Moreover, by equation (7.37) we
have that, as sets

a (1) = {𝜅1 + 1, . . . , 𝜅𝜇1 + 1},

a (2) = {𝜅1 + 2, . . . , 𝜅𝜇2 + 2},
. . .

a (𝑛) = {𝜅1 + 𝑛, . . . , 𝜅𝜇𝑛 + 𝑛}.

(7.49)

Let now b = (b (1) , . . . , b (𝑛) ) be the array encoding row coordinates of cells of 𝑇 ′. Or in other words, let
(b, b) = RS(a, a). Then statement of Proposition 7.22 reduces to show that, as sets

b (𝑖) = {𝜅1 + 𝜇′1 + 𝑖, . . . , 𝜅𝜇𝑖 + 𝜇′𝜇𝑖 + 𝑖} for 𝑖 = 1, . . . , 𝑛. (7.50)

We prove equation (7.50) by an induction argument over n. When 𝑛 = 1 we have a = a (1) and by
Proposition 7.23 b = b (1) is obtained by adding one to each entry of a.

Consider now the array a = (a (1) , . . . , a (𝑛) ), and assume, by induction that our theorem holds for
any array of (𝑛 − 1) maximal nonincreasing components. In particular, define

ã = (a (1) , . . . , a (𝑛−1) ), b̃ = (b̃ (1) , . . . , b̃ (𝑛−1) ), where (b̃, b̃) = RS(ã, ã). (7.51)
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Figure 20. Computation of (b, b) = RS(a, a) by induction over subarrays a (𝑖) .

By inductive hypothesis, we have that, as sets

b̃ (𝑖) = {𝜅1 +min(𝜇′1, 𝑛 − 1) + 𝑖, . . . , 𝜅𝜇𝑖 +min(𝜇′𝜇𝑖 , 𝑛 − 1) + 𝑖} for 𝑖 = 1, . . . , 𝑛 − 1. (7.52)

By definition of skew RS map, depicted in Figure 20, it is clear that

RS(b̃ (1) , a (𝑛) ) = (b (1) , a (𝑛,1) ),

RS(b̃ (2) , a (𝑛,1) ) = (b (2) , a (𝑛,2) ),

. . .

RS(b̃ (𝑛−1) , a (𝑛,𝑛−2) ) = (b (𝑛−1) , a (𝑛,𝑛−1) )

RS(a (𝑛,𝑛−1) , a (𝑛,𝑛−1) ) = (b (𝑛) , b (𝑛) ),

(7.53)

for arrays a (𝑛,1) , . . . , a (𝑛,𝑛−1) and we use these relations to evaluate b (1) , b (2) , . . . . We start with b (1) .
Since

a (𝑛) = {𝜅1 + 𝑛, . . . , 𝜅𝜇𝑛 + 𝑛} (7.54)
and

b̃ (1) = {𝜅1 + 𝑛, . . . , 𝜅𝜇𝑛 + 𝑛, 𝜅𝜇𝑛+1 + 𝜇′𝜇𝑛+1 + 1, . . . , 𝜅𝜇1 + 𝜇′𝜇1 + 1}, (7.55)
we can apply Proposition 7.23 to discover that

a (𝑛,1) = {𝜅1 + 𝑛 + 1, . . . , 𝜅𝜇𝑛 + 𝑛 + 1} (7.56)
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and

b (1) = {𝜅1 + 𝜇′1 + 1, . . . , 𝜅𝜇1 + 𝜇′𝜇1 + 1}, (7.57)

which confirms equation (7.50) for 𝑖 = 1. We can then move to the computation of b (2) . We have

b̃ (2) = {𝜅1 + 𝑛 + 1, . . . , 𝜅𝜇𝑛 + 𝑛 + 1, 𝜅𝜇𝑛+1 + 𝜇′𝜇𝑛+1 + 2, . . . , 𝜅𝜇1 + 𝜇′𝜇1 + 2}, (7.58)

so that again, by Proposition 7.23, taking the skew RS map of b̃ (2) and a (𝑛,1) we find that

a (𝑛,2) = {𝜅1 + 𝑛 + 2, . . . , 𝜅𝜇𝑛 + 𝑛 + 2} (7.59)

and

b (2) = {𝜅1 + 𝜇′1 + 2, . . . , 𝜅𝜇1 + 𝜇′𝜇1 + 2}, (7.60)

confirming equation (7.50) for 𝑖 = 2. It is clear that we can iterate the same argument for any
𝑖 = 1, . . . , 𝑛 − 1 repeatedly using Proposition 7.23 and obtaining

a (𝑛,𝑖) = {𝜅1 + 𝑛 + 𝑖, . . . , 𝜅𝜇𝑛 + 𝑛 + 𝑖}, (7.61)

confirming equation (7.50) for all cases except 𝑖 = 𝑛. To verify this final case, we can easily see, either
by direct inspection or through Proposition 7.23, that

RS(a (𝑛,𝑛−1) , a (𝑛,𝑛−1) ) = (b (𝑛) , b (𝑛) ) (7.62)

yields the predicted result (7.50). This completes the proof. �

An application of Proposition 7.22 gives a proof of Proposition 7.21, presented below. We need the
following technical lemma stating that 0-Demazure arrows fix the space of pairs of skew tableau with
classical shape.

Lemma 7.24. Let (𝑃, 𝑄) be a pair of skew tableaux with same shape 𝜆/𝜌 with 𝜆, 𝜌 ∈ Y. Define
(𝑃, 𝑄) = ℎ(𝑃, 𝑄) ≠ ∅ for ℎ ∈ {𝐸 (1)0 , 𝐸 (2)0 , 𝐹 (1)0 , 𝐹 (2)0 } such that h is a 0-Demazure arrow. Then,
denoting denoting by 𝜆/𝜌̃ the shape of 𝑃, 𝑄, we have 𝜆, 𝜌̃ ∈ Y, or in other words all cells of 𝑃, 𝑄 lie at
positive rows.

Proof. We prove our statement only for h being a 0-Demazure arrow 𝐸 (1)0 or 𝐹 (1)0 , as the complementary
cases are analogous. We focus first on the case ℎ = 𝐹 (1)0 (= 𝜄1 ◦ ( 𝑓1 × 1) ◦ 𝜄−1

1 ). Let (𝑃, 𝑄) = 𝜄−1
1 (𝑃, 𝑄),

and let 𝜋̂ be the column reading word of 𝑃. Then, by definition of 0-Demazure arrow we have 𝑒̃1(𝜋̂),
𝑓̃1(𝜋̂) ≠ ∅ and we want to understand implications of this fact. As in the signature rule (5.3) we assign
parentheses ‘)’ and ‘(’, respectively, to each occurrence of a 1 and of a 2 letter in 𝜋̂. Then, matching
consecutive pairs of opening and closing unmatched parentheses we reach a reduced word )𝜑1 (𝜋) (𝜀1 (𝜋)

with 𝜑1(𝜋̂), 𝜀1 (𝜋̂) > 0. Each of these unmatched ‘)’ parentheses identifies a different 1 letter in 𝜋̂,
which unambiguously identify a 1-cell in 𝑃. Call 𝜃1 the set of 𝜑1(𝜋̂) such 1-cells in 𝑃. Analogously,
call 𝜃2 the set of 2-cells of 𝑃 corresponding to the 𝜀1 (𝜋̂) unmatched ‘(’ parentheses in the reduced word
generated from 𝜋̂. By the definition of the matching procedure, it is clear that each cell of 𝜃1 lies at a
column strictly to the left of any cell of 𝜃2. In particular, no cell of 𝜃1 occupies the rightmost column
of 𝑃. Since the application of 𝑓̃1 : 𝑃 ↦→ 𝑓̃1(𝑃) changes the label of a cell of 𝜃1 from 1 ↦→ 2, it is clear
that 𝐹 (1)0 (𝑃, 𝑄) cannot modify the rightmost column of 𝑃, 𝑄. This clearly also implies that every cell
of tableaux 𝐹 (1)0 (𝑃, 𝑄) lies at positive rows since so does every cell of their rightmost columns.
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When ℎ = 𝐸 (1)0 , we have that both 𝑒̃1(𝑃), 𝑒̃ 2
1 (𝑃) ≠ ∅ and also in this case, using signature rule

as explained above, operator 𝑒̃1 cannot transform any 2-cell lying at the rightmost column of 𝑃. This
completes the proof. �

Proof of Proposition 7.21. By Proposition 5.7 any L𝑃,𝑄 commutes with the skew RSK map. We can
therefore write, for any t,

(𝑇, 𝑇) = RSK−𝑡 ◦ RSK𝑡 ◦ L𝑃,𝑄 (𝑃, 𝑄)

= RSK−𝑡 ◦ L𝑃,𝑄 ◦ RSK𝑡 (𝑃, 𝑄).
(7.63)

Let (𝑃, 𝑄) = RSK𝑡 (𝑃, 𝑄). It is clear that L𝑃,𝑄 is a leading map also for (𝑃, 𝑄) since Φ(𝑃, 𝑄) =
Φ(𝑃, 𝑄). When t is large, the pair (𝑃, 𝑄) becomes RSK-stable. In such cases, the action of the leading
map L𝑃,𝑄 deforms the original shape of 𝑃, 𝑄 as prescribed by Proposition 5.12, but it does not change
the number of labeled cells lying at each column. Therefore, (𝑇, 𝑇) = L𝑃,𝑄 (𝑃, 𝑄) clearly defines a
leading tableau 𝑇 . This is because labeled cells at the i-th column of 𝑇 are exactly (𝜇′𝑖)

lv. By Proposition
7.19, we write 𝑇 = 𝑇 (𝜇, 𝜅̃; 𝜈), for some uniquely determined 𝜅̃, 𝜈. We want to show that 𝜅̃, 𝜈 are
independent of the choice of leading map L𝑃,𝑄 and subsequently derive that T is a leading tableau with
𝑇 = 𝑇 (𝜇, 𝜅; 𝜈) where, by Proposition 7.22, we have

𝜅 = 𝜅̃ − 𝑡 × 𝜇′. (7.64)

This will imply that tableaux T is independent of the particular choice of L𝑃,𝑄 yielding the proof.
We first observe that partition 𝜈 is independent of L𝑃,𝑄 since 𝜈 = ker(𝑇) = ker(𝑃, 𝑄). The second

equality follows from the general fact that Kashiwara operators 𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 preserve the kernel of any
pair of tableaux as implied by Proposition 3.8. To prove independence of 𝜅̃ from L𝑃,𝑄, we combine
Proposition 5.12 and Proposition 7.10. Let 𝜆/𝜌̃ be the skew shape of (𝑃, 𝑄), and denote by 𝜆/𝜌̂ the skew
shape of 𝑇 . As observed above, any leading map L𝑃,𝑄 in addition to modifying the content of 𝑃, 𝑄 can
only shift columns rigidly upward or downward. By Proposition 7.10, we can quantify by how many
cells each column gets displaced. Calling (𝑉, 𝑊) = Φ(𝑃, 𝑄) and assuming L𝑃,𝑄 is the Φ-pullback of
the leading map L𝑉 ,𝑊 , we have

𝜌̂′𝑘 = 𝜌̃′𝑘 −ℋ𝑘 (𝑉) −ℋ𝑘 (𝑊). (7.65)

Such expression for 𝜌̂′ is independent of L𝑃,𝑄. By Proposition 7.19, 𝜅̃ is also independent of L𝑃,𝑄
since it is determined by 𝜌̂ = ( 𝜅̃+)′ + 𝜈.

In order to complete the proof, we want to check that 𝜅, defined by equation (7.64), does in fact belong
to K(𝜇). Since 𝜅𝑘 = 𝜅̃𝑘 − 𝑡𝜇′𝑘 , it is clear that, recalling the notation of Proposition 7.17, 𝜅 (𝑖)1 ≥ 𝜅 (𝑖)2 ≥ · · ·

for all 𝑖 = 1, 2, . . . , so we only need to verify that 𝜅 (𝑖)𝑘 ≥ 0 for all i and k. The last statement holds if
tableau T does not have cells at nonpositive rows, condition that is guaranteed by Proposition 7.24. This
concludes the proof. �

8. A new bijection

In this section, we establish a bijection between a pair of skew tableaux (𝑃, 𝑄) and a quadruple
(𝑉, 𝑊 ; 𝜅; 𝜈) consisting of vertically strict tableaux, an array of weights and a partition. Combining with
the Sagan–Stanley correspondence in Proposition 4.11, we also get an RSK type bijection between
triples (𝑉, 𝑊 ; 𝜅) ∈ 𝑉𝑆𝑇 (𝜇) × 𝑉𝑆𝑇 (𝜇) × K(𝜇) and weighted permutations 𝜋 ∈ A

+

𝑛,𝑛, or equivalently
matrices 𝑀 ∈ M

+

𝑛×𝑛, with fixed Greene invariant 𝜇(𝜋) = 𝜇.
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8.1. The bijection 𝚼

We first construct the map Υ : (𝑃, 𝑄) ↦→ (𝑉, 𝑊 ; 𝜅; 𝜈). Subsequently, we present the inverse map and in
Proposition 8.1 we prove that the construction is well posed and defines a bijection.

Map Υ : (𝑃, 𝑄) → (𝑉, 𝑊 ; 𝜅; 𝜈)

1. Let 𝜇 be the Greene invariant of (𝑃, 𝑄) defined by Proposition 4.17 or equivalently by
Proposition 6.6. Determine vertically strict tableaux 𝑉, 𝑊 ∈ 𝑉𝑆𝑇 (𝜇) iterating the skew RSK map of
(𝑃, 𝑄). In other words, set (𝑉, 𝑊) = Φ(𝑃, 𝑄), where projection Φ was defined in equation (4.21).

2. Let L𝑃,𝑄 be the leading map of the pair (𝑃, 𝑄) as per Proposition 7.12, and compute its action

(𝑇, 𝑇) = L𝑃,𝑄 (𝑃, 𝑄). (8.1)

3. By Proposition 7.21, T is a leading tableau so that 𝜅 and the partition 𝜈 are defined by

𝑇 = 𝑇 (𝜇, 𝜅; 𝜈),

following correspondence of Proposition 7.19.

Map Υ−1 : (𝑉, 𝑊 ; 𝜅; 𝜈) → (𝑃, 𝑄)

1. From 𝑉, 𝑊 ∈ 𝑉𝑆𝑇 (𝜇), define a leading map L𝑉 ,𝑊 of the pair (𝑉, 𝑊), as in Proposition 7.8.
2. Through correspondence of Proposition 7.19, from 𝜅, 𝜇, 𝜈 prepare the leading tableau 𝑇 = 𝑇 (𝜇, 𝜅; 𝜈).
3. Denoting by L the Φ-pullback of map L𝑉 ,𝑊 , define skew tableaux (𝑃, 𝑄) as

(𝑃, 𝑄) = L−1 (𝑇, 𝑇), (8.2)

where the convention on inverse map was discussed in Section 5.1.

Theorem 8.1. The map Υ defined by equations (8.1), (8.2) is a bijection⋃
𝜌,𝜆∈Y

𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) × 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛)
Υ

←−−−−−→
⋃
𝜇∈Y

𝑉𝑆𝑇 (𝜇) ×𝑉𝑆𝑇 (𝜇) ×K(𝜇) × Y.

In particular, if (𝑃, 𝑄)
Υ
←→ (𝑉, 𝑊 ; 𝜅; 𝜈), and 𝜌 is the empty shape of 𝑃, 𝑄, we have

|𝜌 | = ℋ(𝑉) +ℋ(𝑊) + |𝜅 | + |𝜈 |. (8.3)

Proof. This theorem is consequence of Proposition 7.21, which itself follows from Propositions 5.7 and
7.22. Let us show that Υ is well posed and injective analyzing the three steps in equation (8.1). Given a
pair (𝑃, 𝑄), the corresponding partition 𝜇 and the asymptotic vertically strict tableaux (𝑉, 𝑊) = Φ(𝑃, 𝑄)
are unambiguously defined. The leading map L𝑃,𝑄 is determined composing leading maps L𝑉 and
L𝑊 as in Proposition 7.12. As pointed out in Propositions 7.9 and 7.14, the expression of L𝑃,𝑄 as a
combination of Kashiwara operators is not unique. Nevertheless, thanks to Proposition 7.21, the tableaux
T such that L𝑃,𝑄 (𝑃, 𝑄) = (𝑇, 𝑇) is independent of the particular realization of the leading map and it
is a leading tableaux that uniquely identifies the remaining data 𝜅 ∈ K(𝜇) and 𝜈 ∈ Y. This shows that
Υ : (𝑃, 𝑄) ↦→ (𝑉, 𝑊 ; 𝜅, 𝜈) is injective.

On the other hand, given (𝑉, 𝑊 ; 𝜅, 𝜈) and constructed the leading tableau 𝑇 = 𝑇 (𝜇, 𝜅; 𝜈) we know,
again from Proposition 7.21, that the action of the map L−1, defined by (3) of equation (8.2), is
independent of the particular realization of leading maps L𝑉 ,L𝑊 . This implies that (𝑃, 𝑄) are uniquely
determined by the data (𝑉, 𝑊 ; 𝜅, 𝜈), and one can easily see that this operation is the inverse of Υ. �

Restricting the bijection (𝑃, 𝑄)
Υ
←→ (𝑉, 𝑊 ; 𝜅; 𝜈) to the case 𝜈 = ker(𝑃, 𝑄) = ∅ and composing with

projection induced by the Sagan–Stanley correspondence (𝑃, 𝑄)
SS
−−→ 𝜋 yields a map 𝜋

Υ̃
←→ (𝑉, 𝑊 ; 𝜅)

more in the spirit of the RSK correspondence.
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Corollary 8.2. The map defined by equations (8.1), (8.2) naturally restricts to a content preserving
bijection

A
+

𝑛,𝑛
Υ̃

←−−−−−→
⋃

𝜇∈Y:ℓ (𝜇) ≤𝑛
𝑉𝑆𝑇 (𝜇) ×𝑉𝑆𝑇 (𝜇) ×K(𝜇).

In case 𝜋
Υ̃
←→ (𝑉, 𝑊 ; 𝜅), we have

wt(𝜋) = ℋ(𝑉) +ℋ(𝑊) + |𝜅 |. (8.4)

Proof. One only needs to notice that if (𝑃, 𝑄)
SS
←→ (𝜋; 𝜈) then (𝑃, 𝑄)

Υ
←→ (𝑉, 𝑊 ; 𝜅, 𝜈)where the partition

𝜈 is equal for both cases. Factoring out information about 𝜈, we are left with the desired bijection. �

Clearly, this also induces a bijection 𝑀
Υ̃
←→ (𝑉, 𝑊 ; 𝜅), which we denote by the same notation, where

𝑀 ∈ M
+

𝑛×𝑛.

8.2. A worked out example

In this subsection, we present an example of bijection Υ defined in equation (8.1). We also take this as
an opportunity to review various constructions introduced throughout the text. Let

𝑃 =
1

1 3
2 4

, 𝑄 =
1

2 2
1 3

. (8.5)

A single iteration of the skew RSK map yields the pair (𝑃′, 𝑄 ′) = RSK(𝑃, 𝑄) as

𝑃′ = 1
1 3
2
4

, 𝑄 ′ = 2
1 1
2
3

, (8.6)

which is RSK-stable so that vertically strict tableaux 𝑉, 𝑊 are

𝑉 =
1 3 1
2
4

, 𝑊 =
1 1 2
2
3

. (8.7)

A possible leading map for V is

L𝑉 = 𝑒̃3 ◦ 𝑒̃2 ◦ 𝑓̃0 ◦ 𝑓̃3 ◦ 𝑓̃2, (8.8)

since

1 3 1
2
4

𝑓2
−−−−→

1 3 1
3
4

𝑓3
−−−−→

1 4 1
3
4

𝑓0
−−−−→

1 1 1
3
4

𝑒̃2
−−−−→

1 1 1
2
4

𝑒̃3
−−−−→

1 1 1
2
3

. (8.9)

Notice that the 0-th Kashiwara operators 𝑓̃0 is, in this particular case, a Demazure arrow. The leading
map for W is even simpler and we can take L𝑊 = 𝑒̃1. Combining L𝑉 and L𝑊 , we produce the leading
map for the pair (𝑃, 𝑄),

L𝑃,𝑄 = 𝐸 (1)3 ◦ 𝐸 (1)2 ◦ 𝐹 (1)0 ◦ 𝐹 (1)3 ◦ 𝐹 (1)2 ◦ 𝐸 (2)1 , (8.10)
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whose action can be computed as(
1

1 3
2 4

,
1

2 2
1 3

)
𝐹 (1)2 ◦𝐸

(2)
1

−−−−−−−−→

(
1

1 3
3 4

,
1

1 2
1 3

)
𝐹
(1)

3
−−−→

(
1

1 3
4 4

,
1

1 2
1 3

)
𝐹
(1)

0
−−−→

(
1

1 1 3
4

,
1

1 1 2
3

)
𝐸
(1)
2
−−−→

(
1

1 1 2
4

,
1

1 1 2
3

)
𝐸
(1)
3
−−−→

(
1

1 1 2
3

,
1

1 1 2
3

)
.

(8.11)

In the right-hand side, we obtained (𝑇, 𝑇) = L𝑃,𝑄 (𝑃, 𝑄), where T is a leading tableau as it can be
checked (more in general this is implied by Proposition 7.21). Using the correspondence of Proposition
7.19, we write T as

1
1 1 2
3

= 𝑇 (𝜇, 𝜅; 𝜈), with 𝜇 = , 𝜅 = (0, 1, 1), 𝜈 = . (8.12)

Therefore, correspondence (8.1), in this case, yields(
1

1 3
2 4

,
1

2 2
1 3

)
Υ

←−−−−−→

(
1 3 1
2
4

,
1 1 2
2
3

; (0, 1, 1);
)

. (8.13)

We can finally verify that the relation between empty shape, energies, 𝜅 and 𝜈 holds, since

ℋ(𝑉) = 1, ℋ(𝑊) = 0 (8.14)

and

|𝜌 | = ℋ(𝑉) +ℋ(𝑊) + |𝜅 | + |𝜈 | � 4 = 1 + 0 + 2 + 1. (8.15)

Clearly, reading backward the example we just presented, gives a realization of the inverse map Υ−1.

8.3. Extensions

Arguments and constructions described throughout this paper admit a few natural extensions. We will
outline some of these in the next few paragraphs, although, to keep the exposition concise, we will not
enter the details of any of the cases we present.

In order to establish Proposition 8.1, we have leveraged properties of the skew RSK map and of
theory of affine crystals. In particular, our skew RSK map was defined in Section 3 through a sequence of
internal row insertions. A natural twist to this story would come from a replacement of row insertions by
column insertions as described in [74, Chapter 3.2]. Call skew RSKcol map the map defined by switching
row and column insertions in Proposition 3.1. Then one could define a skew RSKcol dynamics, which
conversely from the skew RSK dynamics, would evolve the shape of tableaux (𝑃, 𝑄) ‘rightward’ rather
than ‘downward’. It is natural to expect that repeating arguments developed in this paper one could
produce an additional new bijection

Υcol : (𝑃, 𝑄) ↦→ (𝑉, 𝑊 ; 𝜅, 𝜈), (8.16)

analogous to that of Proposition 8.1. Here, (𝑃, 𝑄) is a pair of semistandard skew tableaux, while this
time 𝑉, 𝑊 are horizontally weak tableaux (i.e., labels are weakly increasing along rows and no condition
is set on columns) of same shape 𝜇, 𝜅 is a suitable adaptation of Proposition 7.17 and 𝜈 is a partition.
This would yield a correspondence similar to Shi’s affine Robinson-Schensted correspondence [79] and
a comparison between the two constructions would be of much interest.

Another natural extension of our theory comes from replacing the skew RSK map with its dual
variant which could be defined following [73, Section 7]. Sagan and Stanley used this idea to put in
correspondence pairs (𝑃, 𝑄) of semistandard tableaux with conjugate shape with pairs (𝑀; 𝜈) consisting
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of a binary infinite matrix 𝑀 and a partition 𝜈. Calling skew RSK∨ map such dual map, we can define a
skew RSK∨ dynamics in which the P tableau evolves in the ‘downward’ direction, while the Q tableau
evolves ‘rightward’ as a result of the fact that their shapes are one the transpose of the other. In this case,
it is natural to expect that a reformulation of our arguments would lead to another new bijection

Υ∨ : (𝑃, 𝑄) ↦→ (𝑉, 𝑊 ; 𝜅, 𝜈). (8.17)

In this case, (𝑃, 𝑄) ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) × 𝑆𝑆𝑇 (𝜆′/𝜌′, 𝑛), while V and W are, respectively, a vertically strict
and a horizontally weak tableaux of conjugate shapes 𝜇, 𝜇′, 𝜅 is again a suitable adaptation of the
Proposition 7.17 depending on 𝜇 and 𝜈 is a partition.

We shall consider the two extensions discussed above more precisely in future works.

9. Scattering rules

In this section, we analyse the skew RSK dynamics from the viewpoint of discrete classical integrable
systems, as outlined in Section 1.2. Conservation laws stated in Proposition 6.6 and symmetries of
Proposition 5.7 reveal analogies with the renowned BBS introduced in [84]; for a review, see [46].

9.1. Setup

In Proposition 4.16, we have defined a pair (𝑃, 𝑄) to be RSK-stable, if the action of arbitrary many
iteration of the skew RSK map on (𝑃, 𝑄) has the only effect of shifting columns vertically. Analogously,
we define a pair (𝑃, 𝑄) to be RSK−1-stable if RSK−𝑡 (𝑃, 𝑄) differs from the original pair (𝑃, 𝑄) by
vertical shifts of the shape, with no changes in the column content. The natural question we address in
this section is the following.

Question 4. Consider a pair (𝑃, 𝑄) of skew semistandard tableaux, and assume that such pair is RSK−1-
stable. We know that for t large enough (𝑃, 𝑄) = RSK𝑡 (𝑃, 𝑄) becomes RSK-stable. One can think, for
instance of pairs of tableaux depicted in the left- and right-hand side of Figure 21. Can we precisely
describe (𝑃, 𝑄) purely in terms of (𝑃, 𝑄) and t? More specifically, without going through the lengthy
procedure of computing the full skew RSK dynamics:

• Can we predict the content of columns of (𝑃, 𝑄)?
• Can we predict the shape of tableaux 𝑃, 𝑄?

Figure 21. A full scattering from an RSK−1-stable pair on the left to an RSK-stable pair on the right.
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It turns out that Question 4 admits a precise answer, that we present in the two main theorems of
this section. In Proposition 9.3, we describe how labeled cells of tableaux 𝑃, 𝑄 rearrange following the
scattering produced by the skew RSK dynamics. Leveraging on linearization techniques of the skew
RSK map elaborated in Section 7, the task of describing the shape of (𝑃, 𝑄) becomes then a simple
exercise. We present it in Proposition 9.7 in Section 9.3.

9.2. Scattering in the skew RSK dynamics

Fix 𝑃, 𝑄 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛), and consider the skew RSK dynamics (𝑃𝑡 , 𝑄𝑡 ) with initial data (𝑃, 𝑄). For
any t, define 𝑣 (𝑡) = 𝑣 (𝑡)1 ⊗ · · · ⊗ 𝑣 (𝑡)𝜆1

to be the element of the crystal 𝐵𝜘(𝑡) formed by the tensor product
of columns of 𝑃𝑡 . Analogously, define 𝑢 (𝑡) = 𝑢 (𝑡)1 ⊗ · · · ⊗ 𝑢 (𝑡)𝜆1

from columns of 𝑄𝑡 . Composition 𝜘(𝑡)
records then the number of labeled elements at each column of 𝑃𝑡 , 𝑄𝑡 . We have seen in Section 6 that,
when t becomes large, 𝜘(𝑡) −−−−→

𝑡→∞
𝜇′, where 𝜇 is the Greene invariant of 𝜋 related to (𝑃, 𝑄) by the Sagan–

Stanley correspondence (𝑃, 𝑄)
SS
−−→ 𝜋. Analogously, we can consider 𝜘(𝑡) for 𝑡 → −∞. In the following

theorem, we denote with←−𝜂 = (𝜂𝑁 , . . . , 𝜂1) the reverse ordering of a partition 𝜂 = (𝜂1, . . . , 𝜂𝑁 ).

Theorem 9.1. In the notation introduced above, we have 𝜘(−𝑡) =←−𝜇 ′ eventually for t large enough.

Proof. In Proposition 6.6, we have related the asymptotic increment 𝜘(𝑡) for 𝑡 � 0 with conserved
quantities of the Viennot map V, yielding the equality 𝜘(𝑡) = 𝜇′. Analogously, we can relate backward
asymptotic increments 𝜘(−𝑡) for 𝑡 � 0 with conserved quantities of the inverse Viennot map V−1, which
are the same as V. Through such argument one can easily complete the proof. �

Remark 9.2. In view of Proposition 9.1, columns of tableaux in the skew RSK dynamics may be seen as
solitons. Thanks to conservation laws, they survive after collisions with others and eventually propagate
at their own characteristic speeds, similarly to the ones in BBS. In the case of the BBS, conservation
of solitons can be proven in several different ways. These include commutation of transfer matrices
[30] or bijection with rigged configuration through the Kerov–Kirillov–Reshetikhin (KKR) correspon-
dence [56]. Similarities between the BBS and the skew RSK dynamics provided by Propositions 9.1,
9.3 and 9.7 suggest that the framework developed in this paper might provide an alternative, more com-
binatorial, route to study the BBS. It would be interesting to understand relations between our results
and KKR correspondence or even to understand extension of such correspondence in types other than
𝐴(1)𝑛−1. We plan to pursue these directions in future publications.

Carrying on with the notation introduced at the beginning of the present subsection, we see ele-
ments 𝑣 (𝑡) , 𝑢 (𝑡) ∈ 𝐵𝜘(𝑡) become, for large t equivalent to the asymptotic vertically strict tableaux of
Proposition 4.17. Analogously, 𝑣 (−𝑡) , 𝑢 (−𝑡) , for large t, eventually stabilize and we define the limits

𝑉− = lim
𝑡→∞

𝑣 (−𝑡) , 𝑊− = lim
𝑡→∞

𝑢 (−𝑡) . (9.1)

By Proposition 9.1 we have 𝑉−, 𝑊− ∈ 𝐵
←−𝜇 ′ and we define the backward projection

Φ− : (𝑃, 𝑄) ↦→ (𝑉−, 𝑊−), (9.2)

as the negative time counterpart of Φ given in equation (4.21).
The relation between the backward and forward asymptotic states (𝑉−, 𝑊−) and (𝑉, 𝑊) gives the

scattering rules of solitons in the skew RSK dynamics. A typical feature of integrable systems is that
effects of multibody scattering are fully determined by the knowledge of the two-body scattering. In
the case of BBSs, two body scattering is given by the combinatorial ℛ-matrix. The following theorem
claims that the scattering rules relating (𝑉−, 𝑊−) and (𝑉, 𝑊) in our skew RSK dynamics are also
described by consecutive applications of the same combinatorial ℛ matrices corresponding to the
change of orders of solitons. In order to give a precise statement, we define, following Proposition 7.3,
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the unique isomorphism of crystal graphs 𝐵𝜇 → 𝐵
←−𝜇 ′ . It is expressed, naming 𝛿(𝑁) the permutation

(𝑁 𝑁 − 1 · · · 1), as

ℛ𝛿 (𝜇1) � ℛ1 · (ℛ2ℛ1) · (ℛ3ℛ2ℛ1) · · · (ℛ𝜇1−1 · · ·ℛ1) : 𝐵𝜇
′

→ 𝐵
←−𝜇 ′ . (9.3)

For an example of the action of ℛ𝛿 (𝜇1) , see equation (9.8) below.

Theorem 9.3. Let (𝑃, 𝑄) be a pair of tableaux, call 𝜇 the respective Greene invariant and consider the
projections

Φ(𝑃, 𝑄) = (𝑉, 𝑊), Φ−(𝑃, 𝑄) = (𝑉−, 𝑊−). (9.4)

Then the map Ψ : (𝑉, 𝑊) → (𝑉−, 𝑊−) is well defined, does not depend on the choice of (𝑃, 𝑄) and it
is given by

𝑉− = ℛ𝛿 (𝜇1) (𝑉), 𝑊− = ℛ𝛿 (𝜇1) (𝑊). (9.5)

Proof. Define 𝜓 = ℛ𝛿 (𝜇1) . We will only show that 𝑉− = 𝜓(𝑉) since the same relation for 𝑉, 𝑊− can
be proven in analogous fashion. This defines maps

𝜙+ : (𝑃, 𝑄) ↦→ 𝑉 and 𝜙− : (𝑃, 𝑄) ↦→ 𝑉−. (9.6)

The proof Proposition 9.3 reduces to characterizing the map 𝑉− ↦→ 𝑉 and to prove that it is given by 𝜓−1.
Notice that in principle such map could be not well defined since there might exist pairs (𝑃, 𝑄), (𝑃′, 𝑄 ′)
such that, for instance, 𝜙−(𝑃, 𝑄) = 𝜙−(𝑃′, 𝑄 ′), but 𝜙+(𝑃, 𝑄) ≠ 𝜙+(𝑃′, 𝑄 ′). We show that this is indeed
not the case.

Fix an element 𝑉− ∈ 𝐵
←−𝜇 ′ , and consider a pair (𝑃, 𝑄) such that 𝜙−(𝑃, 𝑄) = 𝑉−. Notice first that if

𝑉− is the leading vector 𝑉− = (←−𝜇 ′)lv, then necessarily 𝛾(𝑃) = 𝜇 and 𝑉 = (𝜇′)lv. For more general 𝑉−,
we can always connect it to the leading vector (←−𝜇 ′)lv through a leading map L𝑉 − , as in Proposition 7.8.
The Φ-pullback of L𝑉 − defines a map on pairs of tableaux L𝑉 − : (𝑃, 𝑄) → (𝑃′, 𝑄 ′), which commutes
with the skew RSK map and hence with projection Φ. This shows that fixed 𝑉−, we always have

𝑉 = L−1
𝑉 − ((𝜇

′)lv). (9.7)

Comparing equation (9.7) with result of Proposition 5.5, we can conclude that map 𝑉 ↦→ 𝑉− exists and
it is the unique isomorphism of crystals 𝐵𝜇

′
, 𝐵
←−𝜇 ′ and by Proposition 7.3 we have 𝑉 = 𝜓−1(𝑉−). Notice

that this is independently of the choice of (𝑃, 𝑄), as long as 𝜙−(𝑃, 𝑄) = 𝑉−. �

Example 9.4. We can verify the statement of Proposition 9.3 in the example reported in Figure 21. The
transformation 𝑉 ↦→ 𝑉− step by step, reads

𝑉 =
3 1 2 1
5 4 3
6
7

ℛ1
−−−−−→

3 1 2 1
7 4 3

5
6

ℛ2
−−−−−→

3 1 2 1
7 6 3

4
5

ℛ3
−−−−−→

3 1 5 1
7 6 2

3
4

ℛ1
−−−−−→

3 1 5 1
7 6 2

3
4

ℛ2
−−−−−→

3 1 5 1
7 6 2

3
4

ℛ1
−−−−−→

7 1 5 1
3 6 2

3
4
= 𝑉−,

(9.8)

where we have suppressed symbol ⊗ between different columns.

Remark 9.5. In [19], authors described an analogous phenomenon as that of Proposition 9.3 in the
context of affine matrix ball construction. In that paper, the operation called affine evacuation 𝑉 ↦→
evac(𝑉) corresponds to transforming element 𝑉− in a vertically strict tableaux of shape equal to V,
rotating 𝑉− by 180◦ and replacing each entry i by 𝑛 − 𝑖 + 1.
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Remark 9.6. Note that similarities between the exchange of degrees of freedom for solitons in the BBS
and vertically strict tableaux in the skew RSK dynamics do not imply that all properties of the skew
RSK dynamics can be studied by standard techniques of the BBS. For instance, it is not clear if one
could express the skew RSK map as a transfer matrix, that is, as a product of local R-matrices. To
understand fully relations between the two models, more elaborated considerations are needed.

9.3. Phase shift

Leveraging on results discussed in Section 7.5, here we describe the phase shift in the scattering between
columns of different length in the skew RSK dynamics. As we explained, each soliton has its own speed,
not changing after collisions. But its phase, which determines the position of the linear trajectory of a
soliton, may shift during a collision with another one. This is the phase shift. It is an important notion in
soliton theory because together with the description of exchanges of degrees of freedom it completely
characterizes the whole scattering process of solitons.

The phase shift in the skew RSK dynamics may be well explained by the example in Figure 21.
There, we see that, in the left-hand side the column hosting four labeled cells, which we call 4-soliton,
‘starts’ at the first row. After 10 iterations of the skew RSK map, when all collisions are completed, we
see that, in the tableaux on the right-hand side, the 4-soliton in the first column occupies rows 45 to 48.
This means that interactions with other columns have accelerated the motion of the 4-soliton, which
otherwise would have traveled only 4 × 10 = 40 cells. In this case, the phase shift was equal to 4. The
same phenomenon can be observed also tracking locations of other columns of the tableaux.

The next theorem gives a precise description of phase shifts in the skew RSK dynamics and gives a
a full answer to the second bullet of Question 4.

Theorem 9.7. Let (𝑃, 𝑄) be an RSK−1-stable pair of skew tableaux of shape 𝜆/𝜌, and assume
ker(𝑃, 𝑄) = ∅. Denote the Greene invariant of (𝑃, 𝑄) by 𝜇 and define its rectangular decomposi-
tion by indices 0 = 𝑅0, 𝑅1, . . . , 𝑅𝑁 = 𝜇1 and 𝑟𝑖 as discussed around equation (2.9). Moreover, set
𝑅𝑖 = 𝑅𝑁 − 𝑅𝑖+1. Let t be large enough so that (𝑃, 𝑄) = RSK𝑡 (𝑃, 𝑄) is RSK-stable and denote by 𝜆/𝜌̃
the shape of (𝑃, 𝑄). Then the phase shift of the j-th column of length 𝜇′𝑅𝑖+1 is given by

𝜌̃ ′𝑅𝑖+ 𝑗 − 𝜌′
𝑅𝑖+ 𝑗
− 𝑡 × 𝜇′𝑅𝑖+1 = ℋ𝑅𝑖+ 𝑗 (𝑉) +ℋ𝑅𝑖+ 𝑗 (𝑊) −ℋ𝑅𝑖+ 𝑗

(𝑉−) −ℋ𝑅𝑖+ 𝑗
(𝑊−), (9.9)

for all 𝑖 = 0, . . . , 𝑁 − 1, 𝑗 = 1, . . . , 𝑟𝑖+1 and where (𝑉−, 𝑊−) = Φ−(𝑃, 𝑄), while (𝑉, 𝑊) = Φ(𝑃, 𝑄).

Proof. Let L𝑃,𝑄 be the leading map of the pair (𝑃, 𝑄), and let 𝑇 = 𝑇 (𝜇, 𝜅;∅) be the leading tableau
such that (𝑇, 𝑇) = L𝑃,𝑄 (𝑃, 𝑄). In order to prove our claim, we make use of commutation relation

(𝑃, 𝑄) = L−1
𝑃,𝑄 ◦ RSK𝑡 ◦ L𝑃,𝑄 (𝑃, 𝑄), (9.10)

which follows from Proposition 5.7. Since (𝑃, 𝑄) is RSK−1-stable so is (𝑇, 𝑇) and hence 𝜅 =
(𝜅 (1) , . . . , 𝜅 (𝑁 ) ) is of the form

𝜅 (𝑁 )1 ≥ · · · ≥ 𝜅 (𝑁 )𝑟𝑁 > 𝜅 (𝑁−1)
1 ≥ · · · 𝜅 (𝑁−1)

𝑟𝑁−1 > · · · ≥ 𝜅 (1)1 > · · · > 𝜅 (1)𝑟1 . (9.11)

From Proposition 7.19, the empty shape of T is (𝜅+)′ and by Proposition 5.12 we have

𝜌′𝑖 = 𝜅+𝑖 +ℋ𝑖 (𝑉
−) +ℋ𝑖 (𝑊

−), (9.12)

where 𝜅+ is explicitly determined by equation (9.11). Applying t times the skew RSK map to pair (𝑇, 𝑇),
we obtain, by Proposition 7.22,

(𝑇, 𝑇) = RSK𝑡 (𝑇, 𝑇), where 𝑇 = 𝑇 (𝜇, 𝜅̃;∅), 𝜅̃ = 𝜅 + 𝑡 × 𝜇′. (9.13)
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When t is large, as in the hypothesis of the theorem, we have that 𝜅̃ is itself a partition and hence the
empty shape of 𝑇 is given by 𝜅̃′. The action of the map L−1

𝑃,𝑄 on (𝑇, 𝑇) has the effect of growing the
empty shape as prescribed by Proposition 5.12, implying

𝜌̃ ′𝑖 = 𝜅̃𝑖 +ℋ𝑖 (𝑉) +ℋ𝑖 (𝑊)

= 𝜅𝑖 + 𝑡 × 𝜇′𝑖 +ℋ𝑖 (𝑉) +ℋ𝑖 (𝑊).
(9.14)

Expressing the term 𝜅𝑖 in terms of 𝜌′ and of local energies of elements 𝑉−, 𝑊− yields equation (9.9). �

Example 9.8. We can confirm the validity of Proposition 9.7 computing equation (9.9) for tableaux
presented in Figure 21. For that case, in the notation of Proposition 9.7, we have

𝑉− =
7 1 5 1

3 6 2
3
4

, 𝑊− =
5 2 3 1

3 6 2
4
5

, 𝑉 =
3 1 2 1
5 4 3
6
7

, 𝑊 =
2 3 1 4
3 5 2
5
6

(9.15)

so that we can compute the local energies

(ℋ𝑖 (𝑉
−))𝑖=1,...,4 = (2, 2, 2, 0), (ℋ𝑖 (𝑊

−))𝑖=1,...,4 = (1, 1, 1, 0), (9.16)

(ℋ𝑖 (𝑉))𝑖=1,...,4 = (3, 2, 1, 0), (ℋ𝑖 (𝑊))𝑖=1,...,4 = (1, 2, 0, 0). (9.17)

Then, equations (9.9) reduce to

𝜌̃ ′1 = 𝜌′4 + 𝑡 × 𝜇′1 +ℋ1(𝑉) +ℋ1(𝑊) −ℋ4(𝑉
−) −ℋ4(𝑊

−)

� 44 = 0 + 40 + 3 + 1 − 0 − 0,

𝜌̃ ′2 = 𝜌′2 + 𝑡 × 𝜇′2 +ℋ2(𝑉) +ℋ2(𝑊) −ℋ2(𝑉
−) −ℋ2(𝑊

−)

� 27 = 6 + 20 + 2 + 2 − 2 − 1,

𝜌̃ ′3 = 𝜌′3 + 𝑡 × 𝜇′3 +ℋ3(𝑉) +ℋ3(𝑊) −ℋ3(𝑉
−) −ℋ3(𝑊

−)

� 23 = 5 + 20 + 1 + 0 − 2 − 1,

𝜌̃ ′4 = 𝜌′1 + 𝑡 × 𝜇′4 +ℋ4(𝑉) +ℋ4(𝑊) −ℋ1(𝑉
−) −ℋ1(𝑊

−)

� 16 = 9 + 10 + 0 + 0 − 2 − 1.

Notice the nontrivial pairing in the previous equalities between columns of 𝜌̃ and 𝜌. In particular, indices
are not simply reversed, but they are given by numbers 𝑅𝑖 , 𝑅𝑖 as in Proposition 9.7.

Remark 9.9. Formulas similar to those in Proposition 9.7 for the phase shift have been found for the
BBS [30]. In particular, when in the skew RSK dynamics we consider initial conditions with 𝑃 = 𝑄,
which forces 𝑃𝑡 = 𝑄𝑡 for all t, then the phase shift of solitons in multispecies BBS is exactly the same
as the one resulting from equation (9.9). Under these assumptions on the initial conditions, the skew
RSK dynamics and the BBS become very similar models and they both possess 𝔰𝔩𝑛 symmetry. On the
other hand, for general initial data 𝑃, 𝑄 the skew RSK dynamics possesses a larger set of symmetries
(i.e., 𝔰𝔩𝑛 × 𝔰𝔩𝑛) and they are no longer equivalent. We shall examine precisely analogies between the
BBS and skew RSK dynamics in a future work.

10. Summation identities and bijective proofs

We explore the consequences of bijection Υ proving a number of summation identities for q-Whittaker
polynomials. These are known Cauchy and Littlewood identities, presented in Section 10.1 along with
new identities between summations of q-Whittaker and skew Schur polynomials, which are presented
in Section 10.2.
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10.1. Summation identities for q-Whittaker polynomials

The bijection discussed in Section 8.1 reveals a number of combinatorial properties of q-Whittaker
polynomials𝒫𝜇 (𝑥; 𝑞), that are Macdonald polynomials𝒫𝜇 (𝑥; 𝑞, 𝑡) specialized at 𝑡 = 0 [62, Chapter VI].
These have several different representations. For our purposes, the most useful one is given by the
combinatorial formula reported in the next proposition as a sum over vertically strict tableaux [77,
Corollary 9.5]; see also [65]. The meaning of such expression is that q-Whittaker polynomials are
characters of certain Demazure modules of 𝔰𝔩𝑛 [75], whose grading is given by the intrinsic energy
function [77].

Proposition 10.1. For all partitions 𝜇, we have

𝒫𝜇 (𝑥; 𝑞) =
∑

𝑉 ∈𝑉 𝑆𝑇 (𝜇)

𝑞ℋ (𝑉 )𝑥𝑉 , (10.1)

where 𝑥𝑉 = 𝑥𝑚1 (𝑉 )
1 𝑥𝑚2 (𝑉 )

2 · · · and 𝑚𝑖 (𝑉) counts the number of i-cells in V.

When 𝑞 = 0, equation (10.1) reduces to the well-known combinatorial formula for the Schur
polynomial reported below in equation (10.35), where one should set 𝜌 = ∅.

Symmetric polynomials 𝒫𝜇 enjoy Cauchy identities, as reported in [62], for the case of general
Macdonald polynomials. Leveraging the correspondence reported in Proposition 8.2, here we present a
bijective proof. We use the notion of q-Pochhammer symbol

(𝑧; 𝑞)𝑘 =
𝑘−1∏
𝑖=0
(1 − 𝑞𝑖𝑧) and (𝑧; 𝑞)∞ =

∞∏
𝑖=0
(1 − 𝑞𝑖𝑧), (10.2)

where the second expression holds for |𝑞 | < 1.

Theorem 10.2. Fix |𝑞 | < 1. Consider variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛) with |𝑥𝑖𝑦 𝑗 | < 1
for all 𝑖, 𝑗 . Then

∑
𝜇∈Y

b𝜇 (𝑞)𝒫𝜇 (𝑥; 𝑞)𝒫𝜇 (𝑦; 𝑞) =
𝑛∏

𝑖, 𝑗=1

1
(𝑥𝑖𝑦 𝑗 ; 𝑞)∞

, (10.3)

where

b𝜇 (𝑞) =
∏
𝑖≥1

1
(𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1

. (10.4)

Proof. We start by noticing that

b𝜇 (𝑞) =
∑

𝜅 ∈K(𝜇)
𝑞 |𝜅 | , (10.5)

which follows from the summation identity∑
𝜈∈Y
𝜈1≤𝑁

𝑞 |𝜈 | =
1

(𝑞; 𝑞)𝑁
. (10.6)
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Then, using equation (10.1) and Proposition 8.2 we deduce the following equalities∑
𝜇

b𝜇 (𝑞)𝒫𝜇 (𝑥; 𝑞)𝒫𝜇 (𝑦; 𝑞) =
∑
𝜇

∑
𝑉 ,𝑊 ∈𝑉 𝑆𝑇 (𝜇)

∑
𝜅

𝑞 |𝜅 |+ℋ (𝑉 )+ℋ (𝑊 )𝑥𝑉 𝑦𝑊

=
∑
𝜋∈A

+

𝑛,𝑛

𝑞wt(𝜋)𝑥𝑝 (𝜋) 𝑦𝑞 (𝜋)
𝑛∏

𝑖, 𝑗=1

∏
𝑘≥0

1
1 − 𝑞𝑘𝑥𝑖𝑦 𝑗

.
(10.7)

�

Taking summations over the set of symmetric weighted biwords 𝜋 = 𝜋−1 yields identities involving
single polynomials 𝒫𝜇. To state our result, we define

b𝜇 (𝑞; 𝑧) =
∏

𝑖=2,4,6...

[𝑞𝑧2 + 1]𝜇𝑖−𝜇𝑖+1
𝑞2

(𝑞2; 𝑞2)𝜇𝑖−𝜇𝑖+1

∏
𝑖=1,3,5,...

𝑧𝜇𝑖−𝜇𝑖+1

(𝑞; 𝑞)𝜇𝑖−𝜇𝑖+1
, (10.8)

where

[𝐴 + 𝐵]𝑘𝑝 =
𝑘∑
𝑗=0

𝐴 𝑗𝐵𝑘− 𝑗
(
𝑘

𝑗

)
𝑝

(10.9)

and (
𝑘

𝑗

)
𝑝

=
(𝑝; 𝑝)𝑘

(𝑝; 𝑝) 𝑗 (𝑝; 𝑝)𝑘− 𝑗
(10.10)

is the Gaussian binomial coefficient. In literature, the function ℎ𝑛 (𝑥; 𝑝) = [𝑥 + 1]𝑛𝑝 is commonly known
as Rogers–Szegö polynomial [3].

Theorem 10.3. Fix |𝑞 | < 1. Consider variables z and 𝑥 = (𝑥1, . . . , 𝑥𝑛) with |𝑧𝑥𝑖 | < 1 for all 𝑖, 𝑗 . Then
we have ∑

𝜇

b𝜇 (𝑞; 𝑧)𝒫𝜇 (𝑥; 𝑞2) =
𝑛∏
𝑖=1

1
(𝑧𝑥𝑖; 𝑞)∞

∏
1≤𝑖< 𝑗≤𝑛

1
(𝑥𝑖𝑥 𝑗 ; 𝑞2)∞

. (10.11)

Notice that setting 𝑧 = 0 in equation (10.11) and using the convention 00 = 1, since b𝜇 (𝑞, 0) =
b𝜇 (𝑞

2)
∏
𝑖=1,3,5,... 1𝜇𝑖=𝜇𝑖+1 , we obtain the Littlewood identity for q-Whittaker polynomials∑

𝜇:𝜇′ is even
b𝜇 (𝑞

2)𝒫𝜇 (𝑥; 𝑞2) =
∏

1≤𝑖< 𝑗≤𝑛

1
(𝑥𝑖𝑥 𝑗 ; 𝑞2)∞

, (10.12)

which becomes (i) of Example 4 in Chapter VI,7 of [62], after rescaling 𝑞2 → 𝑞. On the other hand,
taking 𝑧 = 1, we observe that b𝜇 (𝑞; 1) = b𝜇 (𝑞) as a result of the known identity [𝑞 + 1]𝑘

𝑞2 = (−𝑞; 𝑞)𝑘
for Rogers–Szegö polynomials; see Example 5 in Chapter 3 of [3]. Then (10.11) becomes∑

𝜇

b𝜇 (𝑞)𝒫𝜇 (𝑥; 𝑞2) =
𝑛∏
𝑖=1

1
(𝑥𝑖; 𝑞)∞

∏
1≤𝑖< 𝑗≤𝑛

1
(𝑥𝑖𝑥 𝑗 ; 𝑞2)∞

, (10.13)

which is a special case of an identity for Macdonald polynomials conjectured by Kawanaka [53] and
proven in [57]. When parameter z is general, identity (10.11) is equivalent, after plethystic substitution, to
a Littlewood identity proven by Warnaar in [91]; see Proposition 10.9. Additional Littlewood identities
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are presented in [71, 91], although it is not clear if a bijective proof of such identities is accessible
through the theory developed in this paper.

In order to show equation (10.11), we have to relate the left-hand side with a summation over
symmetric weighted biwords 𝜋, where the variable z weights the number of fixed points of 𝜋 (i.e.,

elements 𝜋𝑖 =

(
𝑗
𝑗
𝑘

)
for some 𝑗 ∈ A𝑛, 𝑘 ∈ Z). We need a few preliminary results. In the following

lemmas, we denote by odd(𝜂) the number of odd elements of an integer sequence 𝜂. For instance, if 𝜆
is a partition odd(𝜆′) is the number of its odd length columns. For a weighted biword 𝜋, we also define

fixed(𝜋) = tr(𝑀) =
𝑛∑
𝑗=1

∑
𝑘∈Z

𝑀 𝑗 , 𝑗 (𝑘), (10.14)

where as usual 𝜋 and 𝑀 are related by equation (2.6).

Lemma 10.4 ([73] Corollary 4.6). Let P be a semistandard skew tableau of shape 𝜆/𝜌 and let (𝑃, 𝑃)
SS
←→

(𝜋; 𝜈). Then

odd(𝜆′) + odd(𝜌′) = fixed(𝜋) + 2 odd(𝜈′). (10.15)

Lemma 10.5. Let 𝜋
Υ̃
←→ (𝑉,𝑉 ; 𝜅) with 𝑉 ∈ 𝑉𝑆𝑇 (𝜇, 𝑛). Then

fixed(𝜋) = odd(𝜅) + odd(𝜅 + 𝜇′). (10.16)

Proof. Let P be such that (𝑃, 𝑃)
SS
←→ (𝜋;∅). Consider now the skew RSK dynamics (𝑃𝑡 , 𝑃𝑡 ) with

initial data (𝑃, 𝑃) and let 𝜆 (𝑡) /𝜌 (𝑡) be the shape of 𝑃𝑡 . Then, by (9.14), we have, for t large enough

(𝜌 (𝑡) )′𝑖 = 2ℋ𝑖 (𝑉) + 𝜅𝑖 + 𝑡 × 𝜇′𝑖 , (10.17)

(𝜆 (𝑡) )′𝑖 = 2ℋ𝑖 (𝑉) + 𝜅𝑖 + (𝑡 + 1) × 𝜇′𝑖 . (10.18)

On the other hand, odd((𝜆 (1) )′) + odd((𝜌 (1) )′) = odd((𝜆 (𝑡) )′) + odd((𝜌 (𝑡) )′) as a consequence of
Proposition 10.4. This is because if (𝑃𝑡 , 𝑃𝑡 )

SS
←→ (𝜋′,∅), then 𝜋 and 𝜋′ have the same q and p words

and their weights differ only by a constant shift, that is, 𝑤(𝜋′)𝑖 = 𝑤(𝜋)𝑖 + 𝑡 − 1 for all i, implying
fixed(𝜋) = fixed(𝜋′). Combining these observations, we find

odd((𝜆 (1) )′) + odd((𝜌 (1) )′) = odd(𝜅) + odd(𝜅 + 𝜇′), (10.19)

where the expression in the right-hand side is a result of checking parities of 𝜅𝑖 , 𝜇′𝑖 and t in all cases. �

We now define functions

g𝑘 (𝑧, 𝑞) =
∑
𝜈:𝜈1=𝑘

𝑧2odd(𝜈′)𝑞 |𝜈 | , (10.20)

g̃𝑘 (𝑧, 𝑞) =
∑
𝜈:𝜈1≤𝑘

𝑧2odd(𝜈′)𝑞 |𝜈 | = g0(𝑧, 𝑞) + g1 (𝑧, 𝑞) + · · · + g𝑘 (𝑧, 𝑞). (10.21)

Lemma 10.6. For 𝑘 ≥ 0, we have

g𝑘 (𝑧, 𝑞) =
[𝑞𝑧2 + 𝑞2]𝑘

𝑞2

(𝑞2; 𝑞2)𝑘
(10.22)
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and

g̃𝑘 (𝑧; 𝑞) =
[𝑞𝑧2 + 1]𝑘

𝑞2

(𝑞2; 𝑞2)𝑘
. (10.23)

Proof. Any partition 𝜈 with first row of length k can be written as 𝜈′ = 𝜈̃′ + 𝜂(𝜀; 𝑘)′ where 𝜈̃ has all
even columns and first row 𝜈̃1 ≤ 𝑘 and 𝜂(𝜀; 𝑘) is the partition defined by

𝜂(𝜀; 𝑘)′𝑖 − 𝜂(𝜀; 𝑘)′𝑖+1 = |𝜀𝑖 − 𝜀𝑖+1 |, for 𝑖 = 1, . . . , 𝑘 − 1 and 𝜂(𝜀; 𝑘)′𝑘 = 2 − 𝜀𝑘 , (10.24)

for 𝜀 ∈ {0, 1}𝑘 . The binary sequence 𝜀 encodes location of odd columns of 𝜈. An example, for 𝑘 = 6
can be

𝜈 = , 𝜈̃ = , 𝜂(𝜀, 𝑘) = , (10.25)

with 𝜀 = (0, 1, 0, 1, 1, 1). Since by construction 𝜂(𝜀; 𝑘)1 = 𝑘 , we can further decompose 𝜂(𝜀; 𝑘) taking
away one box from odd length columns and two boxes from even length columns, as

𝜂(𝜀; 𝑘)′ = 2𝜂(𝜀; 𝑘)′ + 𝜀 + 2(1 − 𝜀).

Notice that for fixed 𝑗 = |𝜀 | = 𝜀1 + · · · + 𝜀𝑘 , we always have 𝜂(𝜀; 𝑘)′1 ≤ 𝑗 and 𝜂(𝜀; 𝑘)1 ≤ 𝑘 . Moreover,
for any partition 𝜆 such that 𝜆1 ≤ 𝑘 and 𝜆′1 ≤ 𝑗 , there always exists a choice of 𝜀 such that 𝜂(𝜀; 𝑘) = 𝜆.
Consider the generating function of Young diagrams 𝜂(𝜀; 𝑘)

Z (𝜁, 𝑘) =
∑

𝜀∈{0,1}𝑘
𝜁 odd(𝜂 (𝜀;𝑘)′)𝑞 |𝜂 (𝜀;𝑘) | =

∑
𝜀∈{0,1}𝑘

(𝑞𝜁) |𝜀 |𝑞2(𝑘−|𝜀 |)+2 |𝜂 (𝜀;𝑘) | . (10.26)

By a notable combinatorial property of the Gaussian binomial coefficient [2, Section 10], the right-hand
side becomes, summing over fixed |𝜀 |,

Z (𝜁, 𝑘) =
𝑘∑
𝑗=0
(𝑞𝜁) 𝑗𝑞2(𝑘− 𝑗)

(
𝑘

𝑗

)
𝑞2

= [𝑞𝜁 + 𝑞2]𝑘
𝑞2 . (10.27)

Then the function g𝑘 becomes

g𝑘 (𝑧, 𝑞) =
∑

𝜈̃:𝜈̃′ is even
𝜈̃1≤𝑘

𝑞 |𝜈̃ |Z (𝑧2, 𝑘), (10.28)

proving (10.22). Exact formula (10.23) easily follows from equation (10.22) by induction. �

Lemma 10.7. For all 𝜇, we have ∑
𝜅 ∈K(𝜇)

𝑞 |𝜅 |𝑧odd(𝜅)+odd(𝜇′+𝜅) = b𝜇 (𝑞; 𝑧). (10.29)

Proof. Summing over all different components of 𝜅 = (𝜅 (1) , 𝜅 (2) , . . . ) and utilizing equation (10.23),
we obtain the claimed result. �

We finally come to the proof of equation (10.11).
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Proof of Proposition 10.3. By making use of computation reported in Proposition 10.7, we obtain∑
𝜇

b𝜇 (𝑞; 𝑧)𝒫𝜇 (𝑥; 𝑞2) =
∑
𝜇∈Y

∑
𝑉 ∈𝑉 𝑆𝑇 (𝜇)

∑
𝜅 ∈K(𝜇)

𝑞 |𝜅 |+2𝐻 (𝑉 ) 𝑧odd(𝜅)+odd(𝜇′+𝜅)𝑥𝑉

=
∑

𝜋∈A
+

𝑛,𝑛:𝜋=𝜋−1

𝑧fixed(𝜋)𝑞wt(𝜋)𝑥𝑝 (𝜋)

=
∏
𝑘≥0

𝑛∏
𝑖=1

1
1 − 𝑞𝑘 𝑧𝑥𝑖

∏
1≤𝑖< 𝑗≤𝑛

1
1 − 𝑞2𝑘𝑥𝑖𝑥 𝑗

.

(10.30)

�

Remark 10.8. Identities (10.3), (10.11) hold both numerically and formally in the algebra of symmetric
functions. In this second case, variables x can be thought as generic algebra homomorphisms defined
on the (algebraic) basis of power sum symmetric functions {𝑝𝑛; 𝑛 ∈ N0} as

𝑥 : 𝑝𝑛 ↦→ 𝑥(𝑝𝑛). (10.31)

Remark 10.9. It is known [62] that the algebra homomorphism

𝜔𝑢,𝑣 : 𝑝𝑟 ↦→ (−1)𝑟−1 1 − 𝑢𝑟

1 − 𝑣𝑟
𝑝𝑟 (10.32)

acts on Macdonald polynomials 𝒫𝜇 (𝑥; 𝑞, 𝑡),𝒬𝜇 (𝑥; 𝑞, 𝑡) as

𝜔𝑞,𝑡𝒫𝜇 (𝑥; 𝑞, 𝑡) = 𝒬𝜇′ (𝑥, 𝑡, 𝑞). (10.33)

Then, applying 𝜔𝑞2 ,0 to both sides of equation (10.11) and renaming parameters 𝑞 ↦→ 𝑡 yields the
identity for Hall–Littlewood polynomials 𝒬𝜇 (𝑥; 𝑞 = 0, 𝑡)∑

𝜇

b𝜇′ (𝑡; 𝑧)𝒬𝜇 (𝑥; 0, 𝑡2) =
𝑛∏
𝑖=1

(1 + 𝑧𝑥𝑖) (1 + 𝑡𝑧𝑥𝑖)

1 − 𝑥2
𝑖

∏
1≤𝑖< 𝑗≤𝑛

1 − 𝑡2𝑥𝑖𝑥 𝑗

1 − 𝑥𝑖𝑥 𝑗
. (10.34)

This identity is a particular case of [91, Theorem 1.1], which in turn interpolates between one of
Macdonald’s Littlewood identities [62] and Kawanaka’s Littlewood identity [52].

Remark 10.10. In this paper, we have focused our attention on q-Whittaker polynomials, which naturally
arise as generating functions of vertically strict tableaux. Following the recipe outlined in Section 8.3,
it should be possible to study bijectively summation identities involving modified Hall–Littlewood
polynomials 𝒬′𝜇 (𝑥; 𝑞); see [25] for a review. They can be defined as a generating function of row weak
tableaux of fixed shape and weighted by a suitable adaptation of the intrinsic energy function [65].

10.2. Identities between summations of q-Whittaker and skew Schur functions

The bijection presented in Proposition 8.1, along with generalization of Schensted’s theorem of
Proposition 6.7, reveal correspondences between certain summations of q-Whittaker polynomials and
skew Schur polynomials. For partitions 𝜌 ⊆ 𝜆, define the skew Schur polynomial [62] in n variables
𝑥 = (𝑥1, . . . , 𝑥𝑛) as

𝑠𝜆/𝜌 (𝑥) =
∑

𝑃∈𝑆𝑆𝑇 (𝜆/𝜌,𝑛)

𝑥𝑃 . (10.35)

The following theorem was first proved in [44] using methods coming from integrable probability.
Here, we give its bijective proof.
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Theorem 10.11. Fix |𝑞 | < 1, and set of variables 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛). Then, for all
𝑘 = 0, 1, 2, . . . , we have

𝑘∑
ℓ=0

𝑞ℓ

(𝑞; 𝑞)ℓ

∑
𝜇:𝜇1=𝑘−ℓ

b𝜇 (𝑞)𝒫𝜇 (𝑥; 𝑞)𝒫𝜇 (𝑦; 𝑞) =
∑

𝜆,𝜌:𝜆1=𝑘

𝑞 |𝜌 |𝑠𝜆/𝜌 (𝑥)𝑠𝜆/𝜌 (𝑦). (10.36)

Proof. The right-hand side of equation (10.36) can be written, by means of bijection of Proposition 8.1
and Proposition 6.7, as∑

𝜆,𝜌:𝜆1=𝑘

𝑞 |𝜌 |𝑠𝜆/𝜌 (𝑥)𝑠𝜆/𝜌 (𝑦) =
∑

𝜌,𝜆:𝜆1=𝑘

∑
𝑃,𝑄∈𝑆𝑆𝑇 (𝜆/𝜌,𝑛)

𝑞 |𝜌 |𝑥𝑃𝑦𝑄

=
∑
𝜈,𝜇

𝜈1+𝜇1=𝑘

∑
𝜋∈A

+

𝑛,𝑛

𝜇 (𝜋)=𝜇

𝑞 |𝜈 |+wt(𝜋)𝑥𝑝 (𝜋) 𝑦𝑞 (𝜋)

=
𝑘∑
ℓ=0

∑
𝜇:𝜇1=𝑘−ℓ

∑
𝜈:𝜈1=ℓ

𝑞 |𝜈 |
∑

𝜅 ∈K(𝜇)
𝑞 |𝜅 |

∑
𝑉 ,𝑊 ∈𝑉 𝑆𝑇 (𝜇)

𝑞ℋ (𝑉 )+ℋ (𝑊 )𝑥𝑉 𝑦𝑊 ,

(10.37)

which reduces to the left-hand side after putting all summations in closed form. �

Imposing a symmetry to our bijection, we can easily prove the following additional identity.

Theorem 10.12. Fix |𝑞 | < 1, and set of variables 𝑥 = (𝑥1, . . . , 𝑥𝑛). Then, recalling notation (10.8),
(10.22), we have

𝑘∑
ℓ=0

gℓ (𝑧, 𝑞)
∑

𝜇:𝜇1=𝑘−ℓ

b𝜇 (𝑞; 𝑧)𝒫𝜇 (𝑥; 𝑞2) =
∑

𝜆,𝜌:𝜆1=𝑘

𝑧odd(𝜆′)+odd(𝜌′)𝑞 |𝜌 |𝑠𝜆/𝜌 (𝑥) (10.38)

for all 𝑘 = 0, 1, 2, . . . .

Proof. Using Proposition 10.4, Proposition 10.5 and the bijection of Proposition 8.1, the right-hand
side of equation (10.38) can be written as∑
𝜆,𝜌:𝜆1=𝑘

𝑧odd(𝜆′)+odd(𝜌′)𝑞 |𝜌 |𝑠𝜆/𝜌 (𝑥) =
∑

𝜌,𝜆:𝜆1=𝑘

∑
𝑃∈𝑆𝑆𝑇 (𝜆/𝜌,𝑛)

𝑧odd(𝜆′)+odd(𝜌′)𝑞 |𝜌 |𝑥𝑃

=
∑
𝜈,𝜇

𝜈1+𝜇1=𝑘

∑
𝜋∈A

+

𝑛,𝑛:𝜋=𝜋−1

𝜇 (𝜋)=𝜇

𝑞 |𝜈 |+wt(𝜋) 𝑧fixed(𝜋)+2odd(𝜈′)𝑥𝑝 (𝜋)

=
𝑘∑
ℓ=0

∑
𝜈:𝜈1=ℓ

𝑞 |𝜈 |𝑧2odd(𝜈′)

×
∑

𝜇:𝜇1=𝑘−ℓ

∑
𝜅 ∈K(𝜇)

𝑞 |𝜅 |𝑧odd(𝜅)+odd(𝜅+𝜇′)
∑

𝑉 ∈𝑉 𝑆𝑇 (𝜇)

𝑞2ℋ (𝑉 )𝑥𝑉 ,

which reduces to the left-hand side after using equation (10.22), Proposition 10.7. �

Remark 10.13. Identities stated in Propositions 10.11 and 10.12 can be further refined taking ad-
vantage of homogeneity of q-Whittaker and skew Schur polynomials. For instance, for any fixed
𝑘, 𝑁 = 0, 1, 2, . . . , we have

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.23


84 T. Imamura, M. Mucciconi and T. Sasamoto

𝑘∑
ℓ=0

𝑞ℓ

(𝑞; 𝑞)ℓ

∑
𝜇:𝜇1=𝑘−ℓ
|𝜇 |=𝑁

b𝜇 (𝑞)𝒫𝜇 (𝑥; 𝑞)𝒫𝜇 (𝑦; 𝑞) =
∑

𝜆,𝜌:𝜆1=𝑘
|𝜆/𝜌 |=𝑁

𝑞 |𝜌 |𝑠𝜆/𝜌 (𝑥)𝑠𝜆/𝜌 (𝑦). (10.39)

A similar refinement can be given for equation (10.38), fixing the degree N of polynomials in the left-
and right-hand sides.

Remark 10.14. Just as discussed in Proposition 10.8, also identities (10.36), (10.38) hold both numer-
ically and formally in the algebra of symmetric function. They are therefore still true if variables x
are replaced by algebra homomorphisms 𝑥 : 𝑝𝑛 ↦→ 𝑥(𝑝𝑛). An application of this fact is that, through
the action of 𝜔𝑞2 ,0, equations (10.36), (10.38) turn into summation identities relating Hall–Littlewood
symmetric polynomials 𝒫𝜇 (𝑥, 𝑞 = 0, 𝑡) and Schur functions. This fact has deep consequences in the
context of stochastic solvable models related to q-Whittaker and Hall–Littlewood symmetric polynomi-
als (see [7, 8, 13, 14, 90], and we will investigate these aspects in a forthcoming paper [45]).

A. Knuth relations and generalizations

A.1. Knuth equivalence and jeu de taquin

In this subsection, we cover some prerequisites on the theories of Knuth relations and jeu de taquin
and on their interplay. The material presented here is standard, and for more detailed expositions on the
topic we suggest the interested reader to consult textbooks as [60, 74].

Following [54], on the set of words A∗𝑛 we define the Knuth relation 𝜋 � 𝜋′ as the equivalence
relation generated by the transformations

𝛼 𝑥 𝑧 𝑦 𝛽 � 𝛼 𝑧 𝑥 𝑦 𝛽 if 𝑥 ≤ 𝑦 < 𝑧, and 𝛼 𝑦 𝑧 𝑥 𝛽 � 𝛼 𝑦 𝑥 𝑧 𝛽, if 𝑥 < 𝑦 ≤ 𝑧, (A.1)

where 𝛼, 𝛽 are generic words. These are often called elementary transformations or Knuth moves. In
practice, they represent a realization in the language of words of the Schensted’s insertion of a letter in
a row of a tableau. To explain this analogy, take a word 𝑤 = 𝑤1 · · ·𝑤𝑘 with letters in weakly increasing
order 𝑤1 ≤ · · · ≤ 𝑤𝑘 , which we can interpret as a word formed reading a row of a semistandard tableau.
Then, for any 𝑥 < 𝑤𝑘 we have, applying equation (A.1) repeatedly,

𝑤𝑥 � 𝑥∗𝑤∗, (A.2)

where 𝑥∗ is the smallest 𝑤𝑖 to be strictly bigger than x and 𝑤∗ is the word obtained from w substituting
𝑥∗ with x. On the other hand, if 𝑥 ≥ 𝑤𝑘 , then no Knuth moves can be applied to transform the word
𝑤∗ = 𝑤𝑥. We see that in both cases 𝑤∗ is the row word after the insertion of x, and when 𝑥 < 𝑤𝑘 , the
letter 𝑥∗ will be the one inserted in the following row. This idea motivates the characterization of Knuth
equivalence classes.

Theorem A.1 ([74] Theorem 3.4.3). Two words 𝜋, 𝜋′ are equivalent if and only if their P-tableaux
under RSK correspondence is equal 𝑃(𝜋) = 𝑃(𝜋′).

The notion of Knuth equivalence extends also at the level of skew shaped semistandard tableaux. We
say that two tableaux P and 𝑃′ are Knuth equivalent or simply equivalent if their row reading words 𝑤𝑃
and 𝑤𝑃′ are, in which case we write 𝑃 � 𝑃′. Equivalent tableaux enjoy the property that they can be
transformed into each other through the procedure of jeu de taquin. This operation is described in terms
of sliding moves. We say that a semistandard tableau P is punctured if we replace the entry of one or
more of its cells with the symbol •. From a punctured tableau P, we can remove the •-cells as follows.
Assume that cells (𝑖, 𝑗), (𝑖 + 1, 𝑗) and (𝑖, 𝑗 + 1) have, respectively, entries •, 𝑎 and b. Then if 𝑎 ≤ 𝑏, we
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exchange the labels of cells (𝑖, 𝑗) and (𝑖 + 1, 𝑗), while if 𝑎 > 𝑏 we swap the labels at (𝑖, 𝑗) and (𝑖, 𝑗 + 1).
This single move is the inward sliding, and graphically we have

• 𝑏
𝑎

if 𝑎≤𝑏
−−−−−−−−−−→

𝑎 𝑏
•

• 𝑏
𝑎

if 𝑎>𝑏
−−−−−−−−−−→

𝑏 •
𝑎 .

When either cell (𝑖 + 1, 𝑗) or (𝑖, 𝑗 + 1) is not part of the shape of the tableaux, we think of their value
as infinite, while when the •-cell reaches an external corner we simply erase it. From a tableau P of
shape 𝜆/𝜇, let c be an external corner of 𝜇. The outward jeu de taquin 𝐽𝑐 (𝑃) is the tableau obtained
puncturing the cell c of P and sliding out the •-cell.

The sliding moves can be also defined in the opposite direction, moving the •-cells inwards. If in a
punctured tableaux the cells (𝑖, 𝑗), (𝑖, 𝑗 − 1) and (𝑖 − 1, 𝑗) have labels •, 𝑎 and b, we will slide b up in
case 𝑎 ≤ 𝑏, while a is shifted rightward when 𝑎 > 𝑏, as in

𝑏
𝑎 •

if 𝑎≤𝑏
−−−−−−−−−−→

•
𝑎 𝑏

𝑏
𝑎 •

if 𝑎>𝑏
−−−−−−−−−−→

𝑏
• 𝑎 .

After a number of inward slides, the •-cell will reach an inner corner and in that case it is erased. This
procedure defines inward jeu de taquin transformations. If P is a skew tableau of shape 𝜆/𝜇 and 𝑐 ∉ 𝜆 is
such that 𝑐 − e1, 𝑐 − e2 ∈ 𝜆, then 𝐽𝑐 (𝑃) is the tableau obtained from P puncturing the cell c and sliding
inward the •-cell. We do not differentiate the notation between inward and outward jeu de taquin as the
choice of the cell c dictates the direction of sliding.

The jeu de taquin can be employed to associate to skew-shaped semistandard tableaux canonical
straight shaped ones. Given a tableau P of shape 𝜆/𝜇, we fill the empty shape 𝜇 with •-cells and
subsequently we slide them all out. The result is a tableaux of straight shape 𝜆 called jeu de taquin
rectification of P and denoted as rect(𝑃). It is a theorem of Schützenberger [74, Theorem 3.7.7] that the
rectification is independent of the order of sliding moves.

The following classical theorem states the relation between Knuth equivalence of tableaux and jeu
de taquin.

Theorem A.2 ([78],[74] Theorem 3.7.8). Two tableaux 𝑃, 𝑃′ are equivalent if and only if their jeu de
taquin rectification is equal. In particular, 𝑃 � 𝑃′ if and only if they can be transformed into each other
through a finite sequence of jeu de taquin moves.

Remark A.3. An equivalent definition of the Knuth equivalence between tableaux 𝑃, 𝑃′ can be given
requiring that their column reading words 𝑤col

𝑃 � 𝑤col
𝑃′ . More in general, in [28] the authors discuss a full

class or reading orders for tableaux, which include row and column ones, producing equivalent theories
of Knuth equivalence.

We close this subsection stating several simple but crucial properties that endow the skew RSK map
with its many symmetries.

Proposition A.4. Let P be a semistandard skew tableau and 𝑃′ = R[𝑟 ] (𝑃) for some row r. Then 𝑃 � 𝑃′.

Proof. The tableau 𝑃′ is obtained from P vacating the leftmost cell at row r and inserting the entry of
the vacated cell in the row below. The fact that the insertion algorithm is reproduced at the level of row
words by a sequence of Knuth moves yields the proof. �

Proposition A.5. Let 𝑃, 𝑄 be semistandard tableaux with same skew shape and take (𝑃′, 𝑄 ′) =
RSK(𝑃, 𝑄). Then 𝑃 � 𝑃′ and 𝑄 � 𝑄 ′.

Proof. By the result stated in Proposition 3.6 𝑃′ and 𝑄 ′ are obtained, respectively, from P and Q after
a sequence of internal insertions. Then, by Proposition A.4, we have 𝑃 � 𝑃′ and 𝑄 � 𝑄 ′. �
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Proposition A.6. Let 𝜋 ∈ A𝑛,𝑛, and consider the pair of tableaux (𝑃, 𝑄)
SS
←→ (𝜋; 𝜈), for some partition 𝜈.

Define 𝜋′ = 𝑝(𝜋
^
) and 𝜋′′ = 𝑝((𝜋−1)

^
). Then

𝑃 � 𝑃(𝜋′) and 𝑄 � 𝑃(𝜋′′). (A.3)

Proof. From the definition of the Sagan–Stanley correspondence, we understand that the timetable
ordering 𝜋

^ records the‘times’ at which each entry of the P tableau is inserted in its first row. More
precisely, the word 𝜋′ = 𝑝(𝜋

^
) is the list of such entries in order of insertion. By Proposition A.4, 𝜋′

is Knuth equivalent to the row word of P and therefore 𝑃 � 𝑃(𝜋′). The alternative statement for the Q
tableau is proven analogously using the swap symmetry of Proposition A.4. �

A.2. Dual equivalence

Two words 𝜋, 𝜋′ are dual equivalent if their Q-tableaux under RSK correspondence are equal. We denote
dual equivalence by 𝜋

∗
� 𝜋′. We say that two skew tableaux 𝑃, 𝑃′ of the same shape are dual equivalent

if their column reading words are dual equivalen,t and in this case, we write 𝑃
∗
� 𝑃′. Again, by a result

of [28], the notion of dual equivalence does not depend on the reading order of the tableaux and in
literature often the row reading is used. The theory of dual equivalence was started by Haiman in [39],
and below we present two classical results that will be relevant to us.

Theorem A.7 ([39],[74] Theorem 3.8.8). Two tableaux 𝑃1, 𝑃2 are dual equivalent if and only if for any
sequence of jeu de taquin slides J the tableaux 𝐽 (𝑃1), 𝐽 (𝑃2) have the same shape.

Theorem A.8 ([39] Theorem 2.13). Let 𝑃, 𝑃′ be two semistandard tableaux with same skew shape.
Then 𝑃 � 𝑃′ and 𝑃

∗
� 𝑃′ if and only if 𝑃 = 𝑃′.

In the following theorem, we use the notion of Kashiwara operators defined in Section 5.2.

Theorem A.9 ([60], Theorem 5.5.1). Let h be anyone between 𝑒̃𝑖 , 𝑓̃𝑖 , 𝑖 = 1, . . . , 𝑛 − 1 and 𝜋 ∈ A∗𝑛 such
that ℎ(𝜋) ≠ ∅. Then

1. ℎ(𝜋)
∗
� 𝜋;

2. if 𝜋′ � 𝜋 then ℎ(𝜋′) � ℎ(𝜋).

A.3. Generalized Knuth relations for weighted words

We recall that a weighted word is just a weighted biword 𝜋 having q-word 𝑞(𝜋) = 𝑞1𝑞2 · · · 𝑞𝑘 = 12 · · · 𝑘 ,
where k is the length of 𝜋. Borrowing a notation used in [73], we will write such a 𝜋 as a word in the
weighted alphabet A𝑛 consisting of symbols 𝑎 (𝑤) , where 𝑎 ∈ {1, . . . , 𝑛} and 𝑤 ∈ Z. In this more
compact notation, for instance, we write

𝜋 =
��	
1 2 3 4 5
2 1 3 1 2
1 −1 0 0 1


�� as 𝜋 = 2(1)1(−1)3(0)1(0)2(1) . (A.4)

On A𝑛, we introduce the total ordering ≺ defined as

𝑎 (𝑤) ≺ 𝑏 (𝑤
′) if 𝑤 > 𝑤′, or 𝑤 = 𝑤′, 𝑎 < 𝑏. (A.5)

The following definition generalizes the classical Knuth relations recalled in equation (A.1).
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Figure 22. Representing weighted words as point configurations on the twisted cylinder 𝒞𝑛, the two
relations (A.6) correspond, respectively, to the left and right panels above.

Definition A.10 (Generalized Knuth relations). The generalized Knuth relations 𝜋 �g 𝜋′ is the equiva-
lence relation on weighted words generated by the transformations

𝛼 𝑥 (𝑤𝑥 ) 𝑧 (𝑤𝑧 ) 𝑦 (𝑤𝑦 ) 𝛽 � 𝛼 𝑧 (𝑤𝑧 ) 𝑥 (𝑤𝑥 ) 𝑦 (𝑤𝑦 ) 𝛽, if 𝑥 (𝑤𝑥 ) � 𝑦 (𝑤𝑦 ) ≺ 𝑧 (𝑤𝑧 ) ,

𝛼 𝑦 (𝑤𝑦 ) 𝑧 (𝑤𝑧 ) 𝑥 (𝑤𝑥 ) 𝛽 � 𝛼 𝑦 (𝑤𝑦 ) 𝑧 (𝑤𝑧 ) 𝑥 (𝑤𝑥 ) 𝛽, if 𝑥 (𝑤𝑥 ) ≺ 𝑦 (𝑤𝑦 ) � 𝑧 (𝑤𝑧 ) ,
(A.6)

where 𝛼, 𝛽 are generic weighted words. If a transformation swaps the i-th and the 𝑖 + 1-th letter of a
weighted word, we say that such transformation has type i. For a graphical interpretation of equation
(A.6), see Figure 22.

The following theorem offers a characterization of generalized Knuth equivalence classes, that
partially extends Proposition A.1. Given a weighted biword 𝜋, we denote with (𝑃𝑡 (𝜋), 𝑄𝑡 (𝜋)) the skew
RSK dynamics with initial data (𝑃, 𝑄)

SS
−−→ 𝜋.

Theorem A.11. Consider a pair of weighted words 𝜋 �g 𝜋′. Then for all 𝑡 ∈ Z, we have 𝑃𝑡 (𝜋) = 𝑃𝑡 (𝜋
′).

The proof of Proposition A.11 is based on a simple quasi-commutation relation between Knuth
relations and the Viennot map.

Lemma A.12. Let 𝜋 and 𝜋′ be weighted permutations differing by a single Knuth transformation of
type i. Then V(𝜋) and V(𝜋′) also differ by a single Knuth transformation whose type is either 𝑖 − 1, i or
𝑖 + 1.

Proof. Our statement is best proven through a graphical argument. In equations (A.7), (A.8), (A.9), we
give a schematic representation of all possible cases that could present while performing a generalized
Knuth transformation. We focus only on the sector S𝑖,𝑖+2 = {𝑖, 𝑖 + 1, 𝑖 + 2} × Z ⊆ 𝒞𝑛 where the
transformation that takes place as the remaining part of the construction is determined by unaffected
points outside S𝑖,𝑖+2 and by the heights 𝑗1, 𝑗2, 𝑗3 and 𝑗 ′1, 𝑗 ′2, 𝑗 ′3 of the horizontal segments originating
and terminating inside S𝑖,𝑖+2. In equations (A.7), (A.8), we show the cases where the first transformation
of equation (A.6) is applied
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,
(A.7)

. (A.8)

The cases where the second transformation of equation (A.6) is applied are shown below:

.
(A.9)

In all cases, except for equation (A.8), the generalized Knuth transformation separating V(𝜋) and
V(𝜋′) is the same separating 𝜋 and 𝜋′. The only nontrivial assumption made in the figures above is that
the heights 𝑗1, 𝑗2, 𝑗3 of shadow lines entering the sector S𝑖,𝑖+2 are not affected by the transformations.
This is a consequence of the fact that the position of horizontal lines exiting S𝑖,𝑖+2 at heights 𝑗 ′1, 𝑗 ′2, 𝑗 ′3
also does not change while swapping the highest and lowest point of the triple. �

Proof of Proposition A.11. It is sufficient to prove this theorem in case 𝜋 is a weighted permutation as
this result would extend to weighted words via standardization. We show that if 𝜋 and 𝜋′ are separated
by a single generalized Knuth relation then 𝑃𝑡 (𝜋) = 𝑃𝑡 (𝜋

′) for all t. We recall that 𝑃𝑡 (𝜋) is obtained
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Figure 23. Visualization of dual generalized Knuth relations.

reading values of east edges E(𝑛, 𝑛(𝑡−1) +1), . . . , E(𝑛, 𝑛𝑡) of the edge configuration E (𝜋). On the other
hand, if {𝜋 (𝑡) }𝑡 is the Viennot dynamics with initial data 𝜋 (1) = 𝜋, then E (𝜋) is completely determined
by the shadow line constructions of transitions 𝜋 (𝑡) → 𝜋 (𝑡+1) . In fact, the segments of each shadow line
construction determine all edges having a same fixed value. By arguments presented in the proof of
Proposition A.12, if the Knuth transformation 𝜋 → 𝜋′ involves 𝑖, 𝑖+1 and 𝑖+2-th letters of both weighted
permutations, then this is also the case for V(𝜋) → V(𝜋′). Moreover, the shadow line construction is
unaffected at columns different than 𝑖, 𝑖 + 1, 𝑖 + 2. This implies that edge configurations E (𝜋) and E (𝜋′)
differ only at edges corresponding to columns 𝑖, 𝑖 + 1, 𝑖 + 2 and moreover east edges E(𝑛, 𝑗) are common
for all j. This concludes the proof. �

Remark A.13. It is easy to see that if two weighted words 𝜋 and 𝜋′ have the same P tableaux under
Sagan–Stanley correspondence, then they are not necessarily connected by a sequence of generalized
Knuth relations. For example, 1(1)2(0) and 2(0)1(1) have the same P tableau 2

1 , but they cannot be
transformed into each other via equation (A.6).

Remark A.14. It is also not true that if two words 𝜋, 𝜋′ are such that 𝑃𝑡 (𝜋) = 𝑃𝑡 (𝜋
′), then they are

Knuth equivalent in the generalized sense. For instance, the P tableaux of the skew RSK dynamics
corresponding to 1(2)2(0) and 2(0)1(2) are equal for all t, but these words are not generalized Knuth
equivalent.

We conclude this subsection proposing a partial generalization of the notion of dual Knuth relation.

Definition A.15 (Generalized dual Knuth relations). The generalized dual Knuth relations 𝜋
∗
�g 𝜋′ is

the equivalence relation on weighted words generated by the transformations

· · · 𝑘 (𝑤) · · · (𝑘 + 2) (𝑤
′) · · · (𝑘 + 1) (𝑤

′′) · · ·� · · · (𝑘 + 1) (𝑤) · · · (𝑘 + 2) (𝑤
′) · · · 𝑘 (𝑤

′′) · · · ,

· · · (𝑘 + 1) (𝑤) · · · 𝑘 (𝑤
′) · · · (𝑘 + 2) (𝑤

′′) · · ·� · · · (𝑘 + 2) (𝑤) · · · 𝑘 (𝑤
′) · · · (𝑘 + 1) (𝑤

′′) · · · ,
(A.10)

where 𝑤 ≥ 𝑤′ ≥ 𝑤′′. For a graphical representation of these transformations, see Figure 23.

In the following theorem, we report a statement dual to Proposition A.1. We omit the proof, as the
arguments are equivalent to those presented immediately above.

Theorem A.16. Consider a pair of weighted permutations 𝜋
∗
�g 𝜋′. Then for all 𝑡 ∈ Z, we have

𝑄𝑡 (𝜋) = 𝑄𝑡 (𝜋
′).
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Theorem A.17. Consider weighted permutations 𝜋, 𝜋′ such that 𝜋 �g 𝜋′ or 𝜋
∗
�g 𝜋′. Then, for all k, we

have

𝐼𝑘 (𝜋) = 𝐼𝑘 (𝜋
′) and 𝐷𝑘 (𝜋) = 𝐷𝑘 (𝜋

′). (A.11)

Proof. Let (𝑃, 𝑄), (𝑃′, 𝑄)′ be pairs of tableaux such that (𝑃, 𝑄)
SS
−−→ 𝜋 and (𝑃, 𝑄)

SS
−−→ 𝜋′. We have

shown in Proposition A.11 that if 𝜋 �g 𝜋′, then 𝑃𝑡 = 𝑃′𝑡 for all t. In particular, this shows that the
asymptotic increment 𝜇 is common for both pairs (𝑃, 𝑄) and (𝑃′, 𝑄 ′). By Proposition 6.6, this implies
that 𝐼𝑘 , 𝐷𝑘 are invariant under generalized Knuth relations. The same statement for dual generalized
Knuth relations can be proven analogously. �

B. Proof of Proposition 6.4

We will proceed by direct inspection. Arguments implemented here can be thought of as affine gener-
alizations of those originally presented in [23] and [86]. We organize the proof of Proposition 6.4 in a
number of lemmas. The first basic property we prove is that the inversion 𝜋 → 𝜋−1 preserves increasing
and localized decreasing subsequences.

Lemma B.1. For any 𝜋 ∈ A𝑛,𝑛 and any k, we have

𝐼𝑘 (𝜋
−1) = 𝐼𝑘 (𝜋) and 𝐷𝑘 (𝜋

−1) = 𝐷𝑘 (𝜋). (B.1)

Proof. We prove that inversion 𝜋 → 𝜋−1, corresponding to the transposition 𝑀 𝑖, 𝑗 (𝑘) → 𝑀 𝑗 ,𝑖 (𝑘),
preserves both increasing and localized increasing subsequences. Let us start with localized decreasing
subsequences. A path 𝜍 = (𝜍 𝑗 : 𝑗 = 1, . . . , 𝑠) ⊂ 𝒞𝑛 is a strict down-right loop if and only if its points
have coordinates

𝜍1 = ( 𝑗1, 𝑖1 − 𝑛𝑤), . . . , 𝜍𝑟 = ( 𝑗𝑟 , 𝑖𝑟 − 𝑛𝑤),

𝜍𝑟+1 = ( 𝑗𝑟+1, 𝑖𝑟+1 − 𝑛(𝑤 + 1)), . . . , 𝜍𝑠 = ( 𝑗𝑠 , 𝑖𝑠 − 𝑛(𝑤 + 1)),

for some 𝑟, 𝑤 and numbers 𝑖𝑘 , 𝑗𝑘 such that

𝑗1 < · · · < 𝑗𝑟 < 𝑗𝑟+1 < · · · < 𝑗𝑠 ,

𝑖𝑟+1 > · · · > 𝑖𝑠 > 𝑖1 > · · · > 𝑖𝑟 .
(B.2)

Denote with 𝜛𝑇 the image under transposition ( 𝑗 , 𝑖 − 𝑛𝑤) → (𝑖, 𝑗 − 𝑛𝑤) of the path 𝜛. Then its
coordinates are

𝜛𝑇
𝑟 = (𝑖𝑟 , 𝑗𝑟 − 𝑛𝑤), . . . , 𝜛𝑇

1 = (𝑖1, 𝑗1 − 𝑛𝑤),

𝜛𝑇
𝑠 = (𝑖𝑠 , 𝑗𝑠 − 𝑛(𝑤 + 1)), . . . , 𝜛𝑇

𝑟+1 = (𝑖𝑟+1, 𝑗𝑟+1 − 𝑛(𝑤 + 1)),

which, by equation (B.2), form again a strict down-right loop.
The proof that transposition maps increasing subsequences 𝜛 into increasing subsequences 𝜛𝑇 is

also straightforward and therefore we omit it. �

Lemma B.2. We have 𝐼𝑘 (𝜄𝜖 (𝜋)) = 𝐼𝑘 (𝜋) and 𝐷𝑘 (𝜄𝜖 (𝜋)) = 𝐷𝑘 (𝜋) for all 𝜋 ∈ A𝑛,𝑛, 𝜖 = 1, 2 and 𝑘 =
1, 2, . . . . Equivalently, recalling the shift 𝑇𝜖 of equation (5.29), 𝐼𝑘 (𝑇𝜖 (𝑀)) = 𝐼𝑘 (𝑀) and 𝐷𝑘 (𝑇𝜖 (𝑀)) =
𝐷𝑘 (𝑀) for all 𝑀 ∈ M𝑛×𝑛, 𝜖 = 1, 2, 𝑘 = 1, 2, . . . .

Proof. This is obvious since shifts 𝑇1, 𝑇2 preserve up-right paths and strict down-right loops. �
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Figure 24. An instance of the relabeling procedure of Proposition B.3.

As a result of Propositions B.1 and B.2 and of definition (5.31), (5.33) of family 𝐸 (2)𝑖 , 𝐹 (2)𝑖 , in order
to prove Proposition 6.4, it suffices to show that

𝐼𝑘 (𝐸
(1)
𝑖 (𝜋)) = 𝐼𝑘 (𝜋), 𝐷𝑘 (𝐸

(1)
𝑖 (𝜋)) = 𝐷𝑘 (𝜋), (B.3)

for all 𝑖 = 1, . . . , 𝑛−1. In the remaining lemmas below, these are indeed the only situations we consider.
We start by showing that classical Kashiwara operators preserve increasing subsequences.

Lemma B.3. Let 𝜋 ∈ A𝑛,𝑛 and 𝑖 ∈ {1, . . . , 𝑛 − 1} such that 𝐸 (1)𝑖 (𝜋) exists. Then 𝐼𝑘 (𝐸
(1)
𝑖 (𝜋)) = 𝐼𝑘 (𝜋).

Proof. Define 𝜋′ = 𝐸 (1)𝑖 (𝜋), and let 𝜎 = 𝜎 (1) ·∪ · · · ·∪ 𝜎 (𝑘) be a k-increasing subsequence of 𝜋. We
show that we can always find a k-increasing subsequence 𝜉 ⊂ 𝜋′ such that |𝜉 | = |𝜎 |, and this clearly

implies the claim of the lemma. The weighted biword 𝜋′ is obtained from 𝜋 by replacing one entry
(
𝑗̂
𝑖+1
𝑤

)
by

(
𝑗̂
𝑖
𝑤

)
, where 𝑗̂ , 𝑤 are selected through the signature rule (5.25). We denote the corresponding cells

𝑐̂ = ( 𝑗̂ − 𝑛𝑤, 𝑖 + 1) and 𝑐̂′ = 𝑐̂ − e2. In case 𝑐̂ ∉ 𝜎, then 𝜎 is not affected by transformation 𝐸 (1)𝑖 and we
simply take 𝜉 = 𝜎. Alternatively, assume 𝑐̂ ∈ 𝜎 and without loss of generality let 𝑐̂ ∈ 𝜎 (1) . We write

𝜎 (1) = 𝑎1 → · · · → 𝑎𝐾 → 𝑐̂ → 𝑏1 → · · · → 𝑏𝐽 , (B.4)

for some increasing subsequences 𝐴 = 𝑎1 → · · · → 𝑎𝐾 and 𝐵 = 𝑏1 → · · · → 𝑏𝐽 . In case 𝐴 → 𝑐̂′

is still an increasing sequence, we define 𝜉
(1)

= 𝐴 → 𝑐̂′ → 𝐵 and 𝜉 = 𝜉
(1)
·∪ 𝜎 (2) ·∪ · · · ·∪ 𝜎 (𝑘) is the

desired k-increasing subsequence of 𝜋′.
The only nontrivial case to treat therefore occurs when 𝐴→ 𝑐̂′ is no longer an increasing sequence, as

in Figure 24. This happens only when point 𝑎𝑆 , . . . , 𝑎𝐾 have coordinates 𝑎𝑠 = ( 𝑗𝑠 , 𝑖+1) for 𝑠 = 𝑆, . . . , 𝐾 .
With no loss of generality, we assume that 𝑎𝑆−1 does not lie on the strip Z × {𝑖 + 1}. By signature rule
(5.25), there exists a set of points 𝑈 = {𝑢𝑆 , . . . , 𝑢𝐾 } with coordinates 𝑢𝑠 = ( 𝑗 ′𝑠 , 𝑖) such that 𝑗𝑠 < 𝑗 ′𝑠 ≤ 𝑗̂ .
If 𝑈 ∩ 𝜎 = ∅, we define

𝜉
(1)

= 𝑎1 → · · · → 𝑎𝑆−1 → 𝑢𝑆 → · · · → 𝑢𝐾 → 𝑐̂′ → 𝐵 (B.5)

and again 𝜉 = 𝜉
(1)
·∪ 𝜎 (2) ·∪ · · · ·∪ 𝜎 (𝑘) has the desired properties. This procedure is given in Figure 24,

where the solid red path denotes 𝜎 (1) , while the dotted one denotes 𝜉
(1) .

Otherwise, we assume that 𝑈 ∩ 𝜎 ≠ ∅ and let

𝐽 = max{𝑠 ∈ {𝑆, . . . , 𝐾} : 𝑢𝑠 ∈ 𝜎}. (B.6)

With no loss of generality, we can write

𝜎 (2) = 𝐴′ → 𝑢𝐽 → 𝐵′, (B.7)
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Figure 25. Some of the possible relabeling procedures described in the proof of Proposition B.3.

for two increasing subsequences 𝐴′, 𝐵′. This situation is reported in panels (a) and (c) of Figure 25,
depending on if 𝑐̂′ → 𝐵′ is increasing or not. There red and blue lines denote 𝜎 (1) and 𝜎 (2) . When
𝑐̂′ → 𝐵′ is increasing we set, as in Figure 25 panel (b)

𝜉
(1)

= 𝐴→ 𝐵, 𝜉
(2)

= 𝐴′ → 𝑢𝐽 → 𝑐̂′ → 𝐵′ (B.8)

and 𝜉 = 𝜉
(1)
·∪ 𝜉
(2)
·∪ 𝜎 (3) ·∪ · · ·𝜎 (𝑘) is the k-increasing subsequence of 𝜋 we are looking for.

Otherwise, if 𝑐̂′ → 𝐵′ is not increasing, we define

𝜉
(1)

= 𝑎1 → · · · → 𝑎𝐽 → 𝐵′, 𝜉
(2)

= 𝐴′ → 𝑢𝐽 → 𝑢𝐽+1 → · · · → 𝑢𝑆 → 𝑐̂′ → 𝐵, (B.9)

as in Figure 25 panels (c) and (d). Also, in this case 𝜉 = 𝜉
(1)
·∪ 𝜉
(2)
·∪ 𝜎 (3) ·∪ · · ·𝜎 (𝑘) has the desired

properties. This check exhausts all possibilities and concludes the proof. �

The proof of the fact that Kashiwara operators preserve the length of the longest localized decreasing
subsequences is slightly more involved than the preservation property for increasing subsequences. We
articulate the analysis of this case in the following three lemmas. For the next statement, we need to
recall how the shadow line construction one draws for the transition 𝜋 ↦→ V(𝜋) defines an ensemble of
down-right loops; see Section 4.3.

Lemma B.4. Let 𝜋 be a k-localized decreasing sequence. Then the shadow line construction of 𝜋
consists of at most k down-right loops.

Proof. We show that if the shadow line construction of 𝜋 consists of 𝑘̃ down-right loops 𝜍 (1) , . . . , 𝜍 ( 𝑘̃) ,
then there exists an increasing subsequence 𝜉 ⊂ 𝜋 of length 𝑘̃ . With this assumption, let 𝜉 = 𝑐1 →
· · · → 𝑐 𝑘̃ be contained in an up-right path in 𝒞𝑛. Writing 𝜋 = 𝜎 (1) ·∪ · · · ·∪ 𝜎 (𝑘) , where 𝜎 ( 𝑗) ’s are
localized decreasing subsequences, no two 𝑐𝑖 can belong to the same 𝜎 ( 𝑗) forcing 𝑘 ≥ 𝑘̃ .

Representing 𝒞𝑛 as an infinite vertical strip, we assume that loops are ordered from the topmost 𝜍 (1)

to the bottom-most 𝜍 ( 𝑘̃) ; see Figure 26. We are left to show that an increasing subsequence of length
𝑘̃ always exists. For this, we show that if 𝑐𝑖 ∈ 𝜋 ∩ 𝜍 (𝑖) is a point of the configuration lying on the i-th
loop of the shadow line construction, then we can always find 𝑐𝑖+1 ∈ 𝜋 ∩ 𝜍 (𝑖+1) such that 𝑐𝑖+1 → 𝑐𝑖 is
an increasing sequence. To find such 𝑐𝑖+1, start walking southward from 𝑐𝑖 = (𝑎, 𝑏 − 𝑛𝑤) until the first
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Figure 26. An example of the construction presented in the proof of Proposition B.4. In the left panel,
we see the weighted biword 𝜋 represented as an union of four LDSs. In the right panel, we see that the
shadow line construction produces three down-right loops.

intersection with an horizontal segment of the loop 𝜍 (𝑖+1) , which happens at a location (𝑎, 𝑏′ − 𝑛𝑤′) for
some 𝑏′ − 𝑛𝑤′ ≤ 𝑏 − 𝑛𝑤. From there, travel eastward along 𝜍 (𝑖+1) until the first occurrence of a point
in 𝑐𝑖+1 ∈ 𝜋, which might happen after winding around the cylinder. In Figure 26 (b), we represented
such walks with red dotted segments. By construction, 𝑐𝑖+1 → 𝑐𝑖 forms an increasing sequence and by
induction we conclude the proof.

�

Lemma B.5. Consider a 2-localized decreasing sequence 𝜋 = 𝜎 (1) ·∪𝜎 (2) , and assume 𝜋′ = 𝐸 (1)𝑖 (𝜋) ≠

∅ for some 𝑖 ∈ {1, . . . , 𝑛 − 1}. Then we also have 𝜋′ = 𝜉
(1)
·∪ 𝜉
(2) , for two localized decreasing

subsequences 𝜉
(1)

, 𝜉
(2) .

Proof. The weighted biword 𝜋′ is obtained from 𝜋 replacing an entry
(
𝑗̂
𝑖+1
𝑤

)
with

(
𝑗̂
𝑖
𝑤

)
, where 𝑗̂ , 𝑤 are

selected through the signature rule (5.25), (5.26). Call 𝑐̂ = ( 𝑗̂ , 𝑖 + 1 − 𝑤𝑛) and 𝑐̂′ = 𝑐̂ − e2. With no loss
of generality, assume 𝑐̂ ∈ 𝜎 (1) and write

𝜎 (1) = 𝑎1 → · · · → 𝑎𝑀 𝜎 (2) = 𝑏1 → · · · → 𝑏𝑁 , (B.10)

with 𝑐̂ = 𝑎𝐾 for some K. Representing 𝒞𝑛 as an infinite vertical strip, we assume cells 𝑎𝑘 , 𝑏𝑘 to be
ordered from top to bottom. Define

𝜃 = 𝑎1 → · · · → 𝑎𝐾−1 → 𝑐̂′ → 𝑎𝐾+1 → · · · → 𝑎𝑀 . (B.11)

If 𝜃 is an LDS, we set 𝜉
(1)

= 𝜃 and 𝜉
(2)

= 𝜎 (2) and this yields the desired decomposition of 𝜋′. To check
the remaining cases, we consider two possibilities.

Case 1: 𝜃 is not localized. This only happens if 𝑐̂ = 𝑎𝑀 and 𝑎1 = ( 𝑗1, 𝑖 − 𝑛(𝑤 − 1)), for some
1 ≤ 𝑗1 < 𝑗̂ . From the signature rule (5.26), this implies that there exists a point 𝑑 ∈ 𝜎 (2) such that
𝑑 = ( 𝑗2, 𝑖 + 1− 𝑛(𝑤 − 1)), with 1 ≤ 𝑗2 < 𝑗1, or 𝑑 = ( 𝑗2, 𝑖 + 1− 𝑛𝑤) with 𝑗̂ < 𝑗2 ≤ 𝑛. We treat these two
additional subcases separately.

Case 1.1: 𝑑 = ( 𝑗2, 𝑖+1−𝑛(𝑤−1)). We can write subsequence 𝜎 (2) = 𝑈 → 𝑉 , where𝑈 = 𝑢1 → · · · → 𝑢𝐽
is the LDS of all 𝑢 𝑗 ∈ 𝜎 (2) such that 𝑢 𝑗 → 𝑎1 is an LDS; see Figure 27 (a) for an example. Notice
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Figure 27. Relabeling procedure corresponding to Case 1.1 in the proof of Proposition B.5. Red and
blue LDSs in the left panel are 𝜎 (1) , 𝜎 (2) . In the right panel, red and blue LDSs are 𝜉

(1)
, 𝜉
(2) .

Figure 28. Relabeling procedure corresponding to Case 1.2 in proof of Proposition B.5. In the left
panel, red and blue LDSs are 𝜎 (1) , 𝜎 (2) , while in the right panel they are 𝜉

(1)
, 𝜉
(2) .

that 𝑢𝐽 = 𝑑. Define sector 𝑆 = {1, . . . , 𝑛} × {𝑖 + 1− 𝑛𝑤, . . . , 𝑖 − 1− 𝑛(𝑤 − 1)} as in Figure 27 (b). By
construction, S contains all points of 𝜋 except for U and 𝑎1. Moreover, all points in S are contained in
two LDS: V and 𝑎2 → · · · → 𝑎𝑀 . We draw the shadow line construction, restricted to the sector S,
of all points contained in S, as in Figure 27 (b). By an adaptation of Proposition B.4, such shadow
line construction consists of at most two down-right broken lines we call 𝜍 (1) , 𝜍 (2) . With no loss of
generality, we assume that 𝑐̂ ∈ 𝜍 (1) and this forces 𝜍 (2) to contain only points of 𝜋 that are weakly
to east of 𝑎2 and weakly north of 𝑏𝑁 . Define now 𝑊 (2) selecting all points of 𝜋 ∩ 𝜍 (2) , without
multiplicity and 𝜉

(2)
= 𝑈 → 𝑎1 → 𝜎 (2) . Then 𝜉

(2) is an LDS. Subsequently, define 𝑊 (1) taking all
points of 𝜋 ∩ 𝜍 (1) minus 𝑐̂, and set 𝜉

(1)
= 𝑊 (1) → 𝑐̂′. Again 𝜉

(1) is an LDS and 𝜉
(1)

, 𝜉
(2) provide

the desired decomposition of 𝜋′

Case 1.2: 𝑑 = ( 𝑗2, 𝑖+1−𝑛𝑤). This case is represented in Figure 28 (a). We write 𝜎 (2) = 𝑈 → 𝑉 , with U
having all points located weakly north of 𝑐̂ and V having all points located southeast of 𝑐̂′. In this case,
consider the sector 𝑆 = {1, . . . , 𝑛} × {𝑖 +1−𝑛𝑤, . . . , 𝑖−𝑛(𝑤−1)} as in Figure 28 (b). Then all points
of 𝜋 except those in V are contained in S. By the signature rule, 𝑎1 is the northernmost point of the
configuration as no other point can be of the form ( 𝑗 , 𝑖−𝑛(𝑤−1)). Moreover, points in S all belong to
the union of down-right paths U and 𝜎 (1) . Therefore, the inverse shadow line construction, restricted
to the sector S, of the points within S, drawn in Figure 28 (b), will consist, again by an adaptation
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Figure 29. Depiction of the relabeling described in Case 2 in the proof of Proposition B.5.

of Proposition B.4, of exactly two separate broken lines 𝜍 (1) , 𝜍 (2) . With no loss of generality, we
assume that 𝑐̂ ∈ 𝜍 (1) , while 𝑑, 𝑎1 ∈ 𝜍 (2) , which implies that 𝜍 (1) is contained in the region weakly
south of 𝑏1. We now define LDS 𝜉

(2) taking points 𝜋 ∩ 𝜍 (2) without multiplicity. Define also W
taking points 𝜋 ∩ 𝜍 (1) , without mulitplicity and excluding 𝑐̂. Finally, we set 𝜉

(1)
= 𝑊 → 𝑐̂′ → 𝑉 .

Also, in this case the decomposition 𝜋′ = 𝜉
(1)
·∪ 𝜉
(2) has the desired properties.

Case 2: 𝜃 is not strictly down right. This can only happen if 𝑐̂ = 𝑎𝐾 and 𝑎𝐾+1 = ( 𝑗1, 𝑖 − 𝑛𝑤) for
some 𝑗1 ∈ { 𝑗̂ + 1, · · · , 𝑛} and some K. See Figure 29 (a) for an example. By the signature rule, there
must exist 𝑑 ∈ 𝜎 (2) such that 𝑑 = ( 𝑗2, 𝑖 + 1 − 𝑛𝑤) with 𝑗2 ∈ { 𝑗̂ , · · · 𝑗1 − 1} and moreover no other point
occupies the segment of vertical coordinate 𝑖 − 𝑛𝑤. We draw the inverse shadow line construction of
the point configuration, which consists in two down-right paths 𝜍 (1) , 𝜍 (2) , by Proposition B.4. Because
of their relative position, we must have, 𝑎𝐾 ∈ 𝜍 (1) , while 𝑎𝐾+1, 𝑑 ∈ 𝜍 (2) . Then we define 𝜉

(1) taking
points in 𝜋 ∩ 𝜍 (1) , without multiplicity, and replacing 𝑐̂ by 𝑐̂′; see Figure 29 (b). Define also 𝜉

(2) taking
point in 𝜋 ∩ 𝜍 (2) . Both 𝜉

(1)
, 𝜉
(2) are LDSs, and their union is 𝜋′. The analysis of this case exhausts all

possible configurations of 𝜎 (1) , 𝜎 (2) and completes the proof. �

Lemma B.6. Let 𝜋 ∈ A𝑛,𝑛 and 𝜋′ = 𝐸 (1)𝑖 (𝜋) ≠ ∅ for some 𝑖 ∈ {1, . . . , 𝑛 − 1}. Then, for all k, we have
𝐷𝑘 (𝜋

′) = 𝐷𝑘 (𝜋).

Proof. As discussed several times above, 𝜋′ differs from 𝜋 by a replacement of
(
𝑗̂
𝑖+1
𝑤

)
with

(
𝑗̂
𝑖
𝑤

)
. For

this proof, it is convenient to parameterize 𝒞𝑛 as the infinite horizontal strip (4.4) and we define points
𝑐̂ = ( 𝑗̂ + 𝑤𝑛, 𝑖 + 1) and 𝑐̂′ = 𝑐̂ − e2. Let 𝜎 = 𝜎 (1) ·∪ · · · ·∪ 𝜎 (𝑘) be a k-LDS of 𝜋. We show that we can
find a k-LDS 𝜉 = 𝜉

(1)
·∪ · · · ·∪ 𝜉

(𝑘)
⊆ 𝜋′ with the same length of 𝜎 and this statement clearly implies the

result of the lemma.
Clearly, if 𝑐̂ ∉ 𝜎 we take 𝜉 = 𝜎 and there is nothing to prove. We then assume, with no loss of

generality that 𝑐̂ ∈ 𝜎 (1) and in particular 𝑐̂ = [𝜎 (1)𝐾 ] for some K. As in the proof of Proposition B.5,
define

𝜃 = [𝜎 (1)1 ] → · · · → [𝜎
(1)
𝐾−1] → 𝑐̂′ → [𝜎 (1)𝐾+1] → · · · . (B.12)

If 𝜃 is an LDS, then we set 𝜉 = 𝜃 ·∪ 𝜎 (2) ·∪ · · · ·∪ 𝜎 (𝐾 ) , producing the desired k-LDS 𝜉 ⊆ 𝜋′. If, on
the other hand, 𝜃 is not an LDS, then there exists 𝑐̃ ∈ 𝜎 (1) such that 𝑐̃ = ( 𝑗̃ , 𝑖) for some 𝑗̂ < 𝑗̃ . Define
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Figure 30. An example of configuration where 𝑑 ∈ 𝜎 (2) lies between 𝑐̂ and 𝑐̃.

Figure 31. An example of a configuration where 𝑑 does not lie between 𝑐̂ and 𝑐̃.

Ω(𝑖) (𝜋; 𝜎) as the set of 𝑎 = (𝑚, 𝑖 + 1) ∈ 𝜋 such that

1. 𝑚 ≥ 𝑗̂ ;

2. 𝑎 ∉ 𝜎 or 𝑎 ∈ 𝜎 (ℓ) for some ℓ but (𝑚′, 𝑖) ∉ 𝜎 (ℓ) for any 𝑚′ ∈ Z.
(B.13)

Then, by the signature rule Ω(𝑖) (𝜋; 𝜎) is not empty and we consider its element 𝑑 = (𝑚, 𝑖 + 1) situated
furthest to the west. By this, we mean that (𝑚, 𝑖 + 1) ∉ Ω(𝑖) (𝜋; 𝜎) for any 𝑚 < 𝑚. Based on the position
of 𝑑, we distinguish two cases.

Case 1: 𝑑 lies between 𝑐̂ and 𝑐̃. More precisely, we assume 𝑗̂ ≤ 𝑚 < 𝑗̃ . Then:

• if 𝑑 ∉ 𝜎, we can define 𝜉
(1) replacing, in 𝜎 (1) , 𝑐̂ with 𝑑. This produces the desires k-LDS 𝜉

′
=

𝜉
(1)
·∪ 𝜎 (2) ·∪ · · · ·∪ 𝜎 (𝑘) ⊆ 𝜋′.

• if 𝑑 ∈ 𝜎 and with no loss of generality, we assume 𝑑 ∈ 𝜎 (2) , then weighted biword 𝜎 (1) ·∪𝜎 (2) satisfies
the hypothesis of Proposition B.5. By the same lemma, we can find a decomposition 𝜉

(1)
·∪ 𝜉
(2)

=

𝐸 (1)𝑖 (𝜎
(1) ·∪𝜎 (2) ) and 𝜉 = 𝜉

(1)
·∪𝜉
(2)
·∪𝜎 (3) ·∪ · · · ·∪𝜎 (𝑘) yields the desired k-LDS of 𝜋′. This situation

is reported in Figure 30.

Case 2: 𝑑 does not lie between 𝑐̂ and 𝑐̃. When 𝑚 ≥ 𝑗̃ , we want to show that through a series of
reshuffling of elements of 𝜎 and 𝜋 we can always ‘transport’ the point 𝑑 in the region between 𝑐̂ and 𝑐̃,
falling back into Case 1. By the signature rule and by definition of 𝑑, it is easy to conclude that there
exist points 𝑎 = ( 𝑗𝑎, 𝑖 + 1), 𝑏 = ( 𝑗𝑏 , 𝑖) such that

1. 𝑎, 𝑏 ∈ 𝜎 (𝑠) for some 𝑠.

2. 𝑎 lies between 𝑐̂ and 𝑑, while 𝑏 lies to east of 𝑑. More precisely, 𝑗̂ ≤ 𝑗𝑎 < 𝑚 < 𝑗𝑏 .
(B.14)

For an example, see Figure 31. In case 𝑑 ∉ 𝜎, we replace in 𝜎 (𝑠) , a with 𝑑 yielding a new LDS 𝜎̃ (𝑠)

and therefore a new k-LDS 𝜎̃ obtained from 𝜎 interchanging 𝜎̃ (𝑠) and 𝜎 (𝑠) . After such replacement,
the set Ω(𝑖) (𝜋, 𝜎̃) differs from Ω(𝑖) (𝜋, 𝜎) and, in particular, its westernmost element is a, rather than
𝑑. Alternatively, assume 𝑑 ∈ 𝜎, say 𝑑 ∈ 𝜎 (𝑠+1) for some s. Then as in Case 1 weighted biword
𝜎 (𝑠) ·∪ 𝜎 (𝑠+1) fulfills the hypothesis of Proposition B.5. This implies that we can find a decomposition
𝜂 (𝑠) ·∪ 𝜂 (𝑠+1) = 𝜎 (𝑠) ·∪ 𝜎 (𝑠+1) such that, if 𝑎 ∈ 𝜂 (𝑠) , then (𝑚, 𝑖) ∉ 𝜂 (𝑠) for any 𝑚 ∈ Z. Define now 𝜎̃
replacing in 𝜎 LDSs 𝜎 (𝑠) , 𝜎 (𝑠+1) with 𝜂 (𝑠) , 𝜂 (𝑠+1) . Then also in this case the westernmost element of the
set Ω(𝑖) (𝜋, 𝜎̃) is no longer 𝑑, but a. This shows that, inductively, we can move west, through reshuffling,
the westernmost element of Ω(𝑖) (𝜋, 𝜎) until it lies between 𝑐̂ and 𝑐̃, which is then treated by Case 1.
This concludes the proof. �

We finally arrive at the proof of Proposition 6.4.
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Proof of Proposition 6.4. It follows by combining the results of the lemmas enumerated in this appendix.
Thanks to Proposition B.1, the family of Kashiwara operators 𝐸 (2)𝑖 , 𝐹 (2)𝑖 preserves the quantities 𝐼𝑘 , 𝐷𝑘

only if the first family 𝐸 (1)𝑖 , 𝐹 (1)𝑖 does. Furthermore, through Proposition B.2 one simply has to check
that 𝐸 (1)𝑖 , 𝐹 (1)𝑖 preserve 𝐼𝑘 , 𝐷𝑘 for 𝑖 = 1, . . . , 𝑛 − 1. The last case is handled by Proposition B.3 and
Proposition B.6. Notice that if 𝐸 (1)𝑖 preserves 𝐼𝑘 , 𝐷𝑘 , then also 𝐹 (1)𝑖 does, being its inverse. �

List of Symbols

N p. 3 {1, 2, 3, . . . }
N0 p. 3 {0, 1, 2, 3, . . . }
A𝑛 p. 15 {1, . . . , 𝑛}
A∗𝑛 p. 15 Finite length words in A𝑛

ℓ (𝑝) p. 15 Length of a word p
𝛾 (𝑝) p. 15 Content of a word p
A𝑛,𝑚 p. 15 Set of biwords
A𝑛,𝑚 p. 15 Set of weighted biwords
𝜋 p. 15 Weighted biword
wt(𝜋) p. 15 Total weight of a weighted biword
𝑀 p. 16 Map {1, . . . , 𝑚} × Z→ N0 given by 𝑀 ( 𝑗 , 𝑖 − 𝑘𝑛) = 𝑀 𝑖, 𝑗 (𝑘)

𝜋
^

p. 15 Timetable ordering of 𝜋
A
+

𝑛,𝑚 p. 16 Set of weighted biwords where all weights are nonnegative integers
M𝑛×𝑚 p. 16 𝑛 ×𝑚 matrices with coefficients in N0
M𝑛×𝑚 p. 16 𝑛 ×𝑚 matrices with coefficients finitely supported sequences (𝑀 𝑖, 𝑗 (𝑘) : 𝑘 ∈ Z) ⊂ N0

M
+

𝑛×𝑚 p. 16 Subset ofM𝑛×𝑚in bijection with A
+

𝑛,𝑚

wt(𝑀 ) p. 16
∑
𝑖, 𝑗,𝑘 𝑘𝑀 𝑖, 𝑗 (𝑘) , weight of a matrix 𝑀

ℓ (𝜆) p. 17 Length of a partition 𝜆
𝑚𝑖 (𝜆) p. 17 Multiplicity of i in 𝜆
Y p. 17 Set of all partitions
𝜘+ p. 17 Partition generated permuting elements of 𝜘 ∈ N𝑁0
𝜆′ p. 17 Transposed partition
T−𝑖 p. 17 Upward translation
Y−𝑖 p. 17 Set of generalized Young diagrams
𝑅𝑖 p. 17 Rectangular decomposition of the Young diagram
𝑟𝑖 p. 17 𝑟𝑖 = 𝑅𝑖−1 − 𝑅𝑖 that is, horizontal length of the ith rectangle in the Young diagram
𝛾 p. 18 Content of a tableau
𝑆𝑆𝑇 (𝜆/𝜌, 𝑛) p. 18 Set of semistandard tableaux with the shape 𝜆/𝜌 and the alphabet A𝑛

𝑆𝑇 (𝜆/𝜌) p. 18 Set of semistandard tableaux with the shape 𝜆/𝜌
𝑉 𝑆𝑇 (𝜇, 𝑛) p. 18 Set of vertically strict tableaux with shape 𝜇 and alphabet A𝑛

𝜋row
𝑇 p. 18 Row reading word of tableau T
𝜋col
𝑇 p. 18 Column reading word of tableau T

ker(𝑃) p. 18 Kernel of a classical skew tableaux 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛)
ov(𝐴, 𝐵) p. 18 Overlap of two weakly increasing words 𝐴, 𝐵
ker(𝑃, 𝑄) p. 19 Kernel of a pair of semistandard tableaux (𝑃, 𝑄)
rc(𝑃) p. 19 Row coordinate matrix of a generalized semistandard tableau 𝑃 ∈ 𝑆𝑆𝑇 (𝜆/𝜌, 𝑛)
M𝑛×∞ p. 19 {(𝛼𝑖, 𝑗 ∈ N0 : 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ Z) : 𝛼𝑖, 𝑗 ≠ 0 for finitely many 𝑖, 𝑗 }
rc(𝑃, 𝑄) p. 19 (rc(𝑃) , rc(𝑄))
rc
←→ p. 19 Bijection by the row-coordinate parametrization rc
M
+
𝑛×∞ p. 19 Subspace ofM𝑛×∞ of matrices 𝛼 such that 𝛼𝑖, 𝑗 = 0 if 𝑗 ≤ 0.

M+
𝑛 p. 19

{
(𝛼, 𝛽) ∈ M+𝑛×∞ ×M

+
𝑛×∞ :

∑𝑛
𝑖=1 (𝛼𝑖, 𝑗 − 𝛽𝑖, 𝑗 ) = 0 for all 𝑗 ∈ Z

}
Z+𝑛 p. 20

{
(a , b) ∈ N𝑛 × N𝑛 : b 𝑖 = a 𝜎 (𝑖) for some 𝜎 ∈ S𝑛

}
M𝑛 p. 20

{
(𝛼, 𝛽) ∈ M𝑛×∞ ×M𝑛×∞ :

∑𝑛
𝑖=1 (𝛼𝑖, 𝑗 − 𝛽𝑖, 𝑗 ) = 0 for all 𝑗 ∈ Z

}
Z𝑛 p. 20

{
(a , b) ∈ Z𝑛 × Z𝑛 : b 𝑖 = a 𝜎 (𝑖) for some 𝜎 ∈ S𝑛

}
std(𝑃) p. 20 Standardization of 𝑃 ∈ 𝑆𝑆𝑇 (ℓ/𝜌, 𝑛)
V p. 21

{
(𝑣𝑗 ) 𝑗∈Z : 𝑣𝑗 ∈ N0 and |𝑣 | =

∑
𝑗∈Z 𝑣𝑗 < +∞

}
W

𝑘 p. 21 The Weyl chamber {(a 1 , . . . , a 𝑘 ) ∈ Z𝑘 : a 1 ≥ · · · ≥ a 𝑘 }
std(𝛼) p. 21 Standardization of a row-coordinate matrix 𝛼
R[𝑟 ] (𝑃) p. 21 Internal insertion starting from the rth row of tableaux P
RSK(𝑃, 𝑄) p. 22 Skew RSK map of tableaux
RS(𝑃, 𝑄) p. 22 Skew RS map of tableaux
𝜄𝜖 (𝑃, 𝑄) , 𝜖 = 1, 2 p. 23 Internal insertion with cycling on tableaux
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Λ𝑚,𝑛 p. 25 Finite rectangular lattice {1, . . . , 𝑚} × {1, . . . , 𝑛}
Λ p. 25 Planar lattice subset of Z × Z
RS(a , b) p. 25 Skew RS map of arrays
𝜄𝜖 (a , b) , 𝜖 = 1, 2 p. 27 Internal insertion with cycling on arrays
RSK(𝛼, 𝛽) p. 29 Skew RSK map of matrices
(𝑃𝑡 , 𝑄𝑡 ) , 𝑡 ∈ Z p. 31 Skew RSK dynamics with initial data (𝑃, 𝑄)
(𝛼 (𝑡 ) , 𝛽 (𝑡 ) ) , 𝑡 ∈ Z p. 31 Skew RSK dynamics on the space of pairs of matrices.
𝒞𝑛 p. 32 Twisted cylinder
∼𝑛 p. 32 ( 𝑗 , 𝑖) ∼𝑛 ( 𝑗

′, 𝑖′) if ( 𝑗′, 𝑖′) = ( 𝑗 + 𝑘𝑛, 𝑗 − 𝑘𝑛) for some 𝑘 ∈ Z
(𝛼, 𝛽)𝑐 p. 32 𝛼𝑖,𝑘 = W𝑘 (𝑐 + (𝑖 − 1)e2) and 𝛽𝑖,𝑘 = S𝑘 (𝑐 + (𝑖 − 1)e1)
𝔈𝑛 p. 32 Set of all configurations E such that (𝛼, 𝛽)𝑐 ∈M𝑛 for all 𝑐 ∈ 𝒞𝑛

𝑀
(𝑡 )
(𝑐) p. 33 𝑀

(𝑡 )
(𝑐) = N𝑡 (𝑐) ∧ E𝑡 (𝑐)

V p. 34 Viennot map
SS
←→ p. 35 Bijection between M𝑛 andM𝑛×𝑛
SS
−−→ p. 35 Projection from tableaux (𝑃, 𝑄) to 𝑀 ∈ M𝑛×𝑛

𝜇 (𝑃, 𝑄) p. 36 Asymptotic increment by the skew RSK dynamics
Φ p. 37 Projection from (𝑃, 𝑄) to (𝑉 ,𝑊 )
𝑒̃𝑖 , 𝑓𝑖 p. 41 Kashiwara operators
𝑖
−→ p. 41 In case 𝑏 𝑖

−→ 𝑏′ we write 𝑏′ = 𝑓𝑖 (𝑏) or 𝑏 = 𝑒̃𝑖 (𝑏′)
𝜑𝑖 (𝑏) p. 41 𝜑𝑖 (𝑏) = max{𝑚 : 𝑓 𝑚𝑖 (𝑏) ≠ ∅}
𝜀𝑖 (𝑏) p. 41 𝜀𝑖 (𝑏) = max{𝑚 : 𝑒̃𝑚𝑖 (𝑏) ≠ ∅}
𝛾 (𝑏) p. 41 𝛾 : 𝐵 → N𝑛0 content of the crystal
𝐸 (𝜖 )𝑖 , 𝐹 (𝜖 )𝑖 p. 42 Kashiwara operators for bicrystals
𝐵𝑟,1 p. 43 Set of semistandard Young tableaux of single column shape 1𝑟
pr p. 44 Promotion operator
𝐵𝜘 p. 44 𝐵𝜘 = 𝐵𝜘1 ,1 ⊗ · · · ⊗ 𝐵𝜘𝑁 ,1 for any composition 𝜘 = (𝜘1 , . . . , 𝜘𝑁 )

𝐵 (𝜘) p. 44 Affine crystal graph
𝐵 (𝜘) p. 44 Subgraph of 𝐵 (𝜘) obtained erasing all edges generated by 𝑒̃0 , 𝑓0
𝜘lv p. 44 Leading vector
𝑇𝜖 ( 𝑓 ) (𝑐) p. 49 𝑇𝜖 ( 𝑓 ) (𝑐) = 𝑓 (𝑐 − e𝜖 ) for a map f on the twisted cylinder 𝒞𝑛

𝐼𝑘 (𝜋) , 𝐼𝑘 (𝑀 ) p. 51 Length of the longest k-increasing subsequence
𝐷𝑘 (𝜋) , 𝐷𝑘 (𝑀 ) p. 51 Length of the longest k-localized decreasing subsequence
𝔇(𝜋) p. 55 Set of decompositions of 𝜋 into localised decreasing subsequences
𝑔𝑘 (𝔡) p. 55 𝑔𝑘 (𝔡) =

∑
𝑖≥1 min

{
𝑘, ℓ (𝜎 (𝑖) )

}
where 𝔡 = (𝜎 (1) , 𝜎 (2) , . . . ) ∈ 𝔇(𝜋)

𝐺𝑘 (𝜋) p. 55 𝐺𝑘 (𝜋) = min𝔡∈𝔇(𝜋) 𝑔𝑘 (𝔡)
� p. 56 Dominance order in the set of partitions
ℛ p. 57 Combinatorial ℛ-matrix
H p. 57 Energy function
ℛ𝑖 p. 58 ℛ𝑖 = 1⊗(𝑖−1) ⊗ℛ ⊗ 1⊗(𝑁−𝑖)
ℋ𝑖 p. 58 Local energies
ℋ p. 58 Intrinsic energies, ℋ (𝑏) =

∑𝑁−1
𝑖=1 ℋ𝑖 (𝑏)

𝐵 (𝜘) p. 59 Demazure subgraph
L𝑏 p. 60 Leading map for 𝑏 ∈ 𝐵𝜘

L𝑉 ,𝑊 p. 61 Leading map for the pair of vertically strict tableaux (𝑉 ,𝑊 )
L𝑃,𝑄 p. 61 Leading map for the pair of semistandard tableaux(𝑃, 𝑄)
LdT(𝜇) p. 62 Set of leading tableau with classical skew shape and with fixed content 𝜇
ML𝑑 p. 63 Set of leading matrices
K(𝜇) p. 63 K(𝜇) = {𝜅 = (𝜅1 , . . . , 𝜅𝜇1 ) ∈ N

𝜇1
0 : 𝜅𝑖 ≥ 𝜅𝑖+1 if 𝜇′𝑖 = 𝜇

′
𝑖+1 }

𝛼𝜇 (𝜅) p. 63 𝛼𝜇 (𝜅) =
∑𝜇1
𝑖=1 𝐴(𝜇

′
𝑖 , 𝜅𝑖) where 𝐴(𝑚, 𝑘)𝑖, 𝑗 = 𝛿𝑖, 𝑗−𝑘 𝛿𝑖≤𝑚

Υ p. 70 Bijection between(𝑃, 𝑄) and (𝑉 ,𝑊 ; 𝜅; 𝜈)
Υ̃ p. 70 Bijection between 𝑀 and (𝑉 ,𝑊 ; 𝜅)
Υcol p. 72 Bijection associated to the skew RSKcol dynamics
Υ∨ p. 73 Bijection associated to the skew RSK∨ dynamics
𝑣 (𝑡 ) p. 74 Element of 𝐵𝜘(𝑡 ) formed by the tensor product of columns of 𝑃𝑡
𝑢 (𝑡 ) p. 74 Element of 𝐵𝜘(𝑡 ) formed by the tensor product of columns of 𝑄𝑡

𝜘(𝑡) p. 74 Composition recording the number of labeled elements at each column of 𝑃𝑡 , 𝑄𝑡
←−𝜂 p. 74 The reverse ordering (𝜂𝑁 , . . . , 𝜂1) of a partition 𝜂 = (𝜂1 , . . . , 𝜂𝑁 )
𝑉 − p. 74 𝑉 − = lim𝑡→∞ 𝑣

(−𝑡 )

𝑊 − p. 74 𝑊 − = lim𝑡→∞ 𝑢
(−𝑡 )

Φ− p. 74 Backward projection (𝑃, 𝑄) ↦→ (𝑉 − , 𝑊 −)

𝛿 (𝑁 ) p. 75 Permutation (𝑁 𝑁 − 1 · · · 1)
ℛ𝛿 (𝜇1 ) p. 75 ℛ1 · (ℛ2ℛ1) · (ℛ3ℛ2ℛ1) · · · (ℛ𝜇1−1 · · ·ℛ1) : 𝐵𝜇′ → 𝐵

←−𝜇 ′

evac(𝑉 ) p. 75 Affine evaction of the vertically strict tableau V
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𝒫𝜇 (𝑥; 𝑞) p. 78 q-Whittaker polynomials
𝒫𝜇 (𝑥; 𝑞, 𝑡) p. 78 Macdonald polynomials
b𝜇 (𝑞) p. 78 b𝜇 (𝑞) =

∏
𝑖≥1

1
(𝑞;𝑞)𝜇𝑖−𝜇𝑖+1

b𝜇 (𝑞; 𝑧) p. 79 b𝜇 (𝑞; 𝑧) =
∏

𝑖=2,4,6... [𝑞𝑧
2 + 1]𝜇𝑖−𝜇𝑖+1

𝑞2 (𝑞2; 𝑞2)𝜇𝑖−𝜇𝑖+1
∏

𝑖=1,3,5,...
𝑧𝜇𝑖−𝜇𝑖+1
(𝑞;𝑞)𝜇𝑖−𝜇𝑖+1

odd(𝜂) p. 80 Number of odd elements of an integer sequence 𝜂
fixed(𝜋) p. 80 fixed(𝜋) = tr(𝑀 ) =

∑𝑛
𝑗=1

∑
𝑘∈Z 𝑀 𝑗, 𝑗 (𝑘)

g𝑘 (𝑧, 𝑞) p. 80 g𝑘 (𝑧, 𝑞) =
∑
𝜈:𝜈1=𝑘 𝑧

2odd(𝜈′ )𝑞 |𝜈 |

g̃𝑘 (𝑧, 𝑞) p. 80 g̃𝑘 (𝑧, 𝑞) =
∑
𝜈:𝜈1≤𝑘 𝑧

2odd(𝜈′ )𝑞 |𝜈 | = 𝑔0 (𝑧, 𝑞) + 𝑔1 (𝑧, 𝑞) + · · · 𝑔𝑘 (𝑧, 𝑞)
𝑠𝜆/𝜌 (𝑥) p. 82 Skew Schur polynomial
� p. 84 Knuth relation on the set of words A∗𝑛
rect(𝑃) p. 85 Jeu de taquin rectification of a tableau P of shape 𝜆/𝜇
∗
� p. 86 Dual equivalence of words 𝜋 and 𝜋′

≺ p. 86 Total ordering on A𝑛

�g p. 87 Generalized Knuth relations
∗
�g p. 89 Generalized dual Knuth relations

Acknowledgments. We thank Nikolaos Zygouras and Kirone Mallick for comments and suggestions on an early version of this
paper. We are grateful to Shinji Koshida and Ryosuke Sato for discussions and remarks about representation theoretic aspects
of this paper. We also thank Rei Inoue for useful remarks about theory of crystals and integrable systems. MM is grateful to
Takato Yoshimura for showing interest in this work and to Alexander Garbali for discussions about combinatorics of symmetric
polynomials.

Competing interests. The authors have no competing interest to declare.

Funding statement. The work of TS has been supported by JSPS KAKENHI Grants No.JP15K05203, No. JP16H06338, No.
JP18H01141, No. JP18H03672, No. JP19L03665 and No. JP21H04432. The work of TI has been supported by JSPS KAKENHI
Grant Nos. 16K05192, 19H01793 and 20K03626. The work of MM has been partially supported by the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101030938.

References

[1] T. Akasaka and M. Kashiwara, ‘Finite-dimensional representations of quantum affine algebras’, Publ. Res. Inst. Math. Sci.
33(5) (1997), 839–867.

[2] G. Andrews, R. Askey and R. Roy, Special Functions (Cambridge Univ. Press, Cambridge, 2000).
[3] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl. (Cambridge Univ. Press, Cambridge, 1984).
[4] J. Baik, P. Deift and K. Johansson, ‘On the distribution of the length of the longest increasing subsequence of random

permutations’, J. Amer. Math. Soc. 12(4) (1999), 1119–1178.
[5] J. Baik and E. M. Rains, ‘Algebraic aspects of increasing subsequences’, Duke Math. J. 109(1) (2001), 1–66.
[6] J. Baik and E. M. Rains, ‘Symmetrized random permutations’, in Random Matrix Models and Their Applications (Cambridge

Univ. Press, Cambridge, 2001), 1–29.
[7] G. Barraquand, A. Borodin and I. Corwin, ‘Half-space Macdonald processes’, Forum Math. Pi 8 (2020), e11.
[8] G. Barraquand, A. Borodin, I. Corwin and M. Wheeler, ‘Stochastic six-vertex model in a half-quadrant and half-line open

asymmetric simple exclusion process’, Duke Math. J. 167(13) (2018), 2457–2529.
[9] D. Betea and J. Bouttier, ‘The periodic Schur process and free fermions at finite temperature’, Math. Phys. Anal. Geom. 22

(2019), 3.
[10] D. Betea, J. Bouttier, P. Nejjar and M. Vuletić, ‘New edge asymptotics of skew Young diagrams via free boundaries’, in 31st

International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2019), Vol. 82.
[11] A. Borodin, ‘Periodic Schur process and cylindric partitions’, Duke Math. J. 140(3) (2007), 391–468.
[12] A. Borodin, A. Bufetov and I. Corwin, ‘Directed random polymers via nested contour integrals’, Ann. Physics 368 (2016),

191–247.
[13] A. Borodin, A. Bufetov and M. Wheeler, ‘Between the stochastic six vertex model and Hall–Littlewood processes’, Preprint,

2016, arXiv:1611.09486 [math.PR].
[14] A. Borodin and I. Corwin, ‘Macdonald processes’, Probab. Theory Related Fields 158 (2014), 225–400.
[15] A. Borodin and M. Wheeler, ‘Spin 𝑞-Whittaker polynomials’, Adv. Math. 376 (2021), 107449.
[16] D. Bump and A. Schilling, Crystal Bases (World Scientific, Singapore, 2017).
[17] L. Cantini, J. de Gier and M. Wheeler, ‘Matrix product formula for Macdonald polynomials’, J. Phys. A 48(38) (2015),

384001.
[18] I. Cherednik, ‘Double affine Hecke algebras and Macdonald’s conjectures’, Ann. of Math. (2) 141(1) (1995), 191–216.

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

https://arxiv.org/abs/1611.09486
https://doi.org/10.1017/fmp.2023.23


100 T. Imamura, M. Mucciconi and T. Sasamoto

[19] M. Chmutov, G. Frieden, D. Kim, J. B. Lewis and E. Yudovina, ‘An affine generalization of evacuation’, Sel. Math. 28(67)
(2022).

[20] M. Chmutov, J. B. Lewis and P. Pylyavskyy, ‘Monodromy in Kazhdan–Lusztig cells in affine type 𝐴’, Math. Ann. 386(3)
(2023), 1891–1949.

[21] M. Chmutov, P. Pylyavskyy and E. Yudovina, ‘Matrix-Ball construction of affine Robinson–Schensted correspondence’,
Selecta Math. (N.S.) 24 (2018), 667–750.

[22] V. I. Danilov and G. A. Koshevoi, ‘Arrays and the combinatorics of Young tableaux’, Russian Math. Surveys 60(2) (2005),
269–334.

[23] V. I. Danilov and G. A. Koshevoy, ‘Bi-crystals and crystal (GL(𝑉 ) ,GL(𝑊 )) duality’ (2004). URL:
http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1458.eps.

[24] D. Dauvergne, J. Ortmann and B. Virag, ‘The directed landscape’, Acta Math. 229(2) (2022), 201–285.
[25] J. Désarménien, B. Leclerc and J.-Y. Thibon, ‘Hall–Littlewood functions and Kostka–Foulkes polynomials in representation

theory’, Sémin. Lothar. Comb. [electronic only] 32 (1994), 38.
[26] E. Feigin, A. Khoroshkin and I. Makedonskyi, ‘Duality theorems for current groups’, Israel J. Math. 248(1) (2022), 441–479.
[27] S. Fomin, ‘Generalized Robinson–Schensted–Knuth correspondence’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.

Steklov. (LOMI) 155 (1986), 156–175 (in Russian).
[28] S. Fomin and C. Greene, ‘A Littlewood–Richardson miscellany’, European J. Combin. 14(3) (1993), 191–212.
[29] G. Fourier, A. Schilling and M. Shimozono, ‘Demazure structure inside Kirillov–Reshetikhin crystals’, J. Algebra 309(1)

(2007), 386–404.
[30] K. Fukuda, M. Okado and Y. Yamada, ‘Energy functions in box ball systems’, Internat. J. Modern Phys. A 15(9) (2000),

1379–1392.
[31] W. Fulton, Young Tableaux with Applications to Representation Theory and Geometry (Cambridge Univ. Press, Cambridge,

1997).
[32] A. Garbali and M. Wheeler, ‘Modified Macdonald polynomials and integrability’, Comm. Math. Phys. 374 (2020), 1809–

1876.
[33] A. M. Garsia and C. Procesi, ‘On certain graded 𝑆𝑛-modules and the 𝑞-Kostka polynomials’, Adv. Math. 94(1) (1992),

82–138.
[34] A. Gerasimov, D. Lebedev and S. Oblezin, ‘On 𝑞-deformed glℓ+1 Whittaker functions I, II, III’, Comm. Math. Phys. 294

(2010), 97–119, 121–143.
[35] T. Gerber and C. Lecouvey, ‘Duality and bicrystals on infinite binary matrices’, Ann. Inst. Henri Poincaré Comb. Phys.

Interact. (2023).
[36] C. Greene, An extension of Schensted’s theorem, Adv. Math. 14(2) (1974), 254–265.
[37] J. Haglund, M. Haiman and N. Loehr, A combinatorial formula for Macdonald polynomials’, J. Amer. Math. Soc. 4(18)

(2005), 735–761.
[38] M. Haiman, ‘Hilbert schemes, polygraphs and the Macdonald positivity conjecture’, J. Amer. Math. Soc. 14(4) 2001,

941–1006.
[39] M. D. Haiman, ‘Dual equivalence with applications, including a conjecture of Proctor’, Discrete Math. 99(1) (1992), 79–113.
[40] G. Hatayama, K. Hikami, R. Inoue, A. Kuniba, T. Takagi and T. Tokihiro, ‘The 𝐴(1)𝑀 automata related to crystals of symmetric

tensors’, J. Math. Phys. 42(1) (2001), 274–308.
[41] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Z. Tsuboi, ‘Paths, crystals and fermionic formulae’, in MathPhys Odyssey

2001 vol. 23 (Birkhäuser, Boston, MA, 2002), 205–272.
[42] J. Hong and S. J. Kang, Introduction to Quantum Groups and Crystal Bases, Grad. Stud. Math. (Amer. Math. Soc.,

Providence, RI, 2002).
[43] T. Imamura, M. Mucciconi and T. Sasamoto, ‘Stationary stochastic higher spin six vertex model and 𝑞-Whittaker measure’,

Probab. Theory Related Fields 177 (2020), 923–1042.
[44] T. Imamura, M. Mucciconi and T. Sasamoto, ‘Identity between restricted Cauchy sums for the 𝑞-Whittaker and skew Schur

polynomials’, Preprint, 2021, arXiv:2106.11913 [math.CO].
[45] T. Imamura, M. Mucciconi and T. Sasamoto, ‘Solvable models in the KPZ class: approach through periodic and free

boundary Schur measures’, Preprint, 2022, arXiv:2204.08420 [math.PR].
[46] R. Inoue, A. Kuniba and T. Takagi, ‘Integrable structure of box–ball systems: crystal, Bethe ansatz, ultradiscretization and

tropical geometry’, J. Phys. A 45(7) (2012), 073001.
[47] K. Johansson, ‘Shape fluctuations and random matrices’, Comm. Math. Phys. 209(2) (2000), 437–476.
[48] S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima and A. Nakayashiki, ‘Affine crystals and vertex models’,

Internat. J. Modern Phys. A 7(supp01a) (1992), 449–484.
[49] M. Kashiwara, ‘Crystalizing the 𝑞-analogue of universal enveloping algebras’, Comm. Math. Phys. 133(2) (1990), 249–260.
[50] M. Kashiwara, ‘On crystal bases of the𝑄-analogue of universal enveloping algebras’, Duke Math. J. 63(2) (1991), 465–516.
[51] M. Kashiwara, ‘On level-zero representation of quantized affine algebras’, Duke Math. J. 112(1) (2002), 117–175.
[52] N. Kawanaka, ‘On subfield symmetric spaces over a finite field’, Osaka J. Math. 28(4) (1991), 759–791.
[53] N. Kawanaka, ‘A 𝑞-series identity involving Schur functions and related topics’, Osaka J. Math. 36(1) (1999), 157–176.
[54] D. Knuth, ‘Permutations, matrices, and generalized Young tableaux’, Pacific J. Math. 34(3) (1970), 709–727.
[55] A. Krajenbrink and P. Le Doussal, ‘Replica Bethe Ansatz solution to the Kardar–Parisi–Zhang equation on the half-line’,

SciPost Phys. 8 (2020), 35.

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1458.eps
https://arxiv.org/abs/2106.11913
https://arxiv.org/abs/2204.08420
https://doi.org/10.1017/fmp.2023.23


Forum of Mathematics, Pi 101

[56] A. Kuniba, M. Okado, R. Sakamoto, T. Takagi and Y. Yamada, ‘Crystal interpretation of Kerov–Kirillov–Reshetikhin
bijection’, Nuclear Phys. B 740(3) (2006), 299–327.

[57] R. Langer, M. J. Schlosser and S. O. Warnaar, ‘Theta functions, elliptic hypergeometric series, and Kawanaka’s Macdonald
polynomial conjecture’, SIGMA 5 (2009), 055.

[58] C. Lenart and A. Schilling, ‘Crystal energy functions via the charge in types A and C’, Math. Z. 273 (2013), 401–426.
[59] B. F. Logan and L. A. Shepp, ‘A variational problem for random Young tableaux’, Adv. Math. 26(2) (1977), 206–222.
[60] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia Math. Appl. (Cambridge Univ. Press, Cambridge, 2002).
[61] G. Lusztig, ‘Canonical bases arising from quantized enveloping algebras’, J. Amer. Math. Soc. 3(2) (1990), 447–498.
[62] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second edn. (Oxford Univ. Press, Oxford, 1995).
[63] K. Matveev and L. Petrov, ‘𝑞-randomized Robinson–Schensted–Knuth correspondences and random polymers’, Ann. Inst.

Henri Poincaré D 4(1) (2017), 1–123.
[64] S. Naito and D. Sagaki, ‘Demazure submodules of level-zero extremal weight modules and specializations of Macdonald

polynomials’, Math. Z. 238 (2016), 937–978.
[65] A. Nakayashiki and Y. Yamada, ‘Kostka polynomials and energy functions in solvable lattice models’, Selecta Math. (N.S.)

3 (1997), 547–599.
[66] N. O’Connell and Y. Pei, ‘A q-weighted version of the Robinson–Schensted algorithm’, Electron. J. Probab. 18(95) (2013),

1–25.
[67] M. Okado, A. Schilling and M. Shimozono, ‘Virtual crystals and fermionic formulas of type 𝐷 (2)

𝑛+1, 𝐴(2)2𝑛 , and 𝐶 (1)𝑛 ’,
Represent. Theory 7 (2003), 101–163.

[68] D. Orr and L. Petrov, ‘Stochastic higher spin six vertex model and 𝑞-TASEPs’, Adv. Math. 317 (2017), 473–525.
[69] I. Pak, ‘Periodic permutations and the Robinson–Schensted correspondence’, unpublished note (2003). URL:

https://www.math.ucla.edu/pak/papers/inf2.eps.
[70] M. Prähofer and H. Spohn, ‘Scale invariance of the PNG droplet and the Airy process’, J. Stat. Phys. 108 (2002), 1071–1106.
[71] E. M. Rains and S. O. Warnaar, Bounded Littlewood Identities, Mem. Amer. Math. Soc. (Amer. Math. Soc., Providence, RI,

2021).
[72] G. de B. Robinson, ‘On the representations of the symmetric group’, Amer. J. Math. 60(3) (1938), 745–760.
[73] B. Sagan and R. Stanley, ‘Robinson–Schensted algorithms for skew tableaux’, J. Combin. Theory Ser. A 55(2) (1990),

161–193.
[74] B. E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (Springer, New

York, 2001).
[75] Y. B. Sanderson, ‘On the connection between Macdonald polynomials and Demazure characters’, J. Algebraic Combin. 11

(2000), 269–275.
[76] C. Schensted, ‘Longest increasing and decreasing subsequences’, Canad. J. Math. 13 (1961), 179–191.
[77] A. Schilling and P. Tingley, ‘Demazure crystals, Kirillov–Reshetikhin crystals, and the energy function’, Electron. J. Combin.

19(P4) (2012), 42.
[78] M. P. Schützenberger, ‘La correspondance de Robinson’, in Combinatoire et Représentation du Groupe Symétrique, Lecture

Notes in Math., Vol. 59 (Springer, Berlin, Heidelberg, 1977), 59–113.
[79] J.-Y. Shi, ‘The generalized Robinson–Schensted algorithm on the affine Weyl group of type 𝐴𝑛−1’, J. Algebra 139(2) (1991),

364–394.
[80] M. Shimozono, ‘Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent

varieties’, J. Algebraic Combin. 15 (2002), 151–187.
[81] M. Shimozono, ‘Crystals for dummies’, unpublished note (2005). URL: https://www.aimath.org/WWN/kostka/crysdumb.eps.
[82] R. Stanley, Enumerative Combinatorics vol. 2 (Cambridge Univ. Press, Cambridge, 2001). With a foreword by Gian-Carlo

Rota and Appendix 1 by Sergey Fomin.
[83] D. Takahashi, ‘On some soliton systems defined by using boxes and balls’, in Proceedings of the Interna-

tional Symposium on Nonlinear Theory and Its Applications (NOLTA ’93), Hawaii (1993), 555–558. URL:
https://hakotama.jp/laboratory/works/public/93t-nolta.pdf.

[84] D. Takahashi and J. Satsuma, ‘A soliton cellular automaton’, J. Phys. Soc. Japan 59(10) (1990), 3514–3519.
[85] T. Tokihiro, A. Nagai and J. Satsuma, ‘Proof of solitonical nature of box and ball systems by means of inverse ultra-

discretization’, Inverse Problems 15(6) (1999), 1639.
[86] M. van Leeuwen, ‘Double crystals of binary and integral matrices’, Electron. J. Combin. 13 (2006), R86.
[87] A. M. Vershik and S. V. Kerov, ‘Asymptotics of the Plancherel measure of the symmetric group and the limiting form of young

tableaux’, Doklady AN SSSR 233(6) (1977), 1024–1027. English translation: Soviet Math. Doklady 18 (1977), 527–531.
[88] G. Viennot, ‘Une forme geometrique de la correspondance de Robinson–Schensted’, in Combinatoire et Représentation du

Groupe Symétrique (Springer, Berlin–Heidelberg, 1977), 29–58.
[89] G. Viennot, ‘Growth diagrams and edge local rules’, In L. Ferrari and M. Vamvakari (Eds.), Proceedings of the 11th

International Conference on Random and Exhaustive Generation of Combinatorial Structures, GASCom 2018, Athens,
Greece, June 18-20, CEUR Workshop Proceedings, Vol. 2113 (2018), 202–211.

[90] M. Vuletic, ‘A generalization of MacMahon’s formula’, Trans. Amer. Math. Soc. 361(5) (2009), 2789–2804.
[91] S. O. Warnaar, ‘Rogers–Szegö polynomials and Hall–Littlewood symmetric functions’, J. Algebra 303(2) (2006), 810–830.

Computational Algebra.

https://doi.org/10.1017/fmp.2023.23 Published online by Cambridge University Press

https://www.math.ucla.edu/pak/papers/inf2.eps
https://www.aimath.org/WWN/kostka/crysdumb.eps
https://hakotama.jp/laboratory/works/public/93t-nolta.pdf
https://doi.org/10.1017/fmp.2023.23

	1 Introduction
	1.1 The goal of this paper
	1.2 Skew RSK dynamics: examples and emerging questions
	1.3 Results, ideas and tools, and applications
	1.3.1 Generalized Greene invariants
	1.3.2 The bijection Υ: statement of results
	1.3.3 Crystal structure
	1.3.4 The bijection Υ: construction
	1.3.5 Summation identities

	1.4 Outline

	2 Preliminary notions
	2.1 Biwords and matrices of integers
	2.2 Partitions and Young diagrams
	2.3 Young tableaux
	2.4 Kernels of tableaux
	2.5 Row coordinate parameterization
	2.6 Standardization

	3 Skew RSK map and edge local rules
	3.1 Skew RSK map of tableaux
	3.2 Operations ι1,ι2: internal insertion with cycling
	3.3 The skew RS map of arrays
	3.4 The skew RSK map of matrices

	4 Skew RSK and Viennot dynamics
	4.1 The skew RSK dynamics
	4.2 Edge configurations on the twisted cylinder
	4.3 Periodic shadow line construction and Viennot dynamics
	4.4 Relations between skew RSK and Viennot dynamics
	4.5 Asymptotic states of the skew RSK dynamics
	4.6 Asymptotic states of Viennot dynamics

	5 Affine crystal structures
	5.1 Crystals and bicrystals
	5.2 Classical Kashiwara operators
	5.3 Vertically strict tableaux as affine crystals
	5.4 Pairs of tableaux as affine bicrystals
	5.5 Matrices Mnn as affine bicrystals

	6 Generalized Greene invariants
	6.1 Passage times and subsequences
	6.2 Greene invariants and crystal operators
	6.3 Greene invariants, Viennot map and skew RSK dynamics
	6.4 An extension of Schensted's theorem
	6.5 Proofs of Proposition 6.5 and of Proposition 6.6

	7 Energy function, Demazure crystals and linearization of dynamics
	7.1 Combinatorial =142 =168 =194 =195 =512   ==82==82 R    matrix and energy function
	7.2 Demazure subgraph
	7.3 Leading map for pairs of skew tableaux
	7.4 Leading tableaux
	7.5 Linearization

	8 A new bijection
	8.1 The bijection Υ
	8.2 A worked out example
	8.3 Extensions

	9 Scattering rules
	9.1 Setup
	9.2 Scattering in the skew RSK dynamics
	9.3 Phase shift

	10 Summation identities and bijective proofs
	10.1 Summation identities for q-Whittaker polynomials
	10.2 Identities between summations of q-Whittaker and skew Schur functions

	A Knuth relations and generalizations
	A.1 Knuth equivalence and jeu de taquin
	A.2 Dual equivalence
	A.3 Generalized Knuth relations for weighted words

	B Proof of Proposition 6.4

