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SOME STABLE NON-ELEMENTARY CLASSES OF MODULES

MARCOS MAZARI-ARMIDA

Abstract. Fisher [10] and Baur [6] showed independently in the seventies that if T is a complete
first-order theory extending the theory of modules, then the class of models of T with pure embeddings is
stable. In [25, 2.12], it is asked if the same is true for any abstract elementary class (K,≤p) such that K is a
class of modules and ≤p is the pure submodule relation. In this paper we give some instances where this is
true:

Theorem. Assume R is an associative ring with unity. Let (K,≤p) be an AEC such that K ⊆ R-Mod
and K is closed under finite direct sums, then:

• If K is closed under pure-injective envelopes, then K is �-stable for every � ≥ LS(K) such that �|R|+ℵ0 =
�.

• If K is closed under pure submodules and pure epimorphic images, then K is �-stable for every � such that
�|R|+ℵ0 = �.

• Assume R is Von Neumann regular. If K is closed under submodules and has arbitrarily large models,
then K is �-stable for every � such that �|R|+ℵ0 = �.

As an application of these results we give new characterizations of noetherian rings, pure-semisimple
rings, Dedekind domains, and fields via superstability. Moreover, we show how these results can be used to
show a link between being good in the stability hierarchy and being good in the axiomatizability hierarchy.

Another application is the existence of universal models with respect to pure embeddings in several
classes of modules. Among them, the class of flat modules and the class of s-torsion modules.

§1. Introduction. An abstract elementary class K (AEC for short) is a pair
K = (K,≤K) where K is a class of structures and ≤K is a partial order on K
extending the substructure relation such that K is closed under direct limits and
satisfies the coherence property and an instance of the Downward Löwenheim–
Skolem theorem. These were introduced by Shelah in [42]. In this paper, we will
study AECs of modules with respect to pure embeddings, i.e., classes of the form
(K,≤p) where K is a class of R-modules for a fixed ring R and ≤p is the pure
submodule relation.

Fisher [10] and Baur [6, Theorem 1] showed independently in the seventies
that if T is a complete first-order theory extending the theory of modules, then
(Mod(T ),≤p) is �-stable for every � such that �|R|+ℵ0 = �. A modern proof can
be consulted in [29, 3.1]. After realizing that many other classes of modules with
pure embeddings were stable such as: abelian groups [18, 3.16], torsion-free abelian
groups [5, 0.3], torsion abelian groups [25, 4.8], complete elementary classes of
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torsion modules [7, 5.16], reduced torsion-free abelian groups [45, 1.2], definable
subclasses of modules [18, 3.16], and flat R-modules [21, 4.3]; it was asked in [25,
2.12] the following question:

Question 1.1. Let R be an associative ring with unity. If (K,≤p) is an abstract
elementary class such thatK ⊆ R-Mod, is (K,≤p) stable? Is this true ifR = Z? Under
what conditions on R is this true?

In this paper, we show that many classes of modules are stable. The way we
approach the problem is by showing that if the class has some nice algebraic
properties then it has to be stable. This approach is new, covers most of the examples
known to be stable1 and can be used to give many new examples. Prior results focused
on syntactic characterizations of the classes or only obtained stability results for
specific examples.

Firstly, we study classes closed under direct sums and pure-injective envelopes.
These include absolutely pure modules, locally injective modules, locally pure-
injective modules, reduced torsion-free groups, and definable subclasses of modules
(see Example 3.3).

Theorem 3.11. Assume K = (K,≤p) is an AEC with K ⊆ R-Mod for R an
associative ring with unity such that K is closed under direct sums and pure-injective
envelopes. If �|R|+ℵ0 = � and � ≥ LS(K), then K is �-stable.

By characterizing the limit models in these classes (Lemmas 3.13 and 3.14), we
are able to obtain new characterizations of noetherian rings, pure-semisimple rings,
Dedekind domains, and fields via superstability. An example of such a result is the
next assertion which extends [26, 4.30].

Theorem 3.23. Let R be an associative ring with unity. R is left noetherian if and
only if the class of absolutely pure left R-modules with pure embeddings is superstable.

Moreover, the above result can be used to show a link between being good in the
stability hierarchy and being good in the axiomatizability hierarchy. More precisely,
if the class of absolutely pure modules with pure embeddings is superstable, then it
is first-order axiomatizable (see Corollary 3.25).

The results for these classes of modules can also be used to partially solve
Question 1.1 if one substitutes stable for superstable.

Lemma 3.30. Let R be an associative ring with unity. The following are equivalent.
(1) R is left pure-semisimple.
(2) Every AEC K = (K,≤p) with K ⊆ R-Mod, such that K is closed under direct

sums, is superstable.

Secondly, we study classes closed under direct sums, pure submodules, and pure
epimorphic images. These include flat modules, torsion abelian groups, s-torsion
modules, and any class axiomatized by an F-sentence (see Example 4.3).

Theorem 4.17. Assume K = (K,≤p) is an AEC with K ⊆ R-Mod for R an
associative ring with unity such that K is closed under direct sums, pure submodules,
and pure epimorphic images. If �|R|+ℵ0 = �, then K is �-stable.

1The only set of examples that this approach does not cover is that of classes axiomatizable by
complete first-order theories (both classical and their torsion part as in [7, Section 5]).
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This result can be used to construct universal models with respect to pure
embeddings. In particular, we obtain the next result which extends [45, 1.2], [27,
4.6], and [25, 3.7].

Corollary 3.12. Let R be an associative ring with unity. If �|R|+ℵ0 = � or ∀� <
�(�|R|+ℵ0 < �), then there is a universal model in the class of flat R-modules with
pure embeddings and in the class of s-torsion R-modules with pure embeddings of
cardinality �.

Finally, we study classes of modules that are closed under pure submodules and
that are contained in a well-understood class of modules which is closed under
pure submodules and that admits intersections. The main examples for this case
are subclasses of the class of torsion-free groups such as ℵ1-free groups and finitely
Butler groups (see Example 5.2).

We use the results obtained for these classes of modules to provide a partial
solution to Question 1.1.

Lemma 5.10. Assume R is a Von Neumann regular ring. If K is closed under
submodules and has arbitrarily large models, then K = (K,≤p) is �-stable if
�|R|+ℵ0 = �.

The paper is organized as follows. Section 2 presents necessary background.
Section 3 studies classes closed under direct sums and pure-injective envelopes.
Section 4 studies classes closed under direct sums, pure submodules, and pure
epimorphic images. Section 5 studies classes of modules that are closed under pure
submodules and that are contained in a well-understood class of modules which is
closed under pure submodules and that admits intersection.

§2. Preliminaries. In this section, we recall the necessary notions from abstract
elementary classes, independence relations, and module theory that are used in this
paper.

2.1. Abstract elementary classes. We briefly present the notions of abstract
elementary classes that are used in this paper. These are further studied in [3, Sections
4–8] and [12, Sections 2 and 4.4]. An introduction from an algebraic perspective is
given in [25, Section 2].

Abstract elementary classes (AECs for short) were introduced by Shelah in [42]
to study those classes of structures axiomatized in L�1,�(Q). An AEC is a pair
K = (K,≤K) where K is a class of structures and≤K is a partial order on K extending
the substructure relation such that K is closed under direct limits and satisfies the
coherence property and an instance of the Downward Löwenheim–Skolem theorem.
The reader can consult the definition in [3, 4.1].

Given a model M, we will write |M | for its underlying set and ‖M‖ for its
cardinality. Given � a cardinal and K an AEC, we denote by K� the models in
K of cardinality �. Moreover, if we write “f :M → N ,” we assume that f is a
K-embedding, i.e., f :M ∼= f[M ] and f[M ] ≤K N . In particular, K-embeddings
are always monomorphisms.

Shelah introduced a notion of semantic type in [43]. Following [13], we call
these semantic types Galois-types. Given (b, A,N ), where N ∈ K, A ⊆ |N |, and b
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is a sequence in N, the Galois-type of b over A in N, denoted by gtpK(b/A;N ), is
the equivalence class of (b, A,N ) modulo EK; EK is the transitive closure of EK

at
where (b1, A1, N1)EK

at(b2, A2, N2) if A := A1 = A2, and there exist K-embeddings
f� : N� −→

A
N for � ∈ {1, 2} such that f1(b1) = f2(b2) and N ∈ K. Given p =

gtpK(b/A;N ) and C ⊆ A, let p � C = [(b, C,N )]EK .
If M ∈ K and α is an ordinal, let gSαK(M ) = {gtpK(b/M ;N ) :M ≤K N ∈

K and b ∈ Nα}. When α = 1, we write gSK(M ) instead of gS1
K(M ). We let

gS<∞K (M ) =
⋃
α∈OR gSαK(M ).

Since Galois-types are equivalence classes, they might not be determined by their
finite restrictions. We say that K is fully (< ℵ0)-tame if for anyM ∈ K and p �= q ∈
gS<∞(M ), there is A ⊆ |M | such that |A| < ℵ0 and p � A �= q � A. Tameness was
isolated by Grossberg and VanDieren in [14].

We now introduce the main notion of this paper.

Definition 2.1. An AEC K is �-stable if for anyM ∈ K�, |gSK(M )| ≤ �.
Recall that a model M is universal over N if and only if ‖N‖ = ‖M‖ = � and for

every N ∗ ∈ K� such that N ≤K N
∗, there is f : N ∗ −→

N
M . Let us recall the notion

of limit model.

Definition 2.2. Let � be an infinite cardinal and α < �+ be a limit ordinal. M is
a (�, α)-limit model over N if and only if there is {Mi : i < α} ⊆ K� an increasing
continuous chain such that:

(1) M0 = N .
(2) M =

⋃
i<α Mi .

(3) Mi+1 is universal overMi for each i < α.
M is a (�, α)-limit model if there is N ∈ K� such that M is a (�, α)-limit model

over N. M is a �-limit model if there is a limit ordinal α < �+ such that M is a
(�, α)-limit model.

We say that K has uniqueness of limit models of cardinality � if K has �-limit
models and if any two �-limit models are isomorphic. We introduce the notion of
superstability for AECs.

Definition 2.3. K is a superstable AEC if and only if K has uniqueness of limit
models on a tail of cardinals.

Remark 2.4. In [15, 1.3] and [47] was shown that for AECs that have
amalgamation, joint embedding, no maximal models and are tame, the definition
above is equivalent to every other definition of superstability considered in the
context of AECs. Grossberg’s and Vasey’s result builds on significant earlier results
due to Boney, Grossberg, Shelah, VanDieren, Vasey, and Villaveces.2 For a complete
first-order theory T, (Mod (T ),�) is superstable if and only if T is �-stable for every
� ≥ 2|T |.

Finally, recall that a model M ∈ K is a universal model in K� if M ∈ K� and if
given anyN ∈ K�, there is a K-embeddingf : N →M . We say that K has a universal

2A more detailed account on the development of superstability in AECs can be consulted in the
introduction of [15].
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model of cardinality � if there is a universal model in K�. It is well-known that if K
is an AEC with the joint embedding property and M is a �-limit model, then M is
universal in K�.

2.2. Independence relations. We recall the basic properties of independence
relations on arbitrary categories. These were introduced and studied in detail in [20].

Definition 2.5 [20, 3.4]. An independence relation on a category C is a set � of
commutative squares such that for any commutative diagram:

E

B
g1 ��

h1

��

D

t

�������������

A

f1

��

f2

�� C

g2

�� h2

��

we have that (f1, f2, g1, g2) ∈ � if and only if (f1, f2, h1, h2) ∈ �.

We will be particularly interested in weakly stable independence relations. Recall
that an independence relation � is weakly stable if it satisfies: symmetry [20, 3.9],
existence [20, 3.10], uniqueness [20, 3.13], and transitivity [20, 3.15].

They also introduced the notion of a stable independence relation for any category
C in [20, 3.24]. As the definition is long and we will only study independence
relations on AECs, we introduce the definition for AECs instead. For an AEC K,
an indepedence relation � is stable if it is weakly stable and satisfies local character
[20, 8.6] and the witness property [20, 8.7].

2.3. Module theory. We succinctly introduce the notions from module theory that
are used in this paper. These are further studied in [29].

All rings considered in this paper are associative with unity. In the rest of the paper,
if we mention that R is a ring, we are assuming that it is associative with unity. All
the classes studied in this paper have as their language the standard language of
modules, i.e., for a ring R we take LR = {0,+, –} ∪ {r· : r ∈ R}. A formula φ is a
positive primitive formula (pp-formula for short), if φ is an existentially quantified
finite system of linear equations. Given b̄ ∈M<∞ and M ⊆ N , the pp-type of b̄
over M in N, denoted by pp(b̄/M,N ), is the set of pp-formulas with parameters in
M that hold for b̄ in N.

Given M and N R-modules, M is a pure submodule of N, denoted byM ≤p N ,
if and only if M is a submodule of N and for every ā ∈M<� , pp(ā/∅,M ) =
pp(ā/∅, N ). Moreover, f :M → N is a pure epimorphism if f is an epimorphism
and the kernel of f is a pure submodule of M.

Recall that a module M is pure-injective if for every N, if M is a pure submodule
of N, then M is a direct summand of N. Given a module M, the pure-injective envelope
of M, denoted by PE(M ), is a pure-injective module such thatM ≤p PE(M ) and
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it is minimum with respect to this property. Its existence follows from [48, 3.6] and
the fact that every module can be embedded into a pure-injective module.

The following Schröder–Bernstein property of pure-injective modules will be
useful.

Fact 2.6 [16, 2.5]. LetM,N be pure-injective modules. If there are f :M → N a
pure embedding and g : N →M a pure embedding, then M and N are isomorphic.

M is Σ-pure-injective ifM (ℵ0) is pure-injective whereM (ℵ0) denotes the countable
direct sum of M. The next four properties of Σ-pure-injective modules will be useful.
The first three bullet points follow from [29, 2.11].

Fact 2.7.

• If N is Σ-pure-injective, then N is pure-injective.
• If N is Σ-pure-injective andM ≤p N , then M is Σ-pure-injective.
• If N is Σ-pure-injective and M is elementary equivalent to N, then M is Σ-pure-

injective.
• [29, 3.2] If N is Σ-pure-injective, then (Mod(Th(N )),≤p) is �-stable for every
� ≥ |Th(N )|. For the models of the theory of N, being a pure submodule is the
same as being an elementary submodule by pp-quantifier elimination.

§3. Classes closed under pure-injective envelopes. In this section we study classes
closed under direct sums and pure-injective envelopes. We show that they are always
stable and we give an algebraic characterization of when they are superstable.

Hypothesis 3.1. Let K = (K,≤p) be an AEC with K ⊆ R-Mod for a fixed ring
R such that:

(1) K is closed under direct sums.
(2) K is closed under pure-injective envelopes, i.e., ifM ∈ K , then PE(M ) ∈ K .

Remark 3.2. Most of the results in this section assume the above hypothesis, but
not all of them. We will explicitly mention when we assume the hypothesis.

Below we give some examples of classes of modules satisfying Hypothesis 3.1.

Example 3.3.

(1) (R-AbsP,≤p) where R-AbsP is the class of absolutely pure R-modules.
A module M is absolutely pure if it is pure in every module containing it. It is
an AEC because being a pure submodule is tested by finite tuples and because
it is closed under pure submodules [30, 2.3.5]. Closure under direct sums
follows from [30, 2.3.5] and closure under pure-injective envelopes follows
from [30, 4.3.12].

(2) (R-l-inj,≤p) where R-l-inj is the class of locally injective R-modules (also
called finitely injective modules). A module M is locally injective if given
ā ∈M<� there is an injective submodule of M containing ā. It is an AEC
because we only test for finite tuples and because the cardinality of the injective
envelope of a finite tuple is bounded by 2|R|+ℵ0 [9, Theorem 1]. Closure under
direct sums is clear and closure under pure-injective envelopes follows from the
fact that locally injective modules are absolutely pure [32, 3.1] and [30, 4.3.12].
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(3) (R-l-pi,≤p) where R-l-pi is the class of locally pure-injective R-modules.
A module M is locally pure-injective if given ā ∈M<� there is a pure-injective
pure submodule of M containing ā. It is an AEC because we only test for
finite tuples and because the cardinality of the pure-injective envelope of a
finite tuple is bounded by 2|R|+ℵ0 [48, 3.11]. Closure under direct sums and
pure-injective envelopes follow from [50, 2.4].

(4) (RTF,≤p) where RTF is the class of reduced torsion-free abelian groups.
A group G is reduced if it does not have non-trivial divisible subgroups. It
is an AEC because the intersection of a torsion-free divisible subgroup with
a torsion-free pure subgroup is a divisible subgroup and because it is closed
under pure subgroups. Closure under direct sums is easy to check, while
closure under pure-injective envelopes follows from [11, 6.4.3].

(5) (R-Flat,≤p) where R-Flat is the class of flat R-modules under the additional
assumption that the pure-injective envelope of every flat modules is flat.3

It is an AEC because it is closed under direct limits and pure submodules.
Closure under direct sums is easy to check and we are assuming closure under
pure-injective envelopes.

(6) (�,≤p) where � is a definable category of modules in the sense of [30, Section
3.4]. A class of modules is definable if it is closed under direct products, direct
limits and pure submodules. It is an AEC because it is closed under direct
limits and pure submodules. Closure under pure-injective envelopes follows
from [30, 4.3.21].

Remark 3.4. It is worth mentioning that none of the above examples are first-
order axiomatizable with the exception of the last one.

3.1. Stability. We begin by showing some structural properties of the classes
satisfying Hypothesis 3.1. The argument for the amalgamation property is due to T.
G. Kucera.

Lemma 3.5. If K satisfies Hypothesis 3.1, then K has joint embedding, amalgama-
tion, no maximal models and |R| + ℵ0 ≤ LS(K).

Proof. Joint embedding and no maximal models follow directly from closure
under direct sums. So we show the amalgamation property.

Let M ≤p N1, N2 be models of K. By minimality of the pure-injective envelope
we obtain that PE(M ) ≤p PE(N1), PE(N2) and observe that all of these models
are in K by closure under pure-injective envelopes.

Let L := PE(N1) ⊕ PE(N2) which is in K by closure under direct sums. Now,
as PE(M ) is pure-injective, there are N ′

1 and N ′
2 such that PE(Ni) = PE(M ) ⊕

N ′
i for i ∈ {1, 2}. Hence, L = (PE(M ) ⊕N ′

1) ⊕ (PE(M ) ⊕N ′
2). Define f : N1 →

L by f(m + n1) = (m, n1, m, 0) for m ∈ PE(M ) and n1 ∈ N ′
1 and g : N2 → L by

g(m + n2) = (m, 0, m, n2) form ∈ PE(M ) and n2 ∈ N ′
2. One can show that f, g are

pure embeddings such that f�M = g�M . �
The next abstraction is a first step toward a general solution to Question 1.1.

We thank an anonymous referee for suggesting this approach.

3These rings were introduced in [33] and this class was studied in detail in [27, Section 3].
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Definition 3.6. The Galois-types in K are pp-syntactic if for everyM,N1, N2 ∈
K,M ≤K N1, N2, b̄1 ∈ N<∞1 and b̄2 ∈ N<∞2 we have that:

gtpK(b̄1/M ;N1) = gtpK(b̄2/M ;N2) if and only if pp(b̄1/M,N1) = pp(b̄2/M,N2).

Remark 3.7. It is straightforward to show that if Galois-types in K are pp-
syntactic, then K is fully (< ℵ0)-tame.

Our main result regarding classes where Galois-types are pp-syntactic is the
following.

Theorem 3.8. Assume K = (K,≤p) is an AEC with K ⊆ R-Mod for a fixed ring
R. If the Galois-types in K are pp-syntactic, then K is �-stable for every � ≥ LS(K)
such that �|R|+ℵ0 = �.

Proof. Let � ≥ LS(K) such that �|R|+ℵ0 = � andM ∈ K�. Let {pi : i < κ} be an
enumeration without repetitions of gS(M ). For every i < κ fix a pair (ai ,Mi) such
that pi = gtp(ai/M ;Mi). Let Δ ⊆ κ such that |Δ| ≤ 2|R|+ℵ0 and for every i < κ
there is a j ∈ Δ such that Mi is elementarily equivalent to Mj . This is possible
because there are at most 2|R|+ℵ0 complete theories over R. For every j ∈ Δ, let Nj
be such thatMj ≤p Nj and Nj is universal overMj in (R-Mod,≤p).

Let Φ : κ →
⋃
j∈Δ S

Th(Nj )
pp (M ) be such that Φ(i) = pp(ai/M,Mi). By the choice

of Δ and the hypothesis that Galois-types in K are pp-syntactic we have that Φ is a

well-defined injective function, so κ ≤ |
⋃
j∈Δ S

Th(Nj )
pp (M )|. Observe that for

every j ∈ Δ we have that |STh(Nj )
pp (M )| = |STh(Nj )(M )| by pp-quantifier elimi-

nation (see [29, Section 2.4]). Hence |
⋃
j∈Δ S

Th(Nj )
pp (M )| = |

⋃
j∈Δ S

Th(Nj )(M )| ≤∑
j∈Δ |STh(Nj )(M )|. Since every complete first-order theory of modules is �-stable

if �|R|+ℵ0 = � by [29, 3.1] and |Δ| ≤ 2|R|+ℵ0 , we have that
∑
j∈Δ |STh(Nj )(M )| ≤ �.

Hence, κ ≤ �. Therefore, K is �-stable. �
We show that Galois-types are pp-syntactic for classes satisfying Hypothesis 3.1.

The result is similar to [18, 3.14], but the argument given there cannot be applied
in this setting. A similar argument than that of [27, 4.4] works in the more general
setting of classes satisfying Hypothesis 3.1.

Lemma 3.9. Assume K satisfies Hypothesis 3.1. Then Galois-types in K are
pp-syntactic.

Proof. The forward direction is trivial so we show the backward direction. As K
has the amalgamation property we may assume that N1 = N2 and since K is closed
under pure-injective envelopes we may assume that N1 = N2 is pure-injective. Let
N = N1 = N2. Then by [48, 3.6] there is

h : HN (M ∪ {b̄1}) ∼=M HN (M ∪ {b̄2})

with h(b̄1) = b̄2 where HN (M ∪ {b̄i}) denotes the pure-injective envelope of M ∪
{b̄i} inside N for every i ∈ {1, 2}.

As it might be the case thatHN (M ∪ {b̄1}) and HN (M ∪ {b̄2}) are not in K, we
can not simply apply the amalgamation property and instead we have to do a similar
argument to that of Lemma 3.5.
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Given i ∈ {1, 2}, HN (M ∪ {b̄i}) is pure-injective so there is Li such that
N = HN (M ∪ {b̄i}) ⊕ Li . Let L = (HN (M ∪ {b̄2}) ⊕ L1) ⊕ (HN (M ∪ {b̄2}) ⊕
L2). Observe that L ∈ K by closure under direct sums and the fact that
HN (M ∪ {b̄1}) ⊕ L1 is isomorphic to HN (M ∪ {b̄2}) ⊕ L1. Define f : N =
HN (M ∪ {b̄1}) ⊕ L1 → L by f(s + l1) = (h(s), l1, h(s), 0) for s ∈ HN (M ∪ {b̄1})
and l1 ∈ L1. Define g : N = HN (M ∪ {b̄2}) ⊕ L2 → L by g(q + l2) = (q, 0, q, l2)
for q ∈ HN (M ∪ {b̄2}) and l2 ∈ L2. It is easy to check that L,f, g witness that
gtp(b̄1/M ;N1) = gtp(b̄2/M ;N2). �

An immediate corollary is that the classes satisfying Hypothesis 3.1 are tame.

Corollary 3.10. If K satisfies Hypothesis 3.1, then K is fully (< ℵ0)-tame.

The next results follows from Theorem 3.8 and Lemma 3.9.

Theorem 3.11. Assume K satisfies Hypothesis 3.1 and � ≥ LS(K). If �|R|+ℵ0 = �,
then K is �-stable.

Then from [18, 3.20] we can conclude the existence of universal models.

Corollary 3.12. Assume K satisfies Hypothesis 3.1 and � ≥ LS(K). If �|R|+ℵ0 = �
or ∀� < �(�|R|+ℵ0 < �), then K has a universal model of cardinality �.

3.2. Limit models and superstability. Since K has joint embedding, amalgamation
and no maximal models, it follows from [44, section II.1.16] that K has a (�, α)-limit
model if �|R|+ℵ0 = �, � ≥ LS(K) and α < �+ is a limit ordinal. We characterize limit
models with chains of big cofinality. This extends [18, 4.5] and [27, 4.9] to any class
satisfying Hypothesis 3.1.

Lemma 3.13. Assume K satisfies Hypothesis 3.1 and � ≥ LS(K)+. If M is a
(�, α)-limit model and cf(α) ≥ (|R| + ℵ0)+, then M is pure-injective.

Proof. Fix {Mi : i < α} a witness to the fact that M is a (�, α)-limit model.
We show that every p(x)M -consistent pp-type over A ⊆M with |A| ≤ |R| + ℵ0 is
realized in M.4 This enough to show that M is pure-injective by [29, 2.8].

Observe that p is a PE(M )-consistent pp-type asM � PE(M ). Since PE(M ) is
pure-injective, it is saturated for pp-types [29, 2.8], so there is a ∈ PE(M ) realizing
p. As cf(α) ≥ (|R| + ℵ0)+, there is i < α such that A ⊆Mi . Applying downward
Löwenheim–Skolem toMi ∪ {a} in PE(M ) we obtain N ∈ K� withMi ≤p N and
a ∈ N . Then there isf : N −−→

Mi
M becauseMi+1 is universal overMi . Hencef(a) ∈

M realizes p. �
Since K is closed under direct sums, the usual argument [18, 4.9] can be use to

characterize limit models of countable cofinality.

Lemma 3.14. Assume K satisfies Hypothesis 3.1 and � ≥ LS(K)+. If M is a
(�,�)-limit model and N is a (�, (|R| + ℵ0)+)-limit model, then M is isomorphic
to N (ℵ0).

Moreover, any two limit models of K are elementarily equivalent. The proof is
similar to that of [18, 4.3] so we omit it.

4For an incomplete theory T we say that a pp-type p(x) over A ⊆M is M-consistent if it is realized
in an elementary extension of M.
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Lemma 3.15. Assume K satisfies Hypothesis 3.1. If M,N are limit models of K,
then M and N are elementary equivalent.

Remark 3.16. Lemmas 3.13 and 3.14 describe limit models with long chains
and the limit model with the shortest chain under Hypothesis 3.1. We do not know
how the other limit models look like except from the fact that they are elementarily
equivalent to the ones we understand by Lemma 3.15. Since this is all we need
to characterize superstability, we do not explore this any further in this paper.
Nevertheless, we think that understanding the other limit models could help better
understand the classes satisfying Hypothesis 3.1.

Due to Lemma 3.15, it makes sense to introduce the following first-order theory:

Notation 3.17. For K satisfying Hypothesis 3.1, let M̃K be the (2LS(K), �)-limit
model of K and T̃K = Th(M̃K).

In [26, Section 4.1] a similar theory, called T̃ there, was introduced. There it was
shown that there was a very close relation between the AEC K and T̃K. We do not
think that this is the case when K satisfies Hypothesis 3.1 and is not first-order
axiomatizable. We think that this is the case because there can be models of T̃K that
are not in K. Nevertheless, stability transfers from T̃K to K. As the proof is similar
to that of [26, 4.9] we omit it.

Lemma 3.18. Assume K satisfies Hypothesis 3.1 and let � ≥ LS(K). If T̃K is �-
stable, then K is �-stable.

Remark 3.19. In [26, 4.9], it is shown that the converse is true if K is first-order
axiomatizable. We do not think that the converse is true in this more general setting,
but we do not have a counterexample.

We characterize superstability for classes satisfying Hypothesis 3.1. The next result
extends [26, 4.26] to classes not necessarily axiomatizable by a first-order theory and
[27, 4.12] to a different class than that of Example 3.2.(5).s

Theorem 3.20. Assume K satisfies Hypothesis 3.1. The following are equivalent.
(1) K is superstable.
(2) There is a � ≥ LS(K)+ such that K has uniqueness of limit models of

cardinality �.
(3) Every limit model in K is Σ-pure-injective.
(4) Every model in K is pure-injective.
(5) For every � ≥ LS(K), K has uniqueness of limit models of cardinality �.s

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) Let � ≥ LS(K)+ such that K has uniqueness of limit models of size �.

Let M be a (�, (|R| + ℵ0)+)-limit model in K. It follows from Lemma 3.14 thatM (ℵ0)

is the (�,�)-limit model. As K has uniqueness of limit models of size �, we have
that M is isomorphic toM (ℵ0). Since M is pure-injective by Lemma 3.13, it follows
that M (ℵ0) is pure-injective. Hence M is Σ-pure-injective. Since limit models are
elementarily equivalent by Lemma 3.15 and Σ-pure-injectivity is preserved under
elementarily equivalence by Fact 2.7, it follows that every limit model is Σ-pure-
injective.

(3) ⇒ (4) Let N ∈ K and N ′ be a (‖N‖|R|+ℵ0 , �)-limit model, this exists by
Theorem 3.11. Then there is f : N → N ′ a pure embedding by [24, 2.10]. Since N ′
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is Σ-pure-injective and f is a pure embedding, it follows from Fact 2.7 that N is
Σ-pure-injective. Hence every model in K is pure-injective.

(4) ⇒ (5) Let M be a (2LS(K), �)-limit model. By (4) and closure under direct
sums we have that M is Σ-pure-injective, soTh(M ) is �-stable for every � ≥ |R| + ℵ0

by Fact 2.7. As Th(M ) = T̃K by definition, it follows from Lemma 3.18 that K is
�-stable for every � ≥ LS(K). Therefore, by [44, Section II.1.16] there exist a �-limit
model for every � ≥ LS(K).

Regarding uniqueness, observe that given M and N �-limit models, there are
f :M → N and g : N →M pure embeddings by [24, 2.10]. Since we have that M
and N are pure-injective, it follows from Fact 2.6 that M and N are isomorphic.

(5) ⇒ (1) Clear. �
Remark 3.21. It can also be shown as in [26, 4.26] that K is superstable if and

only if there exists � ≥ LS(K)+ such that K has a Σ-pure-injective universal model
of cardinality �.

3.3. Characterizing several classes of rings. We will use the results of the preceding
subsection to characterize noetherian rings, pure-semimple rings, Dedekind
domains, and fields via superstability.

Recall that a module M is injective if it is a direct summand of every module
containing it. The next result will be useful.

Fact 3.22 [30, 4.4.17]. Let R be a ring. The following are equivalent.

(1) R is left noetherian.
(2) The class of absolutely pure left R-modules is the same as the class of injective

left R-modules.
(3) Every direct sum of injective left R-modules is injective.

We begin by giving two new characterizations of noetherian rings. The equivalence
between (1) and (2) extends [26, 4.30]. Recall that R-AbsP is the class of absolutely
pure R-modules and that R-l-inj is the class of locally injective R-modules, these
were introduced in Example 3.3.

Theorem 3.23. Let R be a ring. The following are equivalent.

(1) R is left noetherian.
(2) (R-AbsP,≤p) is superstable.
(3) (R-l-inj,≤p) is superstable.

Proof. Recall that absolutely pure modules and locally injective modules satisfy
Hypothesis 3.1, so we can use the results from the previous subsection. More
precisely, we use Theorem 3.20.(4) to show the equivalences.

(1) ⇒ (2) If R is noetherian, then every absolutely pure module is injective by
Fact 3.22. Hence, every absolutely pure module is pure-injective. So the result follows
from Theorem 3.20.

(2) ⇒ (3) Every locally injective module is absolutely pure by [32, 3.1]. Then it
follows that every locally injective module is pure-injective by (2). Hence, the class
of locally injective R-modules is superstable.

(3) ⇒ (1) We show that the direct sum of injective modules is injective, this is
enough by Fact 3.22. Let {Mi : i ∈ I }be a family of injective modules. As they are all
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locally injective, we have that
⊕
i∈I Mi is locally injective. Moreover, as (R-l-inj,≤p)

is superstable, we have that
⊕
i∈I Mi is also pure-injective by Theorem 3.20. Recall

that locally injective modules are absolutely pure, so
⊕
i∈I Mi is absolutely pure and

pure-injective. Therefore,
⊕
i∈I Mi is injective. Hence R is noetherian. �

We use the above result to study the class of injective R-modules with pure
embeddings, we will denote it by (R-Inj,≤p).

Corollary 3.24. Let R be a ring. (R-Inj,≤p) is an AEC if and only if R is left
noetherian. Moreover, if R is left noetherian, then (R-Inj,≤p) is a superstable AEC.

Proof. If (R-Inj,≤p) is an AEC then the direct sum of injective modules is
an injective module because injective modules are closed under finite direct sums.
Hence R is left noetherian. On the other hand, if R is left noetherian, then injective
modules are the same as absolutely pure modules by Fact 3.22. Hence (R-Inj,≤p)
is an AEC.

The moreover part follows directly from Theorem 3.23. �
The next corollary shows a connection between being good in the stability

hierarchy and being good in the axiomatizability hierarchy.

Corollary 3.25. Let R be a ring.
(1) If (R-AbsP,≤p) is superstable, then the class of absolutely pure left R-modules

is first-order axiomatizable.
(2) If (R-l-inj,≤p) is superstable, then the class of locally injective left R-modules

is first-order axiomatizable.

Proof.

(1) Since (R-AbsP,≤p) is superstable, then by Theorem 3.23 R is left noetherian.
Then R is left coherent, so it follows from [30, 3.4.24] that absolutely pure
modules are first-order axiomatizable

(2) The proof is similar to that of (1), using that if R is noetherian then the
class of absolutely pure modules is the same as the class of locally injective
modules. �

We turn our attention to pure-semisimple rings. A ring is pure-semisimple if
and only if every R-module is pure-injective. These have been thoroughly studied
[1, 2, 8, 26, 28, 30, 39–41, 49]. Recall that R-l-pi is the class of locally pure-injective
R-modules, these were introduced in Example 3.3. The equivalence between (1) and
(2) of the next assertion was obtained in [26, 4.28].

Theorem 3.26. Let R be a ring. The following are equivalent.
(1) R is left pure-semisimple.
(2) (R-Mod,≤p) is superstable.
(3) (R-l-pi,≤p) is superstable.

Proof. Recall that R-modules and locally pure-injective R-modules satisfy
Hypothesis 3.1. We use Theorem 3.20.(4) to show the equivalences. The equivalence
between (1) and (2) and the direction (2) to (3) are straightforward. We show
(3) to (1).

Let M be an R-module, then PE(M ) is locally pure-injective andM ≤p PE(M ).
Observe that PE(M )(ℵ0) is locally pure-injective. Then PE(M )(ℵ0) is pure-injective
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by hypothesis (3), so PE(M ) is Σ-pure-injective. Hence, M is pure-injective by
Fact 2.7. Therefore, R is left pure-semisimple. �

We can obtain an analogous result to Corollary 3.24 by substituting the class of
injective modules by that of pure-injective modules. We denote by R-pi the class of
pure-injective R-modules.

Corollary 3.27. Let R be a ring. (R-pi,≤p) is an AEC if and only if R is left pure-
semisimple. Moreover, if R is left pure-semisimple, then (R-pi,≤p) is a superstable
AEC.

Proof. If (R-pi,≤p) is an AEC, then M (ℵ0) =
⋃
n<� M

n is pure-injective for
every pure-injective module M as pure-injective modules are closed under finite
direct sums. So every pure-injective module is Σ-pure-injective. Then doing an
argument similar to that of the previous result, one can show that R is left pure-
semisimple. On the other hand, if R is left pure-semisimple, then all modules are
pure-injective. Hence (R-pi,≤p) is an AEC.

The moreover part follows directly from Theorem 3.26. �
We also get a relation between being good in the stability hierarchy and being good

in the axiomatizability hierarchy for locally pure-injective modules.

Corollary 3.28. Let R be ring. If (R-l-pi,≤p) is superstable, then the class of
locally pure-injective left R-modules is the same as the class of left R-modules. So
clearly, first-order axiomatizable.

Proof. Since (R-l-pi,≤p) is superstable, then by Theorem 3.26 R is left
pure-semisimple. Hence, every R-module is pure-injective, so in particular locally
pure-injective. �

Corollaries 3.25 and 3.28 may suggest that given an AEC of modules satisfying
Hypothesis 3.1, it follows that if the class is superstable, then the class is first-order
axiomatizable. This is not the case as witnessed by the next example.

Example 3.29. It was shown in [27, 3.15] that (R-Flat,≤p) is superstable if and
only if R is left perfect. It is known [36, Theorem 4] that the class of flat left
R-modules is first-order axiomatizable if and only if R is right coherent. Therefore,
the ring R described in [33, 3.3] is such that (R-Flat,≤p) satisfies Hypothesis 3.1,
(R-Flat,≤p) is superstable and R-Flat is not first-order axiomatizable.

As mentioned in the introduction, the main focus of the paper is Question 1.1.
The results of this section can be used to characterized those rings for which all
AECs closed under direct sums are superstable.

Lemma 3.30. Let R be a ring. The following are equivalent.
(1) R is left pure-semisimple.
(2) Every AEC K = (K,≤p) with K ⊆ R-Mod, such that K is closed under direct

sums, is superstable.

Proof. The backward direction follows from Theorem 3.26 as (R-Mod,≤p)
satisfies the hypothesis of (2). We show the forward direction.

Let K be a class satisfying the hypothesis of (2). Then K is closed under pure-
injective envelopes as every module is pure-injective since we are assuming that
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the ring is left pure-semisimple. Hence, K satisfies Hypothesis 3.1. Therefore, K is
superstable by Theorem 3.20.(4) and the hypothesis on the ring. �

The next well-known ring theoretic result follows from the above lemma, Theorem
3.23 and [27, 3.15].

Corollary 3.31. Assume R is an associative ring with unity. If R is left pure-
semisimple, then R is left noetherian and left perfect.

We finish this subsection by applying the technology developed in this section
to integral domains. Given an integral domain R, we study the class of divisible
R-modules, denoted by R-Div, and the class torsion-free R-modules, denoted by
R-TF. A module M is a divisible R-module if for every m ∈M and r �= 0 ∈ R,
there is n ∈M such that rn = m. A module M is a torsion-free R-module if for
everym �= 0 ∈M and every r �= 0 ∈ R, rm �= 0. It is easy to show that (R-Div,≤p)
and (R-TF,≤p) both satisfy Hypothesis 3.1, this is the case as they are both definable
classes in the sense of Example 3.3.(6).

Lemma 3.32. Let R be an integral domain.
(1) R is a Dedekind domain if and only if (R-Div,≤p) is superstable.
(2) R is a field if and only if (R-TF,≤p) is superstable.

Proof.

(1) ⇒: Since R is a Dedekind domain, every divisible R-module is injective by
[35, 4.24]. As injective modules are pure-injective, (R-Div,≤p) is superstable
by Theorem 3.20.
⇐: Recall that a module is h-divisible if it is the epimorphic image of an
injective module. Therefore, the class of h-divisible R-modules is contained
in the class of divisible R-modules. Then every h-divisible R-module is pure-
injective by Theorem 3.20. Therefore, R is a Dedekind domain by [37, 2.5].

(2) ⇒: If R is a field, clearly R is a Prüfer domain. So the class of flat modules is
the same as the class of torsion-free modules by [35, 4.35]. Then (R-TF,≤p)
is superstable since R is perfect and by [27, 3.15].
⇐: It follows from Theorem 3.20 and [37, 2.3] that R is a Prüfer domain.
So, as before, the class of flat modules is the same as the class of torsion-free
modules. Then R is left perfect by [27, 3.15]. Therefore, R is a field by [38,
2.3]. �

The next result follows directly from the above lemma.

Corollary 3.33. Let R be an integral domain. (R-TF,≤p) is superstable if and
only if (R-TF,≤p) is �-categorical for every � ≥ (|R| + ℵ0)+.

Finally, we record a couple of results on AECs of abelian groups. The result for
torsion-free abelian groups was first obtained in [5, 0.3].

Corollary 3.34.

(1) The AEC of divisible abelian groups with pure embeddings is superstable.
(2) The AECs of torsion-free abelian groups with pure embeddings and reduced

torsion-free abelian groups with pure embeddings are strictly stable, i.e., stable
not superstable.
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§4. Classes closed under pure epimorphic images. In this section we study classes
closed under direct sums, pure submodules, and pure epimorphic images. We show
that they are always stable. The proof is different to that of the previous section
as we first show the existence of a weakly stable independence relation with local
character and from it we obtain the stability cardinals.

Hypothesis 4.1. Let K = (K,≤p) be an AEC with K ⊆ R-Mod for a fixed ring
R such that:

(1) K is closed under direct sums.
(2) K is closed under pure submodules.
(3) K is closed under pure epimorphic images.

Remark 4.2. Most of the results in this section assume the above hypothesis, but
not all of them. We will explicitly mention when we assume the hypothesis.

Below we give some examples of classes of modules satisfying Hypothesis 4.1.

Example 4.3. Our main source of examples are F-classes. These were introduced
in [31] and studied in detail in [17]. Let us recall that an F-class is a class of modules
axiomatizable by formulas of the form:

∀x(φ (x) →
∨


(x)∈Ψ


 (x)),

where φ is a pp-formula with one free variable and Ψ is a collection of
pp-formulas (possibly infinite) with one free variable such that 
[M ] ⊆ φ[M ] for
every 
 ∈ Ψ and M an R-module and Ψ is closed under finite sums. Recall that Ψ
is closed under finite sums if for every 
0, ... , 
n–1 ∈ Ψ, 
0 + ··· + 
n–1 ∈ Ψ where

1 + ··· + 
n–1(x) = ∃y1 ··· ∃yn(x = y1 + ··· + yn ∧ (

∧
k<n 
k(yk)))

It follows from [17, 2.3] that every F-class is closed under direct sums, pure
submodules and pure epimorphic images. Moreover, it is clear that F-classes with
pure embeddings are AECs. Therefore, every F-class satisfies Hypothesis 4.1.

Some interesting examples of F-classes are5:
(1) (R-Flat,≤p) where R-Flat is the class of flat left R-modules. A module M is

flat if (–) ⊗M is an exact functor.
(2) (p-grp,≤p) where p-grp is the class of abelian p-groups for p a prime number.

A group G is a p-group if every element g �= 0 has order pn for some n ∈ N.
(3) (Tor,≤p) where Tor is the class of torsion abelian groups. A group G is a

torsion group if every element g �= 0 has finite order.
(4) (s-Tor,≤p) where s-Tor is the class of s-torsion R-modules in the sense of

[23]. A module M is an s-torsion module if it satisfies:

∀x

⎛
⎝x = x →

∨

(R)=0, 
∈pp-formula


 (x)

⎞
⎠

This model-theoretic description is obtained in [34, 3.6].
(5) (�,≤p) where � is a definable category of modules in the sense of [30, Section

3.4].

5All of these examples are presented in [34] and there it is explained why they are F-classes.
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Remark 4.4. It is worth mentioning that none of the above examples are
first-order axiomatizable with the exception of the last one.

Remark 4.5. (R-AbsP,≤p) and (RTF,≤p) both satisfy Hypothesis 3.1, but do
not satisfy Hypothesis 4.1. If either class satisfied Hypothesis 4.1, then they would
be first-order axiomatizable by [30, 3.4.7], which we know is not the case.

On the other hand, (R-Flat,≤p), (p-grp,≤p) and (Tor,≤p) satisfy Hypothesis
4.1, but do not satisfy Hypothesis 3.1. The case of flat modules is well-known and
for torsion groups see [25, 3.1].

Therefore, the classes of modules satisfying Hypothesis 3.1 are not contained in
those satisfying Hypothesis 4.1 and vice versa. Definable classes satisfy both of the
hypothesis, but there are non-definable classes as well (see Example 3.3.(5)).

4.1. Stability. We begin by recalling some important properties of pushouts in
the category of R-modules with morphisms, we denote this category by R-Mod.

Remark 4.6.

• Given a span (f1 :M → N1, f2 :M → N2) in R-Mod, a pushout is a triple
(P, g1, g2) with g1 ◦ f1 = g2 ◦ f2 that is a solution to the universal property that
for every (Q, h1, h2) such that h1 ◦ f1 = h2 ◦ f2, there is a unique t : P → Q
making the following diagram commute:

Q

N1
g1 ��

h1

��

P

t

�������������

��

M

f1

��

f2

�� N2

g2

�� h2

��

• The pushout of a pair of morphisms (f1 :M → N1, f2 :M → N2) in R-Mod
is given by:

(P = (N1 ⊕N2)/{(f1(m), – f2(m)) : m ∈M}, g1 : n1

�→ [(n1, 0)], g2 : n2 �→ [(0, n2)]).

Moreover, for every (Q, h1, h2) such that h1 ◦ f1 = h2 ◦ f2, we have that
t : P → Q is given by t([(n1, n2)]) = h1(n1) + h2(n2).

• [30, 2.1.13] If (f1 :M → N1, f2 :M → N2) is a span of pure embeddings in
R-Mod and (P, g1, g2) is the pushout, then g1 and g2 are pure embeddings.

The next result will be useful to study classes under Hypothesis 4.1.

Lemma 4.7. Let K ⊆ R-Mod be closed under finite direct sums, pure submodules
and isomorphisms, then the following are equivalent:

(1) K is closed under pushouts of pure embeddings in R-Mod, i.e., ifM,N1, N2 ∈ K ,
f1 :M → N1 is a pure embedding, f2 :M → N2 is a pure embeddings and P
is the pushout of (f1, f2) in R-Mod , then P ∈ K .
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(2) K is closed under pure epimorphic images.

Proof. ⇒: Assume that the following is a pure-exact sequence:

0 �� A
i �� B

g �� C �� 0

with B ∈ K . As A ≤p B and K is closed under pure submodules, it follows that
A ∈ K . Then by hypothesis we have (B ⊕ B)/{(a, – a) : a ∈ A} ∈ K because this
is the pushout of (A ↪→ B,A ↪→ B).

Define f : B/A→ (B ⊕ B)/{(a, – a) : a ∈ A} by f(b +A) = (b, – b) + {(a, –
a) : a ∈ A}. It is easy to check that f is a pure embeddings. As K is closed under
pure submodules, this implies that B/A ∈ K . Hence C ∈ K .

⇐: Let A ≤p B,C be a span with A,B,C ∈ K . Observe that (B ⊕ C )/{(a, – a) :
a ∈ A} is the pushout of (A ↪→ B,A ↪→ C ). Since K is closed under direct sums
B ⊕ C ∈ K and it is straightforward to show that � : B ⊕ C → (B ⊕ C )/{(a, –
a) : a ∈ A} is a pure epimorphism. Therefore, (B ⊕ C )/{(a, – a) : a ∈ A} ∈ K . �

Corollary 4.8. If K satisfies Hypothesis 4.1, then K is closed under pushouts of
pure embeddings in R-Mod, i.e., ifM,N1, N2 ∈ K ,f1 :M → N1 is a pure embedding,
f2 :M → N2 is a pure embeddings and P is the pushout of (f1, f2) in R-Mod , then
P ∈ K .

From the corollary above and closure under direct sums it is clear that if a class
satisfies Hypothesis 4.1, then it has joint embedding, amalgamation and no maximal
models. We record this result for future reference.

Lemma 4.9. If K satisfies Hypothesis 4.1, then K has joint embedding, amalgama-
tion, no maximal models and LS(K) = |R| + ℵ0.

Our proof that K is stable under Hypothesis 4.1 is longer than that under
Hypothesis 3.1. This is the case as we do not know if Galois-types are pp-syntactic
under Hypothesis 4.1.6 The way we proceed is by defining an independence relation
in the sense of Section 2.2 and showing that it is a weakly stable independence
relation with local character.

Definition 4.10. Assume K is an AEC satisfying Hypothesis 4.1. (f1, f2, h1, h2) ∈
� if and only if all the arrows of the outer square are pure embeddings and the
unique map t : P → Q is a pure embedding:

Q

N1
g1 ��

h1

��

P

t

�������������

��

M

f1

��

f2

�� N2

g2

�� h2

��

6For torsion groups and p-groups this can be done, see [25, 3.4, 4.5].
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Remark 4.11. The definition given above is an instance of [21, 2.2] where their K
is the category K with morphisms and M is the class of pure embeddings. Observe
that (K,M) might not be cellular in the sense of [21] as K might not be cocomplete.

Even without the hypothesis that (K,M) is cellular, one can show as in [21] that
� is a weakly stable independence relation in K under Hypothesis 4.1. The key
result is Corollary 4.8.

Fact 4.12 [21, 2.7]. If K satisfies Hypothesis 4.1, then � is a weakly stable
independence relation.

Notation 4.13. Given� an independence relation on an AEC, recall that one writes

M1

N

�
M
M2 if M ≤K M1,M2 ≤K N and (i1, i2, j1, j2) ∈ � where i1 :M →M1, i2 :

M →M2, j1 :M1 → N, j2 :M2 → N are the inclusion maps.

The next result will be essential to describe the stability cardinals.

Theorem 4.14. If K satisfies Hypothesis 4.1, then � has local character. More
precisely, ifM1,M2 ≤p N , then there areM ′

1,M0 ∈ K such thatM0 ≤p M ′
1,M2 ≤p

N ,M1 ≤p M ′
1, ‖M0‖ ≤ ‖M1‖ + |R| + ℵ0 andM ′

1

N

�
M0

M2.

Proof. Let M1,M2 ≤p N . We build two increasing continuous chains
{M0,i : i < �} and {M ′

1,i : i < �} such that:

(1) M ′
1,0 =M1.

(2) M0,i ≤p M ′
1,i+1,M2 ≤p N .

(3) ‖M0,i‖, ‖M ′
1,i‖ ≤ ‖M1‖ + |R| + ℵ0.

(4) If ā ∈M ′
1,i , φ(x̄, ȳ) is a pp-formula and there is m̄ ∈M2 such that N �

φ(ā, m̄), then there is l̄ ∈M0,i such that N � φ(ā, l̄).

Construction. Base: Let M ′
1,0 =M1. For each ā ∈M1 and φ(x̄, ȳ) a

pp-formula, if there is m̄ ∈M2 such that N � φ(ā, m̄) let m̄āφ be a witness in

M2 and 0̄ otherwise. Let M0,0 be the structure obtained by applying Downward
Löwenheim–Skolem to

⋃
{m̄āφ : ā ∈M1 and φ is a pp-formula} inM2. It is easy to

see thatM0,0 satisfies what is needed.
Induction step: Let M ′

1,i+1 be the structured obtained by applying Downward
Löwenheim–Skolem toM0,i ∪M ′

1,i in N. ConstructM0,i+1 as we constructedM0,0,
but replacingM ′

1,0 byM ′
1,i+1 and making sure thatM0,i ≤p M0,i+1.

Enough. Let M0 =
⋃
i<� M0,i and M ′

1 =
⋃
i<� M

′
1,i . Observe that ‖M0‖ ≤

‖M1‖ + |R| + ℵ0 and we show thatM ′
1

N

�
M0

M2.

Recall that the pushout in R-Mod is given by:

M ′
1

�� (M ′
1 ⊕M2)/{(m, – m) : m ∈M0}

��

M0

��

�� M2

��
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Moreover, t : (M ′
1 ⊕M2)/{(m, – m) : m ∈M0} → N is given by t([(m, n)]) =

m + n. So we are left to show that t is a pure embedding.
We begin by proving that t is injective, so assume that m1 + n1 = m2 + n2

with mi ∈M ′
1 and ni ∈M2 for i ∈ {1, 2}. Then N � m1 – m2 = (n2 – n1), so by

condition (4) of the construction there is m ∈M0 such that N � m1 – m2 = m.
Hence [(m1, n1)] = [(m2, n2)] in the pushout.

We show that t is pure. Let φ(y) be a pp-formula such that N � φ(m + n) with
m ∈M ′

1 and n ∈M2. So N � ∃w(φ(w) ∧ w = z + z ′)(m, n). Observe that this is a
pp-formula,m ∈M ′

1 and n ∈M2, then by condition (4) of the construction there is
p ∈M0 such that N � ∃w(φ(w) ∧ w = z + z ′)(m,p). So N � φ(m + p). Assume
φ(y) is equal to ∃x̄
(x̄, y) for 
(x̄, y) quantifier-free formula. Then as M ′

1 ≤p N
there is m̄� ∈M ′

1 such that

N � 
(m̄�,m + p). (1)

As solutions to pp-formulas form a subgroup, it is easy to get thatN � φ(n – p).
Then asM2 ≤p N there is n̄� ∈M2 such that

N � 
(n̄�, n – p). (2)

So by adding equation (1) and (2) we obtain that:

N � 
(m̄� + n̄�, m + n). (3)

Therefore, t : (M ′
1 ⊕M2)/{(m, – m) : m ∈M0} → N is a pure embedding. �

As presented in [20, 8.2], it is possible to interpret an independence relation � as
a relation on Galois-types.

Definition 4.15. Given M ≤p N ∈ K , ā ∈ N and B ⊆ N , we say that
gtp(ā/B ;N ) does not fork over M if and only if there are M1,M2, N

′ ∈ K such

that ā ∈M1, B ⊆M2, N ≤p N ′,M ≤p M1,M2 ≤p N ′ andM1

N ′

�
M
M2.

The next result has some of the properties that the independence relation defined
in Definition 4.10 has when seen as a relation on Galois-types.

Lemma 4.16. Assume K satisfies Hypothesis 4.1. Then:

(1) (Uniqueness) IfM ≤p N , p, q ∈ gS(N ), p, q do not fork over M and p�M =
q�M , then p = q.

(2) (Local character) If p ∈ gS(M ), then there is N ≤p M such that p does not
fork over N and ‖N‖ ≤ |R| + ℵ0.

Proof. (1) follows from Fact 4.12 and [20, 8.5]. As for (2), this follows from
Theorem 4.14. �

With this we obtain the main result of this section. The proof given is the standard
proof, but we present the argument for the convenience of the reader.

Theorem 4.17. Assume K satisfies Hypothesis 4.1. If �|R|+ℵ0 = �, then K is
�-stable.

https://doi.org/10.1017/jsl.2021.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.68


112 MARCOS MAZARI-ARMIDA

Proof. LetM ∈ K� with �|R|+ℵ0 = �. Assume for the sake of contradiction that
|gS(M )| > � and let {pi : i < �+} be an enumerations without repetitions of types
in gS(M ).

By Lemma 4.16, for every i < �+, there is Ni ≤p M such that pi does not fork
over Ni and ‖Ni‖ = |R| + ℵ0. Then by the pigeon hole principle and using that
�|R|+ℵ0 = �, we may assume that there is an N ∈ K such that Ni = N for every
i < �+. Therefore, by uniqueness, there are i �= j < �+ such that pi = pj . This is
clearly a contradiction. �

The following improves the results of [21] where it is shown that the class of flat
modules with pure embeddings is stable by giving a cardinal arithmetic hypothesis
which implies stability. It also extends [27, 4.6] where the same result is obtained for
those rings such that the pure-injective envelope of every flat module is flat.

Corollary 4.18. If �|R|+ℵ0 = �, then (R-Flat,≤p) is �-stable.

Moreover, by Theorem 4.17 and [18, 3.20] we can conclude the existence of
universal models.

Corollary 4.19. Assume K satisfies Hypothesis 4.1. If �|R|+ℵ0 = � or ∀� <
�(�|R|+ℵ0 < �), then K has a universal model of cardinality �.

Remark 4.20. The above result applied to the class of flat modules extends
[27, 4.6] which in turn extended [45, 1.2]. On the other hand, the above result
applied to the class of s-torsion modules extends [25, 4.6].

Another result that follows from having an independence relation is that classes
satisfying Hypothesis 4.1 are tame.

Lemma 4.21. If K satisfies Hypothesis 4.1, then K is (|R| + ℵ0)-tame.

Proof. Follows from Lemma 4.16 and [20, 8.16]. �
Since K has joint embedding, amalgamation and no maximal models, it follows

from [44, Section II.1.16] that K has a (�, α)-limit model if �|R|+ℵ0 = � and α < �+

is a limit ordinal. For classes satisfying Hypothesis 4.1, we do not know how limit
models look like in general or if there is even a general theory as the one under
Hypothesis 3.1. For the specific class of flat modules, it was shown that long limit
models are cotorsion modules in [27, 3.5].

Since we were not able to characterize limit models, we are not able to characterize
superstability for classes satisfying Hypothesis 4.1. Again, for the class of flat
modules this was done in [27]. There it was shown that the class of flat left
R-modules is superstable if and only if R is left perfect.

We are not sure if it is possible to obtain a result as Theorem 3.20 for classes
satisfying Hypothesis 4.1, but we think that characterizing superstability in the class
of s-torsion R-modules will have interesting algebraic consequences.

4.2. Classes satisfying Hypotheses 3.1 and 4.1. We briefly study those classes that
satisfy Hypotheses 3.1 and 4.1. Recall that definable classes and Example 3.3.(5) are
examples of classes satisfying both hypotheses.

Lemma 4.22. If K satisfies Hypotheses 3.1 and 4.1, then � has the (< ℵ0)-witness
property. Moreover, � is a stable independence relation.
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Proof. By Corollary 3.10 we have K is fully (< ℵ0)-tame. Then it follows from
[20, 8.8, 8.9] that � has the (< ℵ0)-witness property. The moreover part follows
from Fact 4.12 and Theorem 4.14. �

A natural question to ask is if the above results follows from Hypothesis 4.1.

Question 4.23. If K satisfy Hypothesis 4.1, is � a stable independence relation?

Remark 4.24. In the case of p-groups and torsion groups this is the case by
[25, 3.4, 4.5], Lemma 3.9 and doing a similar argument as that of Lemma 4.22.7

The next assertion follows from the previous lemma and [21, 3.1]. For the notions
not defined in this paper, the reader can consult [21].

Corollary 4.25. Pure embeddings are cofibrantly generated in the class of
R-modules, i.e., they are generated from a set of morphisms by pushouts, transfinite
composition and retracts.

Proof. Observe that the class of left R-modules with pure embeddings satisfies
Hypotheses 3.1 and 4.1, then by Lemma 4.22 � is a stable independence relation.
Since R-Mod with pure embeddings is an accessible cellular category which is retract-
closed, coherent and ℵ0-continuous. Therefore, pure embeddings are cofibrantly
generated by [21, 3.1]. �

Remark 4.26. The main result of [19] is that the above result holds in locally
finitely accessible additive categories. Their proof is very different from our proof as
they use categorical methods.

§5. Classes that admit intersections. In this section we study classes that admit
intersections and their subclasses. We use the ideas of this section to provide a partial
solution to Question 1.1 for AECs of torsion-free abelian groups. Moreover, we give
a condition that implies a positive solution to Question 1.1.

Definition 5.1. Let K = (K,≤p) and K� = (K�,≤p) be a pair of AECs with
K,K� ⊆ R-Mod for a fixed ring R. We say K� is closed below K if the following hold:

(1) K� ⊆ K .
(2) K and K� are closed under pure submodules.
(3) K admits intersections, i.e., for every N ∈ K and A ⊆ |N | we have that
clNK (A) =

⋂
{M ≤p N : A ⊆ |M |} ∈ K and clNK (A) ≤p N .8

Example 5.2. The following classes are all closed below the class of torsion-free
groups with pure embeddings:

(1) (TF,≤p) where TF is the class of torsion-free groups. A group G is torsion-
free if every element has infinite order.

(2) (RTF,≤p) where RTF is the class of reduced torsion-free abelian groups.
A group G is reduced if it does not have non-trivial divisible subgroups.

7After the original submission of this paper, the same result was obtained in [22, Section 3] using
completely different methods. There it is shown that many classes of modules have a stable independence
relation. Nevertheless Question 4.23 is still open.

8Classes admitting intersections were introduced in [4, 1.2] and studied in detail in [46, Section 2].
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(3) (ℵ1-free,≤p) where ℵ1-free is the class of ℵ1-free groups. A group G is ℵ1-free
if every countable subgroups is free.

(4) (B0,≤p) where B0 is the class of finitely Butler groups. A group G is a finitely
Butler group if G is torsion-free and every pure subgroup of finite rank is
a pure subgroup of a finite rank completely decomposable group (see [11,
Section 14.4] for more details).

(5) (TF -l-cyc,≤p p) where TF-l-cyc is the class of torsion-free locally cyclic
groups. A group G is locally cyclic if every finitely generated subgroup is
cyclic.

Remark 5.3. It is worth pointing out that the second, third and fifth example
are not first-order axiomatizable while the fourth one is probably not first-order
axiomatizable.

Remark 5.4. The class of ℵ1-free groups is closed below the class of torsion-free
groups, but does not satisfy Hypothesis 3.1 or Hypothesis 4.1. This is the case as it
does not have the amalgamation property. We showed that if a class satisfied either
of the hypotheses then it had the amalgamation property (Lemmas 3.5 and 4.9).

(R-Mod,≤p) satisfies Hypotheses 3.1 and 4.1, but it is not closed below any class
of modules for most rings. For example, if R = Z, this is the case as the class of
abelian groups with pure embeddings does not admit intersections.

Therefore, there are classes studied in this section that do not satisfy Hypotheses
3.1 or 4.1 and there are classes satisfying those hypotheses that can not be handled
with the methods of this section.

5.1. Stability. The proof of the next result is straightforward so we omit it.

Proposition 5.5. If K� is closed below K, then K� admits intersections. Moreover,
for every N ∈ K� and A ⊆ N we have that clNK (A) = clNK�(A).

With it we can show that there is a close relation between Galois-types in K and K�.

Lemma 5.6. Assume K� is closed below K. Let A ⊆ N1, N2 ∈ K�, ā ∈ N<∞1 and
b̄ ∈ N<∞2 , then:

gtpK(ā/A;N1) = gtpK(b̄/A;N2) if and only if gtpK�(ā/A;N1) = gtpK�(b̄/A;N2).

Proof. The backward direction is obvious so we prove the forward direction.
Since K admits intersection, by [46, 2.18], there is f : clN1

K (ā ∪ A) ∼=M clN2
K (b̄ ∪

A) with f(ā) = b̄. Then using the proposition above we have that clN1
K (ā ∪ A) =

cl
N1
K� (ā ∪ A) and clN2

K (b̄ ∪ A) = clN2
K� (b̄ ∪ A). So the result follows from the fact that

K� admits intersections and [46, 2.18]. �

From that characterization we obtain the following.

Corollary 5.7. Assume K� is closed below K.

(1) Let � ≥ LS(K�). If K is �-stable, then K� is �-stable.
(2) Let � be an infinite cardinal. If K is (< �)-tame, then K� is (< �)-tame.
(3) If Galois-types in K are pp-syntactic, then Galois-types in K� are pp-syntactic.
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Using the above result together with Theorem 3.11 we are able to answer Question
1.1 in the case of AECs of torsion-free abelian groups closed under pure submodules
and with arbitrary large models.

Lemma 5.8. If K = (K,≤p) is an AEC closed under pure submodules and with
arbitrary large models such thatK ⊆ TF , then K is �-stable for every infinite cardinal
� such that �ℵ0 = �.

Remark 5.9. The above result applies in particular to reduced torsion-free
groups, ℵ1-free groups and finitely Butler groups. The result for reduced torsion-free
groups is in [45, 1.2], for ℵ1-free groups is in [25, 2.9], and for finitely Butler groups
is in [24, 5.9].

We see the next result as a weak approximation to Question 1.1. Recall that a ring
R is Von Neumann regular if and only if for every r ∈ R there is an s ∈ R such that
r = rsr if and only if every left R-modules is absolutely pure (see for example [30,
2.3.22]).

Lemma 5.10. Assume R is a Von Neumann regular ring. If K is closed under
submodules and has arbitrarily large models, then K = (K,≤p) is �-stable for every
infinite cardinal � such that �|R|+ℵ0 = �.

Proof. We show that K is closed below (R-Mod,≤p). Observe that the only
things that need to be shown are that (R-Mod,≤p) admits intersections and that K
is closed under pure submodules. This is the case as every module is absolutely pure
by the hypothesis on the ring. �
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