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Abstract The theorem referred to in the title is a technical result that is needed for the classification
of elliptic and K3 fibrations birational to Fano 3-fold hypersurfaces in weighted projective space. We
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1. Introduction

The problem that motivates the work presented here is the following.

Problem 1.1. Let X = Xd ⊂ P(1, a1, a2, a3, a4) be a Fano 3-fold weighted hyper-
surface in one of the ‘famous 95’ families of Fletcher and Reid [8]. Assuming that X

is general in its family, we seek to classify the set of K3 fibrations g : Z → T with Z

birational to X and the set of elliptic fibrations g : Z → T with Z birational to X.

Solutions to both the K3 and elliptic cases of this problem for families 1 and 3 of the 95
first appeared in papers of Cheltsov (see [1,2] and further references therein). These are
the only two of the 95 families whose members are smooth: X = X4 ⊂ P4 in family 1 is
a smooth quartic 3-fold and X = X6 ⊂ P(1, 1, 1, 1, 3) in family 3 is a double cover of P3

branched in a smooth sextic. For four of the 93 remaining singular families, solutions
to both the K3 and elliptic cases of Problem 1.1 appeared in [12], and one other case,
family 5, was dealt with earlier, in [11]. Here is an example solution. (See Definition 1.7,
below, for our assumptions on K3 fibrations, elliptic fibrations and Fano 3-folds.)

Theorem 1.2 (Ryder [12]). Let X = X30 ⊂ P(1, 4, 5, 6, 15) be a general member of
family 75 of the 95.
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190 D. Ryder

(a) Suppose that Φ : X ��� Z/T is a birational map from X to a K3 fibration
g : Z → T . There exists an isomorphism P1 → T such that the diagram below
commutes, where π : X ��� P(1, 4) = P1 is the natural projection onto the first
two coordinates:

X
Φ �����

π

���
�
� Z

g

��
P1 � �� T

(b) There does not exist an elliptic fibration birational to X.

(c) If Φ : X ��� Z is a birational map from X to a Fano 3-fold Z with canonical
singularities then Φ is actually an isomorphism (so in particular Z � X has terminal
singularities).

The proof of this theorem relies on one particular case of our curve exclusion theorem
(Theorem 1.5, below); [12] contains a proof of this case, but no others.

Building on previous joint work with Park [4] and on [11], Cheltsov [3] was able to
classify elliptic fibrations birational to a general member of any of the 95 families, i.e. to
solve completely the elliptic case of Problem 1.1. Both [4] and [3] rely on Theorem 1.5 (see
below). One important observation in these two papers, which also appears in a simple
form in [1], is that surprisingly useful information can be extracted from the trivial fact
that, in the elliptic case, the linear system on X with which we are working is not a
pencil (see, for example, [4, Lemma 2.1 and the proof of Lemma 2.11]); largely because
of this observation, these papers deal only with the elliptic case of the classification
problem. It should be noted, though, that [4], building on [11], contains constructions
of K3 fibrations birational to general members of all 95 families: it is the problem of
excluding other possible K3 fibrations that remains open, for the moment, in most cases.

We now give a theorem from [4] which relies on our Theorem 1.5.

Theorem 1.3 (Cheltsov and Park [4, Theorem 1.2]). A general variety Xd ⊂
P(1, a1, a2, a3, a4) in family N of the 95 is birational to an elliptic fibration if and only if

N �∈ {3, 60, 75, 84, 87, 93}.

Theorem 1.5 is used in the proof of this result to help demonstrate the nonexistence of
a birational elliptic fibration for N ∈ {3, 60, 75, 84, 87, 93}. Similarly, our theorem is used
throughout [3] (see Theorem 1.15 and Lemma 1.16 of [3]) to classify elliptic fibrations
birational to all the 95 families. We give the following example.

Theorem 1.4 (Cheltsov [3, Theorem 26.3]). Let X = X18 ⊂ P(1, 1, 4, 6, 7) be a
general member of family 36 of the 95 and assume that Φ : X ��� Z is a birational map
from X to an elliptic fibration g : Z → T . Then either there exist a birational selfmap
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s : X ��� X and a birational map P(1, 1, 4) ��� T such that the diagram

X
s ������

π

���
�
� X

Φ ����� Z

g

��
P(1, 1, 4) ��������� T

commutes, where π : X ��� P(1, 1, 4) is the natural projection, or there exist a bira-
tional selfmap s : X ��� X, a birational map P(1, 1, 6) ��� T and a special projection
π′ : X ��� P(1, 1, 6) such that the diagram

X
s ������

π′

���
�
� X

Φ ����� Z

g

��
P(1, 1, 6) ��������� T

commutes.

We explain why the projection π : X ��� P(1, 1, 4) in the above statement is natural,
whereas π′ : X ��� P(1, 1, 6) is not. Let (x0, x1, y, z, t) be coordinates on P(1, 1, 4, 6, 7).
Naively, there are many projections to P(1, 1, 4), for example, (x0, x1, y) and (x0 +
x1, x1, y + x4

0), but any two differ by an automorphism of P(1, 1, 4) and so are essen-
tially the same. But there exist genuinely different projections to P(1, 1, 6), for example,
(x0, x1, z) and (x0, x1, z + yx2

0), and there is no natural choice.
It is time to state the curve exclusion theorem; first we need the following notation.

Notation and terminology

Let X be a normal complex projective variety, let H be a mobile linear system on X

and let α ∈ Q�0. We denote by CS(X, αH) the set of centres on X of valuations that are
strictly canonical or worse for KX + αH, that is,

CS(X, αH) = {CentreX(E) | a(E, X, αH) � 0}.

This notation is standard. We also use the following non-standard notation: if KX +αH is
canonical then V0(X, αH) denotes the set of valuations (or of the corresponding divisors,
each on some sufficiently blown up model) which are strictly canonical for KX + αH.

If X = Xd ⊂ P(1, a1, a2, a3, a4) is a hypersurface in one of the 95 families and H is
a linear system on X, there exists a unique positive integer n such that H ⊂ |−nKX |
(because Cl X � Z; see below). We call n the anticanonical degree, or just the degree,
of H.

The main theorem and its applications

Theorem 1.5 (curve exclusion theorem). Let X = Xd ⊂ P(1, a1, a2, a3, a4) be a
general hypersurface in one of the 95 families and let C ⊂ X be a reduced, irreducible

https://doi.org/10.1017/S0013091506000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000770


192 D. Ryder

curve. Suppose that H is a mobile linear system of degree n on X such that KX +(1/n)H
is strictly canonical and C ∈ CS(X, (1/n)H). There then exist two distinct surfaces
S1, S2 ∈ |−KX | such that C ⊂ Supp(S1 · S2).

For a precise discussion of how this theorem is used in the proofs of Theorems 1.2,
1.3 and 1.4 we refer the reader to the papers already cited. However, we give a brief
outline here. Suppose that we have a birational map Φ : X ��� Z/T from a Fano 3-fold
hypersurface

X = Xd ⊂ P(1, a1, a2, a3, a4)

in one of the 95 families to either an elliptic or a K3 fibration g : Z → T . By an analogue
of the Noether–Fano–Iskovskikh inequalities, which are used in the Sarkisov program to
break up a birational map between two Mori fibre spaces into elementary links (see [5]),
the log pair (X, (1/n)H) has non-terminal singularities, where H = Φ−1

∗ g∗|AT | is the
transform on X of a very ample complete linear system |AT | on T and n = deg H is its
degree. Using the main theorem of [7], which states that X = Xd is birationally rigid, we
reduce this to the case where (X, (1/n)H) has canonical but non-terminal, i.e. strictly
canonical, singularities.

At this point it is natural to ask what CS(X, (1/n)H) is; one of the main results
we use to answer this is our curve exclusion theorem 1.5, which tells us that the only
curves that could be in CS(X, (1/n)H) are the obvious ones (see below). In particular,
a main application of the curve exclusion theorem is to families with a1 > 1: for such a
family Theorem 1.5 implies at once that no curve can be a strictly canonical centre; in the
terminology of [11,12], every curve is excluded absolutely. Of course, we also need results
describing which non-singular and singular points could belong to CS(X, (1/n)H), but we
do not discuss these here. Finally, given a complete list of possibilities for CS(X, (1/n)H),
we use various techniques to try to deduce a complete list of birational elliptic and
K3 fibrations. (This is a simplification of the process, but it gives the general idea.)

We expand a little on why it is obvious that certain curves cannot be excluded. We
need the following proposition.

Proposition 1.6 (see [11, Proposition 2.2]). Let Xd ⊂ P(1, 1, a2, a3, a4) be general
in one of the families with a1 = 1 and let �, �′ ∈ k[x0, . . . , x4] be two independent forms
of degree 1. Then a general fibre S of π = (�, �′) : X ��� P1 is a quasi-smooth Du Val K3
surface and, setting P = π−1

∗ |OP1(1)|, we have

CS(X, P) ⊃ {C0, . . . , Cr},

where C0, . . . , Cr are the components of {� = �′ = 0} ∩ X.

This result is almost obvious, after a little thought, except for one point. If a2 > 1
then it is clear that, in the above statement, a general S ∈ P is a quasi-smooth Du Val
K3 surface; but in the case when a2 = 1 it is not immediate that S is quasi-smooth: we are
allowed a general X and a general S ∈ P but must prove the result for every possible P,
not just a general choice. This is a technicality that need not concern us, since we do not
rely upon it. The second statement of the proposition, that is, C0, . . . , Cr ∈ CS(X, P), is
obvious; this shows that Theorem 1.5 excludes as many curves as possible.
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We say no more about how Theorem 1.5 is used to solve cases of Problem 1.1: see
[3,11,12] for details.

Contents of this paper

The remaining sections of the present paper are devoted to proving Theorem 1.5. The
proof requires several different methods and explicit checks of dozens of cases, so often
there is no choice but to give an example calculation and a list of other cases that are
similar, together with case-specific choices that need to be made. We have therefore
thought it best to split the material up into sections according to the type of exclusion
argument used. The first of these, § 2, contains arguments that are coarse and elementary
(really they are just lemmas about curves of low degree in weighted projective 4-space)
but they still dispose of a large number of families. Sections 3 and 4 then deal with the
curves that slipped through the net, of which there are many more than one might wish.
The arguments of § 4 are generally more difficult than those of § 3, and they are also
required for a good many more cases; these are summarized in Table 1.

Conventions and assumptions

Our notation and terminology are mostly as in, for example, [9], but we list here some
conventions that are non-standard, together with assumptions that will hold throughout.

• All varieties considered are complex, and they are projective and normal unless
otherwise stated.

• All curves are reduced and irreducible unless otherwise stated.

The famous 95 families

These are ordered as in [7, 8], and we assume that the basic facts about them are
known: for example, that they are quasi-smooth and have divisor class group isomorphic
to Z. We choose coordinates (x, y, z, t, u) or (x, y1, y2, z, t), etc., in order of ascending
degree, again as in [7]; for example, in the case of family 36 we choose (x0, x1, y, z, t)
as coordinates for P(1, 1, 4, 6, 7), while for family 75 we choose (x, y, z, t, u) as coordin-
ates for P(1, 4, 5, 6, 15). If v is a coordinate then Pv denotes the point where only v is
non-zero. We import from [7] the notion of a starred monomial assumption; for example,
if X = X15 ⊂ P(1, 1, 3, 4, 7)x0,x1,y,z,t is a member of family 25, we make the assump-
tion ∗tz2, i.e. we assume that tz2 appears with non-zero coefficient in the defining equa-
tion for X. Whenever X is a member of one of the 95 families we let A = −KX = OX(1)
denote the positive generator of the class group; moreover, if f : Y → X is a birational
morphism then B denotes −KY .

Definition 1.7. Let Z be a normal projective variety with canonical singularities. A
fibration is a morphism g : Z → T to another normal projective variety T such that
dim T < dim Z and g∗OZ = OT . We say that g is an elliptic fibration, or a K3 fibration,
if and only if its general fibre is an elliptic curve, or, respectively, a K3 surface.
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Usually when we write an equation explicitly or semi-explicitly in terms of coordinates
we omit scalar coefficients of monomials; this is the ‘coefficient convention’. If the letter n

is used without explicit definition, it refers to the degree of the mobile linear system H
on X, i.e. the unique n such that H ⊂ |−nKX | = |nA|.

2. Coarse numerics and curves of low degree

Our first lemma uses the standard argument to bound the degree of a curve centre.

Lemma 2.1. Let X be any hypersurface in one of the 95 families and C ⊂ X a curve,
reduced but possibly reducible. Suppose that H is a mobile linear system of degree n

on X such that KX + (1/n)H is strictly canonical and each irreducible component of C

belongs to CS(X, (1/n)H). Then deg C = AC � A3.

Proof. Let s be a natural number such that sA is Cartier and very ample, and pick
general members H, H ′ ∈ H. Now, by assumption,

multCi
(H) = multCi

(H ′) = n

for each irreducible component Ci of C, so for a general S ∈ |sA|

A3sn2 = SHH ′ � sn2AC = sn2 deg C,

which proves that deg C � A3. �

It is now necessary to understand the geometry of curves of low degree, i.e. degree at
most A3, lying inside our X = Xd ⊂ P(1, a1, a2, a3, a4). The statement of Theorem 1.5
suggests the following natural case division.

Case 1 (a1 > 1). |OX(1)| = 〈x0〉 is fixed, so there do not exist two distinct sur-
faces S1, S2 ∈ |A| = |−KX |; therefore we are trying to exclude all curves. Lemma 2.2,
below, shows that for many families with a1 > 1 there are in fact no curves of degree at
most A3 inside X, other than (perhaps) curves contracted by π4 : X ��� P(1, a1, a2, a3);
so for these families we have already nearly proved the theorem. There are five families
with a1 > 1 to which Lemma 2.2 does not apply, and we also need to consider curves con-
tracted by π4; see Lemma 2.7, which also applies to many families with a1 = 1, although
there are exceptional cases both with a1 > 1 and with a1 = 1 that fail to satisfy the
hypotheses.

Case 2 (a1 = 1 and a2 > 1). |OX(1)| = 〈x0, x1〉 is a pencil so we are trying to
exclude all curves not contained in {x0 = x1 = 0}∩X. Lemma 2.4, below, shows that for
many of these families any curve C ⊂ X that is not contracted by π4 and not contained
in {x0 = x1 = 0} ∩ X has degree larger than A3, so it is excluded by Lemma 2.1. Again
there are families that have a1 = 1 and a2 > 1 but fail to satisfy the hypothesis (in
fact there are 12 such families) and, as already mentioned, curves contracted by π4 are
considered separately in Lemma 2.7.
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Case 3 (a0 = a1 = a2 = 1). Families with dim |OX(1)| � 2 are dealt with in the
next section.

Lemma 2.2. Let X = Xd ⊂ P = P(1, a1, a2, a3, a4) be a hypersurface in one of the
families with a1 > 1 and suppose that either

(a) d < a1a4 or

(b) d < a2a4 and the curve {x = y = 0} ∩ X is irreducible (which holds for general X

in a family with a1 > 1 by Bertini’s theorem).

Then any curve C ⊂ X that is not contracted by π4 : X ��� P(1, a1, a2, a3) has
deg C > A3. Consequently, C is excluded absolutely by Lemma 2.1.

Remark 2.3. Out of the families with a1 > 1, numbers 18, 19, 22, 27 and 28 have
d � a2a4, so that, as written here, this lemma fails to deal with them. (In fact, we shall
see in § 4 that the conclusion of the lemma is true for them as well.) Of the remainder,
many have a1a4 � d < a2a4, which means that part (b) of the lemma applies to them
under the generality assumption stated; this happens for numbers 23, 32, 33, 37, 38, 39,
42, 43, 44, 48, 49, 52, 55, 56, 59, 63, 64, 65, 72, 73, 77 and 89. For the rest, the stronger
form (a) applies and no extra generality assumption is needed: numbers 40, 45, 57, 58,
60, 61, 66, 68, 69, 74, 75, 76, 78, . . . , 81, 83, . . . , 87 and 90, . . . , 95.

Proof of Lemma 2.2. Most of the following proof has already appeared in [12], but
we reproduce it here for the convenience of the reader. The part that is not in [12] is the
discussion of the cases where assumption (2.1), below, fails to hold.

So suppose, contrary to the statement of the lemma, that C ⊂ X has deg C � A3 and
is not contracted by π4; let C ′ ⊂ P(1, a1, a2, a3) be the set-theoretic image π4(C). Note
that deg C ′ � deg C; in fact it can easily be shown, much as for curves in unweighted
projective spaces, that

r deg C ′ � deg C,

where r ∈ Z�1 is the degree of the induced morphism C → C ′. (To prove this we can
take a resolution of indeterminacy f : P̃ → P(1, a1, . . . , a4) for π4 and apply the projection
formula for intersection numbers to the morphisms f and π̃4 := π4 ◦ f .) We remark also
that if the inequality r deg C ′ � deg C is strict then the difference deg C − r deg C ′ is at
least 1/m, where m ∈ Z�1 is the index of the cyclic quotient singularity P4 ∈ X. This
fact is used in some of the calculations summarized in § 4, but in any given example it is
obvious.

Now we form the following diagram:

C ⊂

��

P(1, a1, a2, a3, a4)

π4

���
�
�

C ′ ⊂

��

P(1, a1, a2, a3)

π3

���
�
�

{∗} ⊂ P(1, a1, a2)

https://doi.org/10.1017/S0013091506000770 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000770


196 D. Ryder

C ′ is contracted by π3; indeed, if its image were a curve C ′′, we would have

deg C ′′ � deg C ′ � deg C � A3,

but A3 = d/(a1a2a3a4) < 1/(a1a2), since d < a3a4 in either case (a) or (b) and, on the
other hand, 1/(a1a2) � deg C ′′ simply because C ′′ ⊂ P(1, a1, a2), which is a contradiction.

For convenience we assume that

(a1, a2) = 1. (2.1)

(We discuss at the end of the proof what to do if (a1, a2) > 1.) Assumption (2.1) implies
that the point {∗} ⊂ P(1, a1, a2) is, up to coordinate change, one of

{y = z = 0}, {ya2 + za1 = x = 0}, {x = z = 0} or {x = y = 0},

using the coefficient convention in ya2 + za1 = 0. It follows that the curve C ′ ⊂
P(1, a1, a2, a3) is defined by the same equations. In the first case, this means that
deg C ′ = 1/a3 > d/(a1a2a3a4) = A3, which is a contradiction. In the second case,
deg C ′ = 1/a3 again, because

C ′ � {ya2 + za1 = 0} ⊂ P(a1, a2, a3)

passes only through the singularity (0, 0, 1), using (2.1), so we obtain a contradiction as
in the first case. In the case when C ′ = {x = z = 0}, we have deg C ′ = 1/(a1a3) and we
easily obtain a contradiction from a2a4 > d. In the final case, C ′ = {x = y = 0}, if the
assumptions in part (a) of the statement hold then we have

deg C ′ = 1/(a2a3) > d/(a1a2a3a4) = A3,

which is a contradiction, while if the assumptions in part (b) hold then

C = {x = y = 0} ∩ X

(because the right-hand side is irreducible), but

deg({x = y = 0} ∩ X) = a1A
3 > A3,

since we also assumed a1 > 1; this gives a contradiction.
This completes the proof subject to the assumption (2.1); we now discuss what to do if

it does not hold. First we note that there are only nine families with (a1, a2) > 1, namely
numbers 18, 22, 28, 43, 52, 59, 69, 73 and 81. The first three of these fail to satisfy either
(a) or (b), so we need not concern ourselves with them, although we note that the argu-
ment we are about to give works for number 18 and fails for 22 and 28, with the inequality
becoming an equality. Now consider as an example family 43, X20 ⊂ P(1, 2, 4, 5, 9)x,y,z,t,u

with A3 = 1
18 , and assume that {∗} = {y2 + z = x = 0} ⊂ P(1, 2, 4), which is obviously

the only problem case. Then

C ′ = ({y2 + z = x = 0} ⊂ P(1, 2, 4, 5)) � ({y2 + z = 0} ⊂ P(2, 4, 5)),
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which of course has

deg C ′ =
1

a3 hcf(a1, a2)
=

1
5 × 2

=
1
10

>
1
18

,

which is a contradiction. Exactly the same observation works for numbers 52, 59, 69,
73 and 81: one needs only to check that 1/(a3 hcf(a1, a2)) > A3, which is true in each
case. �

Lemma 2.4. Let X = Xd ⊂ P = P(1, 1, a2, a3, a4) be a hypersurface in one of the
families with a1 = 1 and a2 > 1; suppose that d < a2a4. Then any curve C ⊂ X that is
not contracted by π4 and that satisfies deg C � A3 is contained in {x0 = x1 = 0} ∩ X.

Remark 2.5. Out of the families with a1 = 1 and a2 > 1 this lemma fails to deal
with numbers 7, 9, 11, 12, 13, 15, 16, 17, 21, 24, 29 and 34. These require extra work:
see § 4 and, in particular, Table 1.

Proof of 2.4. Take such a curve C and suppose C �⊂ {x0 = x1 = 0}:

C ⊂

��

P(1, 1, a2, a3, a4)

π4

���
�
�

C ′ ⊂

��

P(1, 1, a2, a3)

π3

���
�
�

{∗} ⊂ P(1, 1, a2)

As in Lemma 2.2 the image of C ′ under π3 is a point. Indeed, if the image were a curve C ′′,
we would have

deg C ′′ � A3 =
d

a2a3a4
<

1
a2

� deg C ′′,

because d < a2a4 � a3a4, which is a contradiction. Therefore after a coordinate change
we have C ′ = {x1 = x2 = 0} since by assumption C ′ �= {x0 = x1 = 0}, and so

deg C ′ =
1
a3

>
d

a2a3a4
= A3,

which is a contradiction. �

Lemma 2.6. Now we need to deal with curves contracted by π4. As discussed in [7,
§ 5.6], we can write the equation for X in one of the following forms:

(a) x3
4 + ax4 + b = 0,

(b) x2
4 + b = 0, or

(c) xjx
2
4 + ax4 + b = 0 (with j = 1, 2 or 3),
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where a(x0, . . . , x3) and b(x0, . . . , x3) are weighted homogeneous polynomials of the
appropriate degrees. In cases (a) and (b), π4 : X ��� P(1, a1, a2, a3) is a mor-
phism with finite fibres; in case (c), π4 contracts a finite set of curves whose union
is {xj = a = b = 0} ⊂ X.

Lemma 2.7. Suppose that X = Xd ⊂ P(1, a1, . . . , a4) is a general hypersurface in
one of the 95 families and assume that d < a1a2a3. Then any curve C ⊂ X contracted
by π4 has deg C > A3, and is therefore excluded absolutely by Lemma 2.1.

Remark 2.8. This lemma fails to deal with families such that P4 ∈ X and d � a1a2a3.
These are: number 18, which has a1 > 1; numbers 7, 12, 13, 16, 20, 24, 25, 26 and 46,
which have a1 = 1 and a2 > 1; and numbers 2, 5 and 8, which have a0 = a1 = a2 = 1.

Proof of 2.7. If there exists a contracted curve C then the equation for X must
take the form (c) of 2.6 above. Consider the subscheme Z of P2(a0, . . . , âj , . . . , a3) =:
P(a′

0, a
′
1, a

′
2) defined by Z = {a = b = 0}, substituting xj = 0 into a and b. Z is a finite

set of points (because a, b ∈ k[xa′
0
, xa′

1
, xa′

2
] have no common factor (see [7, § 4.5])) and

the union of the contracted curves is the cone over Z obtained by varying x4, still with
xj = 0. Below we show that

for general X, Z misses any singular points of P(a′
0, a

′
1, a

′
2); (2.2)

therefore, our contracted curve C passes through only one singular point of X, namely P4.
Consequently,

deg C � 1
a4

>
d

a1a2a3a4
= A3

as required.
It remains to show (2.2). We assume j = 1 to simplify the notation; no generality is

lost in doing so because the proof below does not make use of a1 � a2 � a3. We know
that

Z = {ad−a4 = bd = 0} ⊂ P(1, a2, a3)

and we need to show that either a2|(d−a4) or a2|d. This demonstrates that (0, 1, 0) /∈ Z,
assuming X is general. Formally we also need to show that either a3|(d−a4) or a3|d, but
the proof is identical. Note that even if (a2, a3) �= 1, the only two points of P(1, a2, a3)
which can be singular are (0, 1, 0) and (0, 0, 1).

Now to the proof. Because x1x
2
4 is the tangent monomial to X at P4 (see Remark 2.9,

below), we know that

a1 + 2a4 = d (2.3)

and

a2 + a3 = a4, (2.4)

where (2.4) follows from (2.3) and d = a1 + · · · + a4. Now we consider the different
possibilities for the tangent monomial to X at P2.
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If x4x
n
2 is the tangent monomial to X at P2 then a4 + na2 = d, so a2|(d − a4) and we

are done. If x3x
n
2 is the tangent monomial at P2 then a3 + na2 = d, so

(n − 1)a2 = d − a4

using (2.4), which shows that n � 2 and a2|(d − a4) as required. If xn
2 is the tangent

monomial then P2 /∈ X and a2|d.
We are left with the case x1x

n
2 . We know that

a1 + na2 = d (2.5)

and

a3 + a4 = (n − 1)a2, (2.6)

where, as before, (2.6) follows from (2.5) and d = a1 + · · ·+a4. Now (2.4) and (2.6) imply
that

2a3 = (n − 2)a2

and

2a4 = na2.

If n is even then a2|a3 and a2|a4, so a2 = 1 (any three of (a1, a2, a3, a4) have highest
common factor 1 because the K3 section {x0 = 0} ∩ X is well formed). Therefore a2|d,
as required. If, on the other hand, n is odd then a2 = 2a′

2 is even and a′
2 divides a2, a3

and a4, so a′
2 = 1 and

(a0, . . . , a4) = (1, a1, 2, a4 − 2, a4)

with a4 = n odd. If a1 is even then, by (2.5), d is even and a2 = 2|d, but if a1 is odd
then d is also odd and a2 = 2|(d − a4). �

Remark 2.9. In the above proof we used the notion of the tangent monomial several
times. This terminology appears in [7] and elsewhere but is worth recalling; see [8, § 8]
for background. If Xd ⊂ P(a0, . . . , an) is a hypersurface of weighted degree d that is
quasi-smooth then for any coordinate xi there exists a monomial xni

i xei of degree d, for
some ei ∈ {0, . . . , n}, with non-zero coefficient in the defining equation for X. If there is
only one such monomial it is referred to as the tangent monomial to X at Pi. Note that in
our proof we also use this term when the uniqueness of the monomial is not guaranteed;
this is an abuse of terminology, but our arguments depend only on the existence of the
monomial and so remain valid if it is non-unique.

3. The test class method

The following lemma is completely general and elementary; we will use it for curves
inside X, but it is also important for excluding singular points (see [12, Theorem 3.20]).
It should be compared with [7, Lemma 5.2.1], to which it is closely related.
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Lemma 3.1. Let X be a Fano 3-fold hypersurface in one of the 95 families and
let H be a mobile linear system of degree n on X such that KX + (1/n)H is strictly
canonical; suppose that Γ ⊂ X is an irreducible curve or a closed point satisfying Γ ∈
CS(X, (1/n)H) and, furthermore, that there is a Mori extremal divisorial contraction

f : (E ⊂ Y ) → (Γ ⊂ X), CentreX E = Γ,

such that E ∈ V0(X, (1/n)H) (see § 1 for this notation). Then B2 ∈ NEY .

Proof. We know that

KY +
1
n

HY ∼Q f∗
(

KX +
1
n

H
)

∼Q 0.

It follows that B ∼Q HY /n, and therefore that B2 ∈ NEY , because HY is mobile. �

The idea of the test class method is simple. Suppose that Γ ⊂ X is an irreducible
curve or a closed point that is the centre of an extremal divisorial contraction f : (E ⊂
Y ) → (Γ ⊂ X) as in the above lemma. A test class is, by definition, a non-zero nef class
M ∈ N1 Y .

Lemma 3.2 (cf. [7, Corollary 5.2.3]). Suppose that, in the situation just described,
there is a test class M on Y with MB2 < 0. Then E cannot be a strictly canonical
singularity for any H.

Proof. This is immediate from Lemma 3.1. �

Corollary 3.3. If the hypotheses of Lemma 3.2 are satisfied by some curve C = Γ ⊂ X

then C is excluded absolutely, that is, C is not a strictly canonical centre for any H.

Proof. We assume there is an extremal divisorial contraction f : (E ⊂ Y ) → (C ⊂ X)
with CentreX(E) = C. Suppose that H is mobile of degree n on X with KX + (1/n)H
strictly canonical. Clearly, what we need to prove is the following: if C ∈ CS(X, (1/n)H)
then, in fact, E ∈ V0(X, (1/n)H). To see this, first note that, over a general point
P ∈ C ⊂ X, f : Y → X must be the blow-up of IC . Let P ∈ S ⊂ X be a general surface
through P , smooth near P and transverse to C. Then

multP (H|S) = n

because C ∈ CS(X, (1/n)H) by assumption and we have the classical fact that, locally
over P = C ∩S ⊂ S, the first ordinary blow-up extracts a divisor of maximal multiplicity
for H|S . �

The problem with the test class method is that it only applies to curves C ⊂ X that
are centres of Mori extremal divisorial contractions. Such curves are always contained
in Non-sing(X) and their own singularities are also restricted. It turns out that the
test class method, together with coarse arguments like those of § 2, is sufficient to prove
Theorem 1.5 for families with a0 = a1 = a2 = 1 (with two exceptions: see (c) and (g)
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under Case 2 of § 3.1); for the other families, the curves that the coarse results fail to
deal with hit singularities of X and we need other methods.

We now turn to the more practical question of how to find a test class for a given
curve.

Definition 3.4 (cf. [7, Definition 5.2.4]). Let L be a Weil divisor class in a 3-
fold X and Γ ⊂ X an irreducible curve or a closed point. We say that L isolates Γ ,
or is a Γ -isolating class, if and only if there exists s ∈ Z�1 such that the linear system
Ls

Γ := |Is
Γ (sL)| satisfies the following conditions:

(i) Γ ∈ Bs Ls
Γ is an isolated component (i.e. in some neighbourhood of Γ the subscheme

Bs Ls
Γ is supported on Γ ); and

(ii) if Γ is a curve, the generic point of Γ appears with multiplicity 1 in BsLs
Γ .

Lemma 3.5. Suppose that L isolates Γ ⊂ X and let s ∈ Z�1 be as above. Then, for
any extremal divisorial contraction

f : (E ⊂ Y ) → (Γ ⊂ X) with CentreX(E) = Γ,

the birational transform M = f−1
∗ Ls

Γ is a test class on Y .

Proof. This is [7, Lemma 5.2.5]. �

We now use the test class method and some other arguments (which are mostly ele-
mentary, in the style of Lemmas 2.2 and 2.4) to prove Theorem 1.5 for all the families
with a0 = a1 = a2 = 1, that is, for families 1, . . . , 6, 8, 10 and 14.

3.1. Proof of Theorem 1.5 assuming that a0 = a1 = a2 = 1

Let X = Xd ⊂ P(1, 1, 1, a3, a4) be a hypersurface in one of the families 1, . . . , 6, 8,
10 and 14 and let C ⊂ X be a curve; suppose that C is a strictly canonical centre for
some H. By Lemma 2.1, deg C � A3.

Case 1 (C is contracted by π4 : X ��� P(1, 1, 1, a3)). By Lemma 2.7, we are in
a family with d � a1a2a3 and P4 ∈ X, that is, one of families 2, 5 and 8. It is very easy
to check in each of these cases that the contracted curves are contained in Supp(S1 · S2)
for two distinct surfaces S1, S2 ∈ |A| = |−KX |: for example, in the case of family 8,
X9 ⊂ P(1, 1, 1, 3, 4)x0,x1,x2,y,z with A3 = 3

4 , we change coordinates so that the tangent
monomial at P4 = Pz is x2z

2; then the equation for X is

x2z
2 + a5z + b9 = 0 with a, b ∈ k[x0, x1, x2, y]

and the contracted curves are the irreducible components of

{x2 = a5 = b9 = 0} ⊂ P(1, 1, 1, 3).

But y3 ∈ b9 by quasi-smoothness at Py and therefore after a coordinate change

C = {x1 = x2 = y = 0} ⊂ {x1 = x2 = 0} ∩ X.
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Case 2 (C is not contracted by π4). As in the proofs of Lemmas 2.2 and 2.4 we
consider the following diagram:

C ⊂

��

P(1, 1, 1, a3, a4)

π4

���
�
�

C ′ ⊂

��

P(1, 1, 1, a3)

π3

���
�
�

C ′′ ⊂ P(1, 1, 1)

We may assume that C ′ is not contracted by π3; indeed, any point in P2 is defined by
two linearly independent forms �, �′ of degree 1 in (x0, x1, x2) and pulling these back
to P(1, 1, 1, a3, a4) would give distinct S1, S2 ∈ |A| = |−KX | with C ⊂ Supp(S1 · S2).
So deg C ′′ � 1 (and is an integer) and therefore deg C � deg C ′ � 1. For families 8, 10
and 14, A3 < 1 and we already have our contradiction; families 1, . . . , 6 remain.

The next step is to show that if C is not contained in some {� = �′ = 0} then, after a
coordinate change, it is one of the following (here N denotes the number of the family):

(a) N = 1, X4 ⊂ P4, A3 = 4, C is a twisted cubic curve in some linearly embedded
P3 ⊂ P4, test class 2A − E;

(b) N = 1, X4 ⊂ P4, A3 = 4, C is a smooth quartic curve, test class 4A − E;

(c) N = 1, X4 ⊂ P4, A3 = 4, C is a rational curve of degree 4 with a single double
point P (see below and [1]);

(d) N = 2, X5 ⊂ P(1, 1, 1, 1, 2), A3 = 5
2 , C = {y = x3 = x0x1 + x2

2 = 0}, deg C = 2,
test class 2A − E;

(e) N = 3, X6 ⊂ P(1, 1, 1, 1, 3), A3 = 2, C = {y = x3 = x0x1 + x2
2 = 0}, deg C = 2,

test class 6A − E;

(f) N = 4, X6 ⊂ P(1, 1, 1, 2, 2), A3 = 3
2 , C = {y2 = y1 = x0 = 0}, deg C = 1, test

class 2A − E;

(g) N = 4, X6 ⊂ P(1, 1, 1, 2, 2), A3 = 3
2 , C = {y2 = x0 = y1a1(x¯

) + b3(x¯
) = 0},

deg C = 3
2 , test class method does not apply (see below);

(h) N = 5, X7 ⊂ P(1, 1, 1, 2, 3), A3 = 7
6 , C = {z = y = x0 = 0}, deg C = 1, test

class 6A − E;

(i) N = 6, X8 ⊂ P(1, 1, 1, 2, 4), A3 = 1, C = {z = y = x0 = 0}, deg C = 1, test
class 4A − E.

As an illustration of how to derive this list we consider family 4; the others are similar.
(Note in particular that we do not discuss proofs for family 1 (either the reduction to
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cases (a)–(c) above or how to deal with each case subsequently), but the arguments
can be found in [1].) So we have X = X6 ⊂ P(1, 1, 1, 2, 2)x0,x1,x2,y1,y2 with A3 = 3

2 ; if
necessary we change coordinates so that P4 = Py2 �∈ X. Take a curve C ⊂ X of degree
at most A3 = 3

2 whose projection C ′′ ⊂ P2 is a curve; then C ′′ is a line which, after
coordinate change, we take to be {x0 = 0}, so deg C ′′ = 1 and

either deg C ′ = 1 or deg C ′ = 3
2 .

If deg C ′ = 1 then deg C = 1 as well, because P4 = Py2 �∈ X so deg C = r deg C ′ for some
r ∈ Z�1, but we know that deg C � 3

2 . Now C ′ ⊂ ({x0 = 0} ∩ P(1, 1, 1, 2)) � P(1, 1, 2) is
an irreducible curve of degree 1 so, after coordinate change, it is {y1 = x0 = 0}. But

{y1 = x0 = 0} ∩ X � {y3
2 + a2y

2
2 + b4y2 + c6 = 0} ⊂ P(1, 1, 2)

with a, b, c ∈ k[x1, x2]. Because C is a degree-1 component of this, the cubic in y2 must
split into a linear factor corresponding to C and a (possibly reducible) quadratic; there-
fore, after another coordinate change, C = {y2 = y1 = x0 = 0}; this is (f) in the list
above.

If, on the other hand, deg C ′ = 3
2 then deg C = 3

2 as well. As before,

C ′ ⊂ ({x0 = 0} ∩ P(1, 1, 1, 2)) � P(1, 1, 2)

is an irreducible curve, but this time its degree is 3
2 , so after coordinate change it is

{y1a1(x1, x2) − b3(x1, x2) = x0 = 0}; therefore, C ⊂ ({y1a1 − b3 = x0 = 0} ∩ X). Now
multiplying the defining equation for X by a3

1 and substituting x0 = 0 and y1a1 = b3,
we deduce that a weighted homogeneous polynomial of the form

a1(x1, x2)3y3
2 + a2

1c3(x1, x2)y2
2 + a1d6(x1, x2)y2 + e9(x1, x2)

vanishes on C. Degree considerations and the irreducibility of C force this polynomial to
split with a factor of the form y2 +f2(x1, x2) corresponding to C; after a final coordinate
change this gives (g) in the list above.

Now the curves in the list need to be excluded. For all but cases (c) and (g) we use
the test class method; these calculations are essentially the same for each of the cases
(a), (b), (d)–(f), (h) and (i), so we give the details only for case (d). Therefore let
X = X6 ⊂ P(1, 1, 1, 1, 3)x0,...,x3,y be a general member of family 3 and suppose that

C = {y = x3 = x0x1 + x2
2 = 0} ⊂ X.

It is clear that 6A is C-isolating (Definition 3.4, using s = 1) so, by Lemma 3.5, M =
6A − E is a test class, where f : (E ⊂ Y ) → (C ⊂ X) is the blow-up of C. But

MB2 = (6A − E)(A − E)(A − E)

= 6A3 − 13A2E + 8AE2 − E3

= 6 × 2 − 0 − 8 × 2 − 0

= −4 < 0
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so C is excluded by Corollary 3.3. In the calculation we used

A2E = 0, AE2 = − deg C = −2,

E3 = − deg NC|X = − deg C + 2 − 2pa(C) = 0.

Finally, we describe briefly how to deal with case (g). (As already mentioned, the argu-
ment for case (c), the only other case in which the test class method does not immediately
apply, is well known and can be found in [1].) So let X = X6 ⊂ P(1, 1, 1, 2, 2)x0,x1,x2,y1,y2

and
C = {y2 = x0 = y1a1(x¯

) + b3(x¯
) = 0} ⊂ X

with deg C = 3
2 = A3. Since C passes through the 1

2 (1, 1, 1) singularity Py1 ∈ X, we
cannot use the test class method to exclude it, so we need the techniques described
in § 4. The method required is exactly that of Example 4.1, below, with a test linear
system |3A − C|. Unfortunately, we do not have space to give the details of more than
one such calculation; as can be seen from Table 1, there are many curves in families
with a2 > 1 to which the method of Example 4.1 must be applied, and for these too we
must omit the details.

4. Surface methods for the remaining curves

The task that remains is to prove Theorem 1.5 for families with a2 > 1. This involves
checking many cases; before listing them we consider two families in full detail so as to
illustrate the two main methods we need.

Example 4.1 (Theorem 1.5 for family 20). Take a general

X13 ⊂ P(1, 1, 3, 4, 5)x0,x1,y,z,t with A3 = 13
60 ;

we make two starred monomial assumptions: ∗tz2 and ∗zy3. The presence of yt2, on the
other hand, is guaranteed by quasi-smoothness at Pt, so after a coordinate change we
can write the defining equation for X as

yt2 + a8t + b13 = 0 with a, b ∈ k[x0, x1, y, z].

Consider the locus Z := {y = a8 = b13 = 0}, which clearly is contained in X and is the
cone over a finite set of points (because t does not appear in a8 or b13). Let C be
a component of Z; then C is a curve of degree 1

5 < 13
60 = A3 and is contracted by

π4 = πPt : X ��� P(1, 1, 3, 4). The components of Z are the only curves that remain to
be excluded for this X (indeed, d < a2a4, so Lemma 2.4 applies to curves not contracted
by π4) and of course all the components of Z are the same up to coordinate change, so
it is sufficient to exclude one of them, our C. (In the language of [7], C and the other
components of Z are precisely the curves flopped by the quadratic involution iPt .)

After a coordinate change we may assume that C = {x0 = y = z = 0} ⊂ X, that
is, C is the x1t-stratum (note that z2 ∈ a8 by ∗tz2, so Pz �∈ C before the change). To
exclude C we follow the general method described in [6, § 5], taking a general surface
T ∈ |4A − C| and doing the following calculations.
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Claim 4.2.

(a) Bs |4A − C| is supported on C ∪ {Py}.

(b) T has a 1
5 (1, 1) singularity at Pt ∈ C ⊂ T and T is smooth at all other points of C.

(c) The self-intersection (C)2T = − 9
5 .

For the proof, see below. Suppose now that H is a mobile linear system of degree n

on X such that KX + (1/n)H is strictly canonical and C ∈ CS(X, (1/n)H). Restricting
H to T , we have H|T = nC + L, where L is the mobile part. It follows that(

1
n

H|T − C

)
∼Q

1
n

L

is nef on T ; but we calculate(
1
n

L
)2

T

=
(

1
n

H|T − C

)2

T

= (A|T )2 − 2(A|T )C + (C)2T

= A2T − 2AC + (C)2T

= 4 × 13
60

− 2 × 1
5

− 9
5

= −4
3

< 0,

which is a contradiction.

Proof of Claim 4.2. (a) A general element T ∈ |4A − C| has the equation

z + yS1(x0, x1) + x0S
3(x0, x1) = 0, (4.1)

with the coefficient convention. If P ∈ Bs |4A − C| then clearly z = x0 = 0 at P ; if y �= 0
then x1 = 0, so a8 = b13 = 0 because neither contains a pure power of y, and it follows
from the defining equation for X that t = 0.

(b) Inside X, Pt ∼ 1
5 (1, 1, 4) in local coordinates (x0, x1, z). The usual manipulation

of the defining equation for X, together with a local analytic coordinate change, shows
that y = z2 + x8

0 + · · · + x0x
7
1 near Pt (note that x8

1 does not appear, because C ⊂ X).
Therefore a general T ∈ |4A−C|, which is globally defined by (4.1), is locally defined by

z + (z2 + x0S
7(x0, x1))S1(x0, x1) + x0S

3(x0, x1) = 0,

so (Pt ∈ T ) ∼ 1
5 (1, 1) in local coordinates (x0, x1). Note that near Pt ∈ T the curve C is

defined by x0 = 0.
To show that T is smooth at all other points of C, consider the affine piece {x1 �= 0} ⊂

P(1, 1, 3, 4, 5), inside which T is defined by

yt2 + a8t + b13 = 0 and z + y + yx0 + x4
0 + · · · + x0 = 0

with a, b ∈ k[x0, y, z]. Writing down the four partial derivatives of each of these two
expressions, and evaluating them along {x0 = y = z = 0}, we see that if X is general,
the rank of the 4 × 2 matrix never drops below 2.
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(c) The non-trivial part here is to calculate the different, Diff ⊂ C, which is the divisor
satisfying

(KT + C)|C = KC + Diff.

C is Cartier away from Pt ∈ T , so Diff is supported on Pt and the only problem is to
calculate the coefficient. We use Corti’s result [10, Proposition 16.6.3], which implies
that Diff = ((m − 1)/m)Pt, where m is the index of C at Pt ∈ T , provided that KT + C

is purely log terminal (plt) at Pt. But the plt condition is clear in this case: Pt ∈ T is
resolved by the 1

5 (1, 1) (i.e. ordinary) blow-up, the discrepancy of KT is 1
5 − 4

5 = − 3
5

(because aE(KX) = 1
5 for the 1

5 (1, 1, 4) blow-up of Pt ∈ X, and T has local weight 4
5 ),

and C ⊂ T has local weight 1
5 ; so the log discrepancy of KT + C is − 3

5 − 1
5 = − 4

5 > −1.
Clearly m = 5, so Diff = 4

5Pt.
The rest is easy. T ⊂ X is Cartier in codimension 2, because X has isolated singulari-

ties, so

−2 + 4
5 = (KT + C)C

= (C)2T + (KX + T )C

= (C)2T + 3AC

= (C)2T + 3
5

and therefore (C)2T = − 9
5 , as required. �

Example 4.3. Family 29, X16 ⊂ P(1, 1, 2, 5, 8)x0,x1,y,z,t with A3 = 1
5 . Suppose that

X contains the curve C = {x0 = y = t = 0}. (An easy argument in the style of the proofs
of Lemmas 2.2 and 2.4 shows that up to coordinate change this C is the only curve of
degree at most A3 not contained in {x0 = x1 = 0}.) We can write the equation for X as

t2 + a8t + b16 = 0 with a, b ∈ k[x0, x1, y, z].

We have assumed that C ⊂ X, which means that after making the substitution x0 =
y = 0 in a and b we are left with a reducible quadratic t(t + c8) = 0, where c ∈ k[x1, z].
In other words,

Bs |2A − C| = {x0 = y = 0} ∩ X = C + C ′,

where C ′ = {x0 = y = t + c8 = 0} is just like C after a coordinate change. Now let
T ∈ |2A − C| be a general surface.

Claim 4.4.

(a) T has a 1
5 (1, 3) singularity at Pz and is smooth elsewhere.

(b) The self-intersection (C)2T = − 7
5 and so, by symmetry, (C ′)2T = − 7

5 as well.

See below for the proof. Suppose now that H is mobile of degree n on X with
KX + (1/n)H canonical and C ∈ CS(X, (1/n)H). Then, restricting H to T , we have
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(1/n)H|T ∼Q C + αC ′ + L/n, where 0 � α � 1 and L is the mobile part of H|T . But
(1/n)H|T ∼Q A|T = C + C ′, so L/n ∼Q (1 − α)C ′. It follows that

0 �
(

1
n

L
)2

T

= (1 − α)2(C ′)2T = − 7
5 (1 − α)2,

and therefore α = 1.
Consequently, C ′ ∈ CS(X, (1/n)H) as well, but deg(C + C ′) = 2A3, which contradicts

Lemma 2.1.

Proof of Claim 4.4. (a) Near to Pz, after a local analytic coordinate change, T =
{y = 0}, so clearly Pz ∼ 1

5 (1, 3) inside T . Showing T is smooth elsewhere can be done as
in the proof of Claim 4.2.

(b) This is also essentially the same as the calculation in Example 4.1. We check that
KT + C is plt at Pz, and it is clear that the index of C at Pz is 5, so we have

−2 + 4
5 = deg(KC + Diff)

= (KT + C)C

= (KX + T )C + (C)2T
= AC + (C)2T
= 1

5 + (C)2T ,

using Corti’s result [10, Proposition 16.6.3]. The desired conclusion follows. �

4.1. Proof of Theorem 1.5 assuming that a1 > 1

For the majority of the families with a1 > 1, Lemmas 2.1, 2.2 and 2.7 prove Theo-
rem 1.5. We need consider only families 18, 19, 22, 27 and 28, which fail to satisfy the
hypotheses for Lemma 2.2; family 18 also fails to satisfy the hypotheses for Lemma 2.7.
The way things turn out is as follows: firstly, for families 19, 22, 27 and 28 there are in
fact no curves of degree at most A3 contained in X, and for family 18 the only curves of
degree at most A3 are those contracted by π4; in other words, Lemma 2.2 in fact applies
to all the families with a1 > 1, provided we make generality assumptions. Secondly, the
curves in family 18 contracted by π4 can be excluded as in Example 4.1, using a general
surface T ∈ |4A − C|.

We make no further remarks about the exclusion of curves contracted by π4 in the
case of family 18, but give an example of how to extend Lemma 2.2 to families 18, 19,
22, 27 and 28. Thus, consider family 19:

X12 ⊂ P(1, 2, 3, 3, 4)x,y,z1,z2,t with A3 = 1
6 .

Let P1, P2, P3, P4 ∼ 1
3 (1, 2, 1) be the singularities on the z1z2-stratum and Q1, Q2, Q3 ∼

1
2 (1, 1, 1) be those on the yt-stratum. We assume that the curve {x = y = 0} ∩ X is
irreducible and that PiQj �⊂ X for all i, j; a general X satisfies these assumptions. Now
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Table 1. Curves excluded by surface methods

family fails curve(s) method system

7 Lemmas 2.4, 2.7 {x0 = y1 = y2 = 0} Example 4.1 |2A − C|
{x0 = y1 = z = 0} Example 4.1 |3A − C|

9 Lemma 2.4 {x0 = y = z1 = 0} Example 4.1 |3A − C|
{x0 = z1 = z2 = 0} Example 4.1 |3A − C|

11 Lemma 2.4 {x0 = y1 = z = 0} Example 4.1 |5A − C|
12 Lemmas 2.4, 2.7 {x0 = y = z = 0} Example 4.1 |3A − C|

{x0 = y = t = 0} Example 4.1 |4A − C|
13 Lemmas 2.4, 2.7 {x0 = y = z = 0} Example 4.1 |3A − C|

{x0 = y = t = 0} Example 4.1 |5A − C|
15 Lemma 2.4 {x0 = y = t = 0} Example 4.3 |2A − C|
16 Lemmaa 2.4, 2.7 {x0 = y = z = 0} Example 4.1 |4A − C|
17 Lemma 2.4 {x0 = y = z1 = 0} Example 4.1 |4A − C|
20 Lemma 2.7 {x0 = y = z = 0} Example 4.1 |4A − C|
21 Lemma 2.4 {x0 = y = t = 0} Example 4.1 |7A − C|
24 Lemmaa 2.4, 2.7 {x1 = y = z = 0} Example 4.1 |5A − C|
25 Lemma 2.7 {x1 = y = z = 0} Example 4.1 |4A − C|
26 Lemma 2.7 {x0 = y = z = 0} Example 4.1 |5A − C|
29 Lemma 2.4 {x0 = y = t = 0} Example 4.3 |2A − C|
34 Lemma 2.4 {x0 = y = t = 0} Example 4.3 |2A − C|
46 Lemma 2.7 {x1 = y = z = 0} Example 4.1 |7A − C|

suppose that C is a curve of degree at most A3 contained in X. Again we form the
following familiar diagram:

C ⊂

��

P(1, 2, 3, 3, 4)

π4

���
�
�

C ′ ⊂

��

P(1, 2, 3, 3)

π3

���
�
�

C ′′ ⊂ P(1, 2, 3)

Certainly C ′ is a curve, because Pt �∈ X. Suppose that C ′′ is also a curve. Then its
degree is 1

6 = A3 and it is defined by {x = 0} after a coordinate change. Therefore
deg C = deg C ′ = 1

6 also, and C ′ is isomorphic to a curve in P(2, 3, 3), so after a coordinate
change we have C ′ = {x = z1 = 0}. The same argument applied to C now shows that
C = {x = z1 = t = 0}, after another coordinate change, so C = PiQj , which is a
contradiction.
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Therefore, in fact, C ′′ = {∗} is a point. After a coordinate change, this point is one of

{y = z1 = 0}, {x = y3 + z2
1 = 0}, {x = z1 = 0} and {x = y = 0}.

In the first two cases we have deg C ′ = 1
3 > A3, which is a contradiction. In the last case,

C must be contained in {x = y = 0} ∩ X, which has degree 1
3 > A3 and is irreducible

by assumption: a contradiction again. In the third case, an easy argument shows that
C = PiQj for some i, j, which gives a contradiction as above.

Similar arguments can be used to extend Lemma 2.2 to families 18, 22, 27 and 28.
This completes the proof of Theorem 1.5 for all the families with a1 > 1.

4.2. Proof of Theorem 1.5 assuming that a1 = 1, a2 > 1

For this proof we apply the method of Example 4.1 to many curves. There is not enough
space here to go through each of these; instead, Table 1 summarizes the calculations.

The contents of Table 1 should be interpreted as follows, in conjunction with the
‘big table’ of [7]. The families listed are those with a1 = 1 and a2 > 1 which fail to
satisfy the hypotheses of at least one of the lemmas 2.4 and 2.7; which of these two they
fail is the content of the second column. Now, for a given family in the table, we run
familiar arguments, in the style of the proofs of Lemmas 2.2 and 2.4, to deduce that up
to coordinate change the only curves of degree at most A3 which are not contained in
{x0 = x1 = 0} are those listed in the third column. (In fact, for a given family, there is
usually only one of these curves up to coordinate change.) The fourth column gives the
method used to exclude the curve in question: usually that of Example 4.1, but in a few
cases that of Example 4.3. Both these methods involve picking a general surface T in
some linear system with a certain base locus containing C; this linear system is given in
the last column. This completes the proof.
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