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Abstract
Many large survey courses rely on multiple professors or teaching assistants to judge student responses

to open-ended questions. Even following best practices, students with similar levels of conceptual under-

standing can receive widely varying assessments from different graders. We detail how this can occur and

argue that it is an example of differential item functioning (or interpersonal incomparability), where graders

interpret the same possible grading range differently. Using both actual assessment data from a large survey

course in Comparative Politics and simulation methods, we show that the bias can be corrected by a small

number of “bridging” observations across graders.We conclude by offering best practices for fair assessment

in large survey courses.

Keywords: Bayesian Aldrich–McKelvey scaling, differential item functioning, assessment bias

1 Introduction

Fairness of evaluation is a primary concern in education. Students in large university classes

often complain about unfair and disparate grading practices. Such practices can distort students’

major choice, performance, labor market outcomes, self-evaluation, and motivation (Lavy and

Megalokonomou 2019; Lavy and Sand 2018; Papageorge, Gershenson, and Kang 2020). In this

manuscript, we describe a pernicious form of unfairness that arises when students are assigned

different graders with varying severity levels.

We introduce an intuitive method for reducing this kind of bias: a Bayesian implementation of

the Aldrich–McKelvey scaling model, where multiple graders grade some assignments. Using real

student data from an actual university-level introductory course, we show that even a handful

of bridging observations (increasing the workload of graders by less than 10%) can successfully

reduce bias by more than 50%.

Multiple rater issues are commonplace in political science with applications in roll-call voting

(Poole and Rosenthal 2000), judicial politics (Martin and Quinn 2002), expert ratings (Clinton and

Lewis 2008), survey respondent ratings (Aldrich and McKelvey 1977), and even graduate school

admissions (Jackman 2004). Although bridging is not a novel method to handle incomparability

(Bailey 2007; Bakker et al. 2014; Marquardt and Pemstein 2018; Pemstein, Tzelgov, and Wang
2015)—given the prevalence of grading bias—we believe that its application to grading practice

is underappreciated in political science. Alongside this paper, we introduce a new R package

that flexibly implements our proposed method for grading data with any number of students,

assessments, and graders.1

Researchers seeking to advance this line of inquiry might further investigate the comparative

benefits ofmore advancedmodels. After all, using advanced item response theory (IRT)models to

1 While awaiting approval from CRAN, the R package “bridgR” can be located here: https://github.com/sidakyntiso/
bridgr.git.
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analyze and reduce different types of bias in assessments is a thriving field on its own (Johnson

1996; Johnson and Albert 1999; Shin, Rabe-Hesketh, and Wilson 2019; Wang, Su, and Qiu 2014).2

However, in this paper,we attempt to balance not only reduction in biaswith the cost of additional

grading, but also simplicity of explication. More specifically, themethod used to diminish bias has

to be simple enough that college students can understand the intuition behind it, meaning that

we face a trade-off between simplicity and reducing bias with which pure theoretical papers do

not have to contend.

2 The Problem: Having Multiple Graders and Achieving Fair Assessment

We consider grading bias stemming from having multiple graders as a violation of a specific form

of fairness, fairness-through-symmetry (Blackburn 2003). In general, a process is considered fair

when it can be expected to produce symmetrical outcomes for identical inputs. In our case, a

grading process is “fair” when the grader assigned to a specific student does not, in expectation,

affect the grade that this student ultimately receives.

When assessments are carried out in a multi-grader environment, bias can result from a

difference in severity across graders or grader error. In this paper, we focus on limiting the first

source of bias (severity) and assume that all best practices (i.e., blinding to reduce student-specific

error and assessment training to reduce grader-specific error) are being followed to allay the

second. We illustrate how difference in grader severity can lead to unfair student assessments in

Figure 1.

3 Proposed Solution: “Bridging” between Graders

An obvious solution to this type of individual grader bias is to let the same grader review all

assessments for a class. Unfortunately, this is an unrealistic solution for large lectures given

common restrictions on grader time.3

Instead, we put forth the best solution given grader time and resource constraints: bridging

across graded groups using a minimal number of bridging observations. By this, we mean that

multiple graders assess the same assignment, creating a “bridge” between graders that a model

can use to adjust for grader differences in the remaining unbridged observations. In a bridging

scenario, some—but not all—of the students in a class will receive grades from each grader.

Figure 2 displays a simplified illustration of this solution. In the example, we use a single shared

Figure 1. Illustration of the bias that can be introduced by having multiple graders.

2 See also the literature on using advanced Rasch models for doing this, for example, Wind, Engelhard, and Wesolowski
(2016) and Wind and Jones (2018).

3 We cover a host of possible alternatives to ourmethod—andwhy they are found lacking—in Appendix A in the Supplemen-
tary Material.
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Figure 2. Illustration of how bridging canminimize bias stemming from having multiple graders.

(or “bridged”) student to observe that one grader is stricter than another. Thus, fairness demands

that we adjust the students in both sections to reflect relative performance accurately.

Bridging assures that multiple graders can assess the same course and assignments while at

the same timeminimizing the potential bias that comes from having multiple graders.

Bridging is likely to be familiar to a wide variety of political science faculty, although they have

not used it in this specific context. For example, comparativists use bridging to ensure that expert

evaluators place political parties from different countries on the same left–right scale even if few

experts can evaluate multiple countries’ parties (Bakker et al. 2014).4 Bridging has also been used
to ensure that evaluators with different scales for “democracy” can reliably place countries on

a common scale (King et al. 2004; Marquardt and Pemstein 2018; Pemstein, Tzelgov, and Wang
2015). Americanists use bridging to place politicians operating in different environments in the

same ideological space (Poole 2007). This familiarity with the concept means that bridging is

comfortable to use and, at the same time, relatively easy to explain to curious students.

Using bridging to adjust students’ grades in this way requires that wemaintain some standard

assumptions of student assessment. These assumptions include the following:

• Each grader will be internally consistent in their assessments.

• Graders have tobe somewhat consistent, that is, have the same senseofwhat differentiates

a high-quality answer and a low-quality answer.

• Graders reward better quality answers roughly “linearly.” Performance is treated similarly

for high- and low-quality assignments.

These assumptions are not likely to be overly restrictive and must only weakly hold to ensure

the success of the process. In the next section, we explain the specific bridging approach we use

and test it on real assessment data to show its promise for reducing bias.

4 Data and Analysis

We assert that the grading bias described in this paper is a form of “differential item functioning”

(DIF), or interpersonal incomparability. Grades given by one grader are not directly comparable

to grades given by another, making it challenging to judge students’ relative mastery of the

material when they are assigned different graders. Aldrich andMcKelvey suggested that one could

overcome this issue by treating the rankings given to particular stimuli (here, grades given to

specific exams) as somewhat distorted perceptions of the true, underlying latent value of the

stimuli—here, student’smasteryof thematerial (AldrichandMcKelvey 1977). This typeofmodeling

has been frequently used in political science research to adjust for survey responses by individuals

whomight perceive survey questions differently, even when the questions asked and scales used

are technically identical (see, e.g., Hollibaugh, Rothenberg, and Rulison (2013) and Lo, Proksch,

4 See also Struthers, Hare, and Bakker (2019).
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and Gschwend (2014), and particularly Hare et al. (2015), whom we follow in casting the process

inside a Bayesian framework).

In this specific case, we adopt a simple model of assessment, where an individual student’s

grade on a particular assignment is a function of the student’s underlying skill, attributes of the

grader assessing the assignment, and some randomness. We consider two different attributes of

the grader. First, we expect that gradersmight have different baselines for their perceptions of the

underlying skill. That is, an “average” performance on aparticular assignmentmay receive a lower

or higher score for each grader, depending on this personal attribute. Second, we also expect that

gradersmay bemore or less willing to use all parts of the scoring range. That is, even if the graders

start an average student at the same score, they may bemore or less rewarding to improvements

on that score.5

Thus, we model for each graderi and studentj as follows: Gradei j = αi + βi γj + μi j , where γj

is the underlying true skill of the student, αi is the intercept or “shift term” assigned to each

grader, βi is the weight term assigned to each grader, and μi j is the stochastic error term. The two

grader-specific terms reflect what we discussed above: the intercept term (αi ) discerns whether

the graders have different baseline levels for their grades, whereas the weight term (βi ) measures

the “stretch,” or how tightly or loosely an improvement in underlying skill is rewarded with an

increase in grade.

In this context, bridged exams serve as common stimuli that allow the grader to approximate

a student’s ability, adjusting for distorted grader perceptions. By adding bridges, we are adding

information for the algorithm that allows it not only to better estimate the underlying latent skill

of the student, but also to compare how graders filter the same input through different attributes

and estimate those attributes. By then extending those attributes to students who did not serve
as bridges, we can judge the relative performance of all students.

We estimate this model in a Bayesian framework (as opposed to using a maximum likelihood

approach) for two reasons. First, the Bayesian approach better handles inherently missing data,

which is important here because all students who do not serve as bridges have grades “missing.”

The Bayesian approach also allows us to understand the uncertainty around our estimated grade

distribution better, as we draw from a posterior distribution of all estimated parameters.

In order to estimate the model using a Bayesian approach, we require priors on our estimated

parameters—hereα , β , γ, and μ. We employweakpriors on eachof the grader-specific parameters

(αi ∼ N (0,30) and βi ∼ N (0,30)) and provide a standard normal prior (γj ∼ N (0,1)) on the

underlying skill of a student, so that one can easily rank students, as well as perceive large jumps

in the distribution via differences in deviations from the mean.6 In each estimation, we utilize

five chains, each running 30,000 iterations, with the first 2,000 iterations serving as burn-in and

thinning the remaining iterations in intervals of 20. Althoughmore complex approaches exist,7 we

believe that simplicity can better ensure that the method is explicable to students with minimal

statistics knowledge. Interested practitioners can consult our R package that implements the

method.

To evaluate the gains frombridging,weuse a simulation exercise on real-world student grading

data.8 We collected grades during a Fall 2018 semester Introduction to Comparative Politics course

5 In a simple example, imagine one grader who gives poor students failing grades and strong students top marks, versus a
different grader who never uses the extreme ends of the scale, even when faced with the same performances by the same
students.

6 μ’s prior is drawn from a gamma distribution over a shape and rate parameter that themselves are each drawn from a
gamma distribution G(.1, .1).

7 For example, one could allow DIF to occur non-linearly at specific thresholds rather than through linear transformations
of the latent skill (see Appendix C in the Supplementary Material).

8 All data and scripts are posted in our replication data, available in Kates et al. (2022) at https://doi.org/10.7910/DVN/16EYI2.
The accompanying R package is available at https://github.com/sidakyntiso/bridgr.git.
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at a large private research university located in the Northeast,9 a relatively large course involving

140 students, six review sections, and three teaching assistants. Each teaching assistant graded

all students’ performance on a midterm examination, a short 5—7-page paper covering material

from the course, and a final exam. Free-response and essay-style answers accounted for the

vast majority of the available points in all assignments, suggesting that differences in grader

perceptions were likely, and likely to be impactful.

We use the averaged grades of all graders on each assessment as the baseline of fairness, as it

removes the possibility that grader assignment affected the student’s grade. Despite implement-

ing best-practice grading protocols to reduce the potential for bias—graders were trained on a

rubric, discussed possible assessments for the same answer, and graded de-identified papers—

we find that the traditional grade attribution process produced significant bias.

Considering the difference in student placement on the midterm exam10 when assessed by a

single grader versus the three-grader average, the mean absolute error (“MAE”) is approximately

22.5. This means that the average student’s rank is 22.5 positions (out of 135 ranked positions for

non-missingmidterm exams) above or below their “earned” ranking, where the actual rank is the

rank from the student’s single assigned grader and the “earned” ranking is the ranking based on

the average grade of all three graders.11 Rank deviations of this magnitude can ultimately move

students multiple grade categories in a class that is curved by the instructor’s choice or university

rules.

In the simulation exercise, we repeatedly recreate “new” classes, made up largely of students

whose only grade we have access to is the one provided by their assigned teaching assistant.

However, for somenumber of students (the number of bridges), we also have their grades as given

from the other two teaching assistants, that is, three grades for each of these bridged students.

We then estimate the model above, extract the needed attributes to calculate a score for each

student, as well as the relative rank of each student compared to all other students. We compare

this estimated rank for each student to their rank in our “gold standard” case: where each student

receives grades from all three teaching assistants, and their total grade and rank is determined by

the average of these three scores.12 We calculate the MAE and the RMSE for this difference in ranks

across this simulation.

We repeat this process 100 times for each number of bridges, which allows us to see how

variable our improvement is depending on the students randomly chosen as bridges. We can also

thereby roughly establish upper and lower bounds for how much bias can be reduced given a

particular number of bridges. We discuss the results of this exercise in the next section.

5 Results: Even a Small Number of Bridges Reduces Bias

The simulation exercise tests the extent towhich bridging observations can reduce bias stemming

from grader assignment, and how efficiently this reduction is carried out. As each bridging item

added involves an increase in the amount of grading by one less than the number of graders,

increasing their number leads quickly to amultiplication of work and a continuously larger cost in

terms of instructor time chasing more bias reduction.

9 Student assessments were de-identified. We received IRB approval (New York University IRB-FY2019-2483) to use the de-
identified grades for research purposes.

10 Themidterm examwas the first assessment in this course. As such, it provided the best opportunity to see the type of bias
described in this paper. Graders were unaware of their own “grader type”—whether they were generally more or less strict
than the other graders or had a larger or smaller range of potential grades.

11 The root mean square error (“RMSE”), which places extra weight on considerable deviations from the appropriate rank,
is 27.3.

12 It is possible that the use of the average grade as a baseline instead of a “true” grade could somehow skew our results. To
allay this concern, we include a simulation exercise where the “true” grade of each student is known in Appendix C in the
Supplementary Material. The exercise shows that our approach vastly reduces bias even in cases where the baseline is the
“true” grade.
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Figure 3.Mean absolute error for estimates of student placement (rank) onmidterm exam, across a number
of bridged exams. The horizontal dotted line reflects the bias associated with the traditional method of
grading exams in our data.

However, as one can see from the violin plot in Figure 3, this concern turns out to be

unnecessary. On the figure’s x-axis, we plot the number of bridging observations, whereas the
y-axis measures the MAE of a given simulation. For each level of bridging observations, we show
themedian, interquartile range, andMAE’s kerneldensityderived fromthe 100 runsof theexercise.

Thus, the thicker part of each violin represents where the largest mass of our 100 runs for each

bridging level fell in terms of MAE.

Figure3 shows that the returns tobridgingarenearly immediateandquite substantial.Wemark

the bias associatedwith the traditionalmethodwith a dottedhorizontal line (at 22.5). Adding even

onebridgingobservation (which involves twograders gradingoneadditional student each) halves

the bias in the large majority of cases. As one continues to add bridges, the bias decreases, albeit

at increasingly lower rates,withonlymarginal improvement at themedian. Increasing thenumber

of observations can give the assessor a better chance at a “good draw” or at avoiding a poor one

that does not reduce bias by as much. Still, even in the worst-case scenarios for any number of

bridges, the reduction in bias is substantial.

Onemight ask how such an improvement is possiblewith relatively little resource expenditure.

We offer both general and specific reasons: first, in general, in grading situations where we have

a high enough number of students for each grader, we can generally place a student on a normal

curve in that subset of the class. When that student is used as a bridge, we have their relative

positiononasmany curves aswehave graders, andall that is necessary todo is to shift each curve,

so that student is constant across them. This is a different way of saying that bridging allows us

to directly extract the intercept difference for each grader. However, the parameters of the curve

also give us some information about the slope term for each grader, information that increases

over the number of bridges. Thus, if most of the error is in the shift/intercept term (α ), returns to

bridging are going to be immediate and large.

In this particular class, the explanation is of this type. One of the three graders was consistently

more strict than the other two graders while also remaining very consistent with the other two

graders in underlying rankof the students. In theunbridged situation, this grader’s studentswould

bedisadvantagedunfairlyby their graderassignment,even though their graderwas fairlyassessing
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their relative quality. However, when we apply a bridging algorithm and readjust students based

on it, we immediately adjust this grader’s students upward via the intercept term, and we reduce

bias by more than 50%.

However, we need not rely only on this individual case for evidence of our proposed solution’s

efficacy. In the Supplementary Material, we pursue a variety of robustness checks and condition-

ality exercises, basedonboth the real-life data and simulations.Webreakdowneachbriefly below

and point to where readers can find the results.

5.1 Additional Real-Life Results
In Appendix B in the Supplementary Material, we show that our improvements are robust to

changes in the chosen outcome metric (RMSE vs. MAE), the item or items assessed (paper and

final overall grades vs. just the midterm exam), or the outcome format (letter grade vs. rank).

We find that much of these improvements in the actual data arise from accounting for one

particular grader’s severity;we suggest that practitioners examine commonly gradedassignments

to determine the potential gains from the algorithm ex ante. This allows for a “mixed-methods”

approach to decreasing bias that utilizes both the algorithm and pedagogical refocusing where

necessary. Finally, we find no evidence that the performance depends on the specific students

used as bridges (i.e., using only low, high, or extreme scores).

5.2 Simulation Results
In Appendix C in the Supplementary Material, we conduct a series of simulations to show that the

bridging process results in bias reduction over a broad set of different data-generating processes

and potential grader pools. These findings demonstrate that the improvements from bridging are

not an artifact of treating the average as the “true” grade.

First, we simulate 27 datasets reflecting various degrees of grader reliability (β ) and grader

shift (α ), as well as grade-level error (μ).13 The Bayesian Aldrich–McKelvey model outperforms

the traditional evaluation method across all datasets except in the limiting case in which graders

perfectly agree on each exam (no variability in reliability, shift, or error).

In our secondary simulation analysis, we vary the number of graders (2–5), the number of

studentspergrader (12, 30, and60), and the level ofbias (lowvs. highvariability for all parameters).

Our approach outperforms a standard unbridged approach in every combination, but the reduc-

tions in bias increase in the number of graders, in the number of students, and in the variability of

the parameters.

Finally, we compare our preferred model’s performance to an ordinal IRT model (Marquardt

andPemstein2018)—analternativeapproach thatuses similar bridging concepts toaddress issues

of DIF. We generate nine datasets from an IRT data-generating process that incorporates grading

bias via grader-specific ordinal thresholds formapping latent ability into scores. We find that both

bridging approaches substantially outperform a traditional regime where there is no bridging.

Undermoderate or severe DIF, the IRTmodel outperforms the Bayesian Aldrich–McKelveymodel,

although this difference is negligible compared to the difference with the traditional method.

6 Discussion and Best Practices

In this paper, we show that by creating bridged observations between graders, assessors can

severely reduce the bias stemming from grader differences in severity. The reduction can be

quite substantial, even at relatively low costs. While the trade-off for any individual instructor will

naturallydependon theexpected improvements in fairnessand theburdenof theadditional costs,

we believe that this is the most economical first step in reducing potential bias.

13 We explore cases with no, low, or high variability for each parameter.
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We should note three qualifications: first, this exercise neither precludes nor eliminates all

errors. Regardless of how much of the baseline differences between graders we adjust for, there

are still stochastic elements and matters of taste that are hard to model. Second, this algorithm

addresses a specific type of error stemming fromattributes of the assessors.14 However, we should

not expect it to perform (or claim that it performs) equally well across all classrooms.15 Finally,

it may be challenging to communicate the process to students unfamiliar with the concepts dis-

cussed in this paper and unaware of the bias lurking inmore traditional ways of assigning grades.

We expect that communication to students is one of the two primary obstacles to implementing

this method alongside the implementer’s technical know-how.

For communication, we have produced a simple set of slides that use visualizations of the

problem and concrete examples to explain how the bias arises and how this method works to fix

it. Alongside an instructor’s guidewith common FAQs and citations tomore in-depth explanations

of the procedures, these slides should ease communication between instructors and students.16

For technical implementation, we have created a simple and straightforward R package that

serves as a wrapper for rstan and takes as inputs the bare minimum amount of information from

the instructorbeforeoutputtinga rankingof students. Thevignetteandpackagegitwill haveeasily

reproducible examples so that instructors can become comfortable with implementation before

adopting the procedure.

In both cases, we believe that our materials will serve as significant first steps toward making

the grader adjustment process a regular part of student assessment. But these resources should

notbe considered the finalword.Wehope to start anongoing conversationonhowbest tobalance

student welfare between fairness and ease of understanding the grading process.

The most important contribution of this paper remains the knowledge that it takes an aston-

ishingly small number of bridging observations to dramatically lower bias stemming from having

multiple graders. This procedure is a vast improvement from doing nothing to reduce this partic-

ular form of bias, which we speculate is the norm in many classroom settings.
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Supplementary Material

For supplementary material accompanying this paper, please visit https://doi.org/10.1017/
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