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Abstract. For a subfunction u, associated with the stationary Schrödinger oper-
ator, which is dominated on the boundary by a certain function on a cone, we generalise
the classical Phragmén-Lindelöf theorem by making an a-harmonic majorant of u.
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1. Introduction and main results. Let S be an open set in Rn(n ≥ 2), where Rn is
the n-dimensional Euclidean space. The boundary and the closure of S are denoted by
∂S and S, respectively. In cartesian coordinate, a point P is denoted by (X, xn), where
X = (x1, x2, . . . , xn−1). Let |P| be the Euclidean norm of P. Also denote |P − Q| be
the Euclidean distance of two points P and Q in Rn.

For P ∈ Rn and r > 0, let B(P, r) denote the open ball with centre at P and radius
r in Rn. Sr = ∂B(O, r).

A system of spherical coordinates for P = (X, xn) is given by

|P| = r, x1 = r
n−1∏
i=1

sin θi (n ≥ 2), xn = r cos θ1,

and if n > 2, then

xn−j+1 = r cos θj

j−1∏
i=1

sin θi (2 ≤ j ≤ n − 1),

where 0 ≤ r < +∞, − 1
2π ≤ θn−1 < 3

2π , and if n > 2, then 0 ≤ θi ≤ π (1 ≤ i ≤ n − 2).
Relative to this system, the Laplace operator � may be written

� = n − 1
r

∂

∂r
+ ∂2

∂r2
+ �∗

r2
,

where the explicit form of the Beltrami operator �∗ is given by V. Azarin (see [2]).
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Let D be an arbitrary domain in Rn and Aa denote the class of non-negative radial
potentials a(P), i.e. 0 ≤ a(P) = a(r), P = (r,�) ∈ D, such that a ∈ Lb

loc(D) with some
b > n/2 if n ≥ 4 and with b = 2 if n = 2 or n = 3.

If a ∈ Aa, then the stationary Schrödinger operator

Scha = −� + a(P)I = 0,

where � is the Laplace operator and I is the identical operator, can be extended in the
usual way from the space C∞

0 (D) to an essentially self-adjoint operator on L2(D) (see [7,
Ch. 13] ). We will denote it Scha as well. This last one has a Green a-function Ga

D(P, Q).
Here, Ga

D(P, Q) is positive on D and its inner normal derivative ∂Ga
D(P, Q)/∂nQ ≥ 0,

where ∂/∂nQ denotes the differentiation at Q along the inward normal into D. We
denote this derivative PIa

D(P, Q), which is called the Poisson a-kernel with respect
to D.

In the proof, we need inequalities between Green a-function Ga
D(P, Q) and that of

the Laplacian, hereafter denoted by G0
D(P, Q). It is well known that, for any potential

a(P) ≥ 0,

Ga
D(P, Q) ≤ G0

D(P, Q). (1.1)

The inverse inequality is much more elaborate if D is a bounded domain in Rn.
Cranston, Fabes and Zhao (see [4], the case n = 2 is implicitly contained in [3]) have
proved

Ga
D(P, Q) ≥ M(D)G0

D(P, Q), (1.2)

where D is a bounded domain, a constant M(D) = M(D, a(P)) is positive and does
not depend on points P and Q in D. If a = 0, then obviously, M(D) ≡ 1.

We call a function u 	≡ −∞ that is upper semi-continuous in D a subfunction of
the Schrödinger operator Scha if its values belong to the interval (−∞,+∞) and at
each point P ∈ D with 0 < r < r(P) the generalised mean-value inequality

u(P) ≤
∫

S(P,r)
u(Q)

∂Ga
B(P,r)(P, Q)

∂nQ
dσ (Q)

is satisfied, where S(P, r) = ∂B(P, r), Ga
B(P,r)(P, Q) is the Green a-function of Scha in

B(P, r) and dσ (Q) is the surface area element on S(P, r).
The class of subfunctions in D is denoted by SbH(a, D). If −u ∈ SbH(a, D), then

we call u a superfunction and denote the class of superfunctions by SpH(a, D). If a
function u is both subfunction and superfunction, it is, clearly, continuous and is called
an a-harmonic function associated with the operator Scha. The class of a-harmonic
functions is denoted by H(a, D) = SbH(a, D) ∩ SpH(a, D). In terminology, we follow
B. Ya. Levin and A. Kheyfits (see [6]).

The unit sphere and the upper half unit sphere are denoted by Sn−1 and Sn−1
+ ,

respectively. For simplicity, a point (1,�) on Sn−1 and the set {�; (1,�) ∈ �} for a set
�, � ⊂ Sn−1, are often identified with � and �, respectively. For two sets 	 ⊂ R+ and
� ⊂ Sn−1, the set {(r,�) ∈ Rn; r ∈ 	, (1,�) ∈ �} in Rn is simply denoted by 	 × �. In
particular, the half space R+ × Sn−1

+ = {(X, xn) ∈ Rn; xn > 0} will be denoted by Tn.
By Cn(�), we denote the set R+ × � in Rn with the domain � on Sn−1. We call

it a cone. Then Tn is a special cone obtained by putting � = Sn−1
+ . We denote the
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sets I × � and I × ∂� with an interval on R by Cn(�; I) and Sn(�; I). By Sn(�; r),
we denote Cn(�) ∩ Sr. By Sn(�), we denote Sn(�; (0,+∞)), which is ∂Cn(�) − {O}.
Furthermore, we denote by dSr the (n − 1)-dimensional volume elements induced by
the Euclidean metric on Sr.

For positive functions h1 and h2, we say that h1 � h2 if h1 ≤ Mh2 for some constant
M > 0. If h1 � h2 and h2 � h1, we say that h1 ≈ h2.

Let � be a domain on Sn−1 with smooth boundary and λ be the least positive
eigenvlaue for �∗ on � (see [8, p. 41])

(�∗ + λ)ϕ(�) = 0 on �,

ϕ(�) = 0 on ∂�.

Corresponding eigenfunction is denoted by ϕ(�),
∫
�

ϕ2(�)dS1 = 1. In order to ensure
the existence of λ and a smooth ϕ(�). We put a rather strong assumption on �: if
n ≥ 3, then � is a C2,α-domain (0 < α < 1) on Sn−1 surrounded by a finite number
of mutually disjoint closed hypersurfaces (e.g. see [5, pp. 88–89] for the definition of
C2,α-domain).

Solutions of an ordinary differential equation

−Q′′(r) − n − 1
r

Q′(r) +
(

λ

r2
+ a(r)

)
Q(r) = 0, 0 < r < ∞. (1.3)

It is known (see, for example, [11]) that if the potential a ∈ Aa, then the equation (1.3)
has a fundamental system of positive solutions {V, W} such that V is non-decreasing
with

0 ≤ V (0+) ≤ V (r) as r → +∞,

and W is monotonically decreasing with

+∞ = W (0+) > W (r) ↘ 0 as r → +∞.

We will also consider the class Ba, consisting of the potentials a ∈ Aa such
that there exists the finite limit lim

r→∞ r2a(r) = k ∈ [0,∞), moreover, r−1|r2a(r) − k| ∈
L(1,∞). If a ∈ Ba, then the (super)subfunctions are continuous (see [10]).

In the rest of paper, we assume that a ∈ Ba and we shall suppress this assumption
for simplicity.

From now on, we always assume D = Cn(�). For the sake of brevity, we shall
write Ga

�(P, Q) instead of Ga
Cn(�)(P, Q), PIa

�(P, Q) instead of PIa
Cn(�)(P, Q), SpH(a)

(resp. SbH(a)) instead of SpH(a, Cn(�)) (resp. SbH(a, Cn(�))) and H(a) instead of
H(a, Cn(�)).

Denote

ι±k = 2 − n ±
√

(n − 2)2 + 4(k + λ)
2

,

then the solutions to the equation (1.3) have the asymptotic (see [5])

V (r) ≈ rι+k , W (r) ≈ rι−k , as r → ∞. (1.4)
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REMARK 1. If a = 0 and � = Sn−1
+ , then ι+0 = 1, ι−0 = 1 − n and ϕ(�) =

(2ns−1
n )1/2cosθ1, where sn is the surface area 2πn/2{�(n/2)}−1 of Sn−1.
Let u(r,�) be a function on Cn(�). We introduce Mu(r) = M(r, u) = sup

�∈�

u(r,�),

u+ = max{u, 0} and u− = max{−u, 0}.
We shall say that u(P) (P = (r,�)) satisfies the Phragmén-Lindelöf boundary

condition on Sn(�), namely,

lim sup
P=(r,�)∈Cn(�),P→Q∈Sn(�)

u(P) ≤ 0. (1.5)

For any given positive real number r, the integral

∫
�

u(r,�)ϕ(�)dS1,

is denoted by Nu(r), when it exists. The finite or infinite limit

lim
r→∞

Nu(r)
V (r)

(
resp. lim

r→0

Nu(r)
W (r)

)

is denoted by Vu (resp. Wu), when it exists.
If f (l) is a real finite-valued function defined on an interval (0,+∞), then for any

given l1, l2 (0 < l1 < l2 < ∞) and l ∈ (0,+∞), we have

E (l; f, V, W, l1, l2) =
∣∣∣∣∣∣

f (l) V (l) W (l)
f (l1) V (l1) W (l1)
f (l2) V (l2) W (l2)

∣∣∣∣∣∣ ≥ 0

if and only if

f (l) ≤ F (l; f, V, W, l1, l2),

where F (l; f, V, W, l1, l2) has the following expression:

{
W (l)
W (l1)

f (l1)
(

V (l2)
W (l2)

− V (l)
W (l)

)
+ W (l)

W (l2)
f (l2)

(
V (l)
W (l)

− V (l1)
W (l1)

)} {
V (l2)
W (l2)

− V (l1)
W (l1)

}−1

.

We shall say that f (l) is (V, W )-convex on (0,+∞) if E (l; f, V, W, l1, l2) ≥ 0 (l1 ≤
l ≤ l2) for any l1, l2 (0 < l1 < l2 < +∞).

REMARK 2. A function f (l) is (V, W )-convex on (0,+∞) if and only if W−1(l)f (l)
is a convex function of W−1(l)V (l) on (0,+∞), or, equivalently, if and only if V−1(l)f (l)
is a convex function of V−1(l)W (l) on (0,+∞).

REMARK 3. If f (l) is a (V, W )-convex function on (0,+∞), then for any l1, l2 (0 <

l1 < l2 < +∞), we have E (l; f, V, W, l1, l2) ≤ 0, where 0 < l ≤ l1 and l2 ≤ l < +∞.
Let g(Q) be a locally integrable function on Sn(�) such that

∫ ∞
t−1V−1(t)

(∫
∂�

|g(t,�)|dσ�

)
dt < +∞ (1.6)
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and ∫
0

t−1W−1(t)
(∫

∂�

|g(t,�)|dσ�

)
dt < +∞, (1.7)

where dσ�
is the surface area element of ∂� at � ∈ ∂�.

The Poisson a-integral PIa
�[g](P) of g relative to Cn(�) is defined by

PIa
�[g](P) = 1

cn

∫
Sn(�)

PIa
�(P, Q)g(Q)dσQ,

where

PIa
�(P, Q) = ∂Ga

�(P, Q)
∂nQ

, cn =
{

2π n = 2,

(n − 2)sn n ≥ 3,

∂
∂nQ

denotes the differentiation at Q along the inward normal into Cn(�) and dσQ is
the surface area element on Sn(�).

Our first aim is to be concerned with the solutions of the Dirichlet problem for the
Schrödinger operator Scha on Cn(�) and the growth property of them.

THEOREM 1. Let g(Q) be a continuous function on Sn(�) satisfying (1.6)–(1.7).
Then the function PIa

�[g](P) (P = (r,�)) satisfies

PIa
�[g] ∈ C2(Cn(�)) ∩ C0(Cn(�)),

SchaPIa
�[g] = 0 in Cn(�),

PIa
�[g] = g on ∂Cn(�),

lim
r→∞,P=(r,�)∈Cn(�)

V−1(r)ϕn−1(�)PIa
�[g](P) = 0 (1.8)

and

lim
r→0,P=(r,�)∈Cn(�)

W−1(r)ϕn−1(�)PIa
�[g](P) = 0. (1.9)

REMARK 4. If a = 0, � = Sn−1
+ and g is a continuous function on ∂Tn satisfying∫

∂Tn
|g(Y )|(1 + |Y |)−ndY < +∞, we obtain from (1.4), Remark 1 and Theorem 1 that

PI0
Sn−1

+
[g](x) = o(|x| secn−1 θ1) as |x| → ∞ in Tn, which is just the result of Siegel-Talvila

(see [9, Corollary 2.1]).
It is natural to ask if 0 in (1.5) can be replaced with a general function g(Q) on

Sn(�)? The following Theorem 2 gives an affirmative answer to this question. For
related results, we refer the readers to the paper by B. Ya. Levin and A. Kheyfits (see
[6, Sec. 3]).

THEOREM 2. Let g(Q) be a continuous function on Sn(�) satisfying (1.6)–(1.7) and
let u(P) be a subfunction on Cn(�) such that

lim sup
P∈Cn(�),P→Q∈Sn(�)

u(P) ≤ g(Q). (1.10)
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Then all of the limitsVu,Wu,Vu+ andWu+ (−∞ < Vu,Wu ≤ +∞, 0 ≤ Vu+ ,Wu+ ≤ +∞)
exist, and if

Vu+ < +∞ and Wu+ < +∞, (1.11)

then

u(P) ≤ PIa
�[g](P) + (VuV (r) + WuW (r))ϕ(�) (1.12)

for any P = (r,�) ∈ Cn(�).
As an application of Theorems 1 and 2, we obtain the following result.

THEOREM 3. Let g(Q) be defined as in Theorem 2 and h(P) be any solution of the
Dirichlet problem for the Schrödinger operator Scha on Cn(�) with g. Then all of the
limits Vh, Wh, V|h| and W|h| (−∞ < Vh,Wh ≤ +∞, 0 ≤ V|h|,W|h| ≤ +∞) exist, and if

V|h| < +∞ and W|h| < +∞, (1.13)

then

h(P) = PIa
�[g](P) + (VhV (r) + WhW (r))ϕ(�) (1.14)

for any P = (r,�) ∈ Cn(�).

REMARK 5. Theorems 2 and 3 for a = 0 are due to H. Yoshida (see [13, Theo-
rems 2 and 3 (II)]).

2. Some Lemmas. In our discussions, the following estimates for the kernel
functions PIa

�(P, Q) , Ga
�(P, Q) and ∂Ga

�,R(P, Q)/∂R are fundamental, which follow
from [6] and [2, Lemma 4 and Remark].

LEMMA 1.

PIa
�(P, Q) ≈ t−1V (t)W (r)ϕ(�)

∂ϕ(�)
∂n�

, (2.1)

(
resp. PIa

�(P, Q) ≈ V (r)t−1W (t)ϕ(�)
∂ϕ(�)
∂n�

)
(2.2)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�) satisfying 0 < t
r ≤ 4

5 (resp. 0 <
r
t ≤ 4

5 );

PI0
�(P, Q) � ϕ(�)

tn−1

∂ϕ(�)
∂n�

+ rϕ(�)
|P − Q|n

∂ϕ(�)
∂n�

(2.3)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�; ( 4
5 r, 5

4 r)).

LEMMA 2. If h(r,�) is an a-harmonic function on Cn(�) vanishing continuously on
Sn(�), then

E (r; Nh, V, W, r1, r2) = 0

for any r1, r2 (0 < r1 < r2 < +∞) and every r (0 < r < +∞).
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Proof. Making use of the assumptions on h and self-adjoint of the Laplace-
Beltrami operator �∗, one can check directly (by differentiating under the integral
sign) that the functions Nh(r) satisfy the equation (1.3). This equation has a general
solution

Nh(r) = AV (r) + BW (r),

where r ∈ (0,+∞), A and B are two constants. Since Nh(r) takes value Nh(ri) (i = 1, 2),
then

Nh(r) = F (r; Nh, V, W, r1, r2),

which gives the conclusion of Lemma 2. �
LEMMA 3. If f (l) is (V, W )-convex on (0, d1) (0 < d1 ≤ +∞), then

β = lim
l→0

f (l)
W (l)

(−∞ < α ≤ +∞),

exists. Further, if β ≤ 0, then V−1(l)f (l) is non-decreasing on (0, d1).

Proof. Put

G(s) = f (l(s))
V (l(s))

on (l−1(d1),+∞),

where W (l(s)) = sV (l(s)), l−1 denotes the inverse l(s) (see [6, Appendix C] for the
existence of l(s)). Notice that l → 0 as s → ∞. Then G(s) is a convex function on
(l−1(d1),+∞) from Remark 2. Hence by Lemma 3.1 (see [12, p. 275])

β = lim
s→∞

G(s)
s

= lim
s→∞

f (l(s))
W (l(s))

= lim
l→0

f (l)
W (l)

(−∞ < β ≤ +∞)

exists. Further, if β ≤ 0, then G(s) is non-increasing and hence V−1(l)f (l) is non-
decreasing on (0, d1). Thus, we complete the proof of Lemma 3. �

It is known that Cn(�) is regular, the Dirichlet problem for � and Scha is solvable
in it (see [6]). Based on this fact, Lemmas 4, 5 and 6 could be derived from (1.1), (1.2),
(1.4), Remarks 2 and 3, Lemmas 2 and 3 with its means of proof essentially due to
H. Yoshida (see [12, Theorems 3.1, 5.1] and [13, Lemma 3]). Herein, we remove its
detailed proof information.

LEMMA 4. If u(r,�) is a subfunction on Cn(�) satisfying the Phragmén-Lindelöf
boundary condition on Sn(�), then

Nu(r) > −∞
for 0 < r < +∞ and Nu(r) is (V, W )-convex on (0,+∞). If there are three numbers r1,
r2 and r0 satisfying 0 < r1 < r0 < r2 < +∞ such that

E (r0; Nu, V, W, r1, r2) = 0,

then we have that
(1) E (r; Nu, V, W, r1, r2) = 0 (r1 ≤ r ≤ r2).
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(2) u(r,�) is an a-harmonic function on Cn(�; (r1, r2)) and vanishes continuously on
Sn(�; (r1, r2)).

LEMMA 5. Let g(Q) be defined as in Theorem 2. Then PIa
�[g](P) (resp. PIa

�[|g|](P))
is an a-harmonic function on Cn(�) such that both of the limits VPIa

�[g] and
WPIa

�[g] (resp. VPIa
�[|g|] and WPIa

�[|g|]) exist, and

VPIa
�[g] = WPIa

�[g] = 0 (resp. VPIa
�[|g|] = WPIa

�[|g|] = 0).

LEMMA 6. Let u(P) be a subfunction on Cn(�) satisfying the Phragmén-Lindelöf
boundary condition on Sn(�). If (1.11) is satisfied, then

u(P) ≤ (VuV (r) + WuW (r))ϕ(�)

for any P = (r,�) ∈ Cn(�).
By the Kelvin transformation (see [1, p. 59]), Lemmas 3 and 4, we immediately have

the following result, which is due to H. Yoshida in the case a = 0 (see [12, Theorem 3.3]).

LEMMA 7. Let u(P) be defined as in Lemma 6. Then
(1) Both of the limits Vu and Wu (−∞ < Vu,Wu ≤ +∞) exist.
(2) If Wu ≤ 0, then V−1(r)Nu(r) is non-decreasing on (0,+∞).
(3) If Vu ≤ 0, then W−1(r)Nu(r) is non-increasing on (0,+∞).

3. Proof of the Theorem 1. For any fixed P = (r,�) ∈ Cn(�), take two numbers
R1, R2 satisfying R1 < 4

5 r, R2 > 5
4 r. By Lemma 1, we have

1
cn

∫
Sn(�;(R2,+∞))

PIa
�(P, Q)|g(Q)|dσQ � V (r)ϕ(�)

∫ +∞

R2

t−1V−1(t)
(∫

∂�

|g(t,�)|dσ�

)
dt

and

1
cn

∫
Sn(�;(0,R1))

PIa
�(P, Q)|g(Q)|dσQ � W (r)ϕ(�)

∫ R1

0
t−1W−1(t)

(∫
∂�

|g(t,�)|dσ�

)
dt.

Thus PIa
�[g](P) is finite for any P ∈ Cn(�) for (1.6) and (1.7). Since PIa

�(P, Q) is an
a-harmonic function of P ∈ Cn(�) for any Q ∈ Sn(�), PIa

�[g](P) ∈ H(a).
Now we study the boundary behaviour of PIa

�[g](P). Let Q′ = (t′,�′) ∈ Sn(�) be
any fixed point and L be any positive number such that L > max{t′ + 1, 4

5 R2}.
Set χS(L) is the characteristic function of S(L) = {Q = (t,�); Q ∈ Sn(�; [R1,

5
4 L])}

and write

PIa
�[g](P) = PIa

�,1[g](P) + PIa
�,2[g](P) + PIa

�,3[g](P),

where

PIa
�,1[g](P) = 1

cn

∫
Sn(�;(0,R1))

PIa
�(P, Q)g(Q)dσQ,

PIa
�,2[g](P) = 1

cn

∫
Sn(�;(0,[R1,

5
4 L]))

PIa
�(P, Q)g(Q)dσQ
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and

PIa
�,3[g](P) = 1

cn

∫
Sn(�;( 5

4 L,∞))
Pa

�(P, Q)g(Q)dσQ.

Notice that PIa
�,2[g](P) is the Poisson a-integral of g(Q)χS(L), we have

lim
P∈Cn(�),P→Q′∈Sn(�)

PIa
�,2[g](P) = g(Q′).

PIa
�,1[g](P) = O(W (r)ϕ(�)) and PIa

�,3[g](P) = O(V (r)ϕ(�)), which tend to zero from

lim
�→�′

ϕ(�) = 0. So the function PIa
�[g](P) can be continuously extended to Cn(�) such

that

lim
P∈Cn(�),P→Q′∈Sn(�)

PIa
�[g](P) = g(Q′)

from the arbitrariness of L.
For any ε > 0, there exists Rε > 1 such that

∫ ∞

Rε

t−1V−1(t)
(∫

∂�

|g(t,�)|dσ�

)
dt < ε. (3.1)

Take any point P = (r,�) ∈ Cn(�) such that r > 5
4 Rε , and write

PIa
�[g](P) � PI1(P) + PI2(P) + PI3(P) + PI4(P) + PI5(P),

where

PI1(P) = ∫
Sn(�;(0,1]) |PIa

�(P, Q)||g(Q)|dσQ,

PI2(P) = ∫
Sn(�;(1,Rε ]) |PIa

�(P, Q)||g(Q)|dσQ,

PI3(P) = ∫
Sn(�;(Rε ,

4
5 r]) |PIa

�(P, Q)||g(Q)|dσQ,

PI4(P) = ∫
Sn(�;( 4

5 r, 5
4 r)) |PIa

�(P, Q)||g(Q)|dσQ,

PI5(P) = ∫
Sn(�;[ 5

4 r,∞)) |PIa
�(P, Q)||g(Q)|dσQ.

By (1.4), (2.1), (2.2) and (3.1) we have the following growth estimates:

PI2(P) � W (r)ϕ(�)
∫

Sn(�;(1,Rε ])
t−1V (t)|g(Q)|dσQ

� W (r)R
2ι+k +n−2
ε ϕ(�). (3.2)

PI1(P) � W (r)ϕ(�), (3.3)

PI3(P) � εV (r)ϕ(�), (3.4)

PI5(P) � εV (r)ϕ(�). (3.5)

By (2.3), we consider the inequality

PI4(P) � PI41(P) + PI42(P),
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where

PI41(P) = ϕ(�)
∫

Sn(�;( 4
5 r, 5

4 r))

V (t)W (t)
t

|g(Q)|dσQ,

PI42(P) = rϕ(�)
∫

Sn(�;( 4
5 r, 5

4 r))

|g(Q)|
|P − Q|n dσQ.

We first have

PI41(P) � εV (r)ϕ(�) (3.6)

from (3.1).
Next, we shall estimate PI42(P). Take a sufficiently small positive number d2 such

that Sn(�; ( 4
5 r, 5

4 r)) ⊂ B(P, 1
2 r) for any P = (r,�) ∈ �(d2), where

�(d2) = {P = (r,�) ∈ Cn(�); inf
z∈∂�

|(1,�) − (1, z)| < d2, 0 < r < ∞}

and divide Cn(�) into two sets �(d2) and Cn(�) − �(d2).
If P = (r,�) ∈ Cn(�) − �(d2), then there exists a positive d ′

2 such that |P − Q| ≥
d ′

2r for any Q ∈ Sn(�), and hence

PI42(P) � εV (r)ϕ(�). (3.7)

We shall consider the case P = (r,�) ∈ �(d2). Now put

Hi(P) =
{

Q ∈ Sn

(
�;

(
4
5

r,
5
4

r
))

; 2i−1δ(P) ≤ |P − Q| < 2iδ(P)
}

,

where δ(P) = inf
Q∈∂Cn(�)

|P − Q|.
Since Sn(�) ∩ {Q ∈ Rn : |P − Q| < δ(P)} = ∅, we have

PI42(P) =
i(P)∑
i=1

∫
Hi(P)

rϕ(�)
|P − Q|n |g(Q)|dσQ,

where i(P) is a positive integer satisfying 2i(P)−1δ(P) ≤ r
2 < 2i(P)δ(P).

Since rϕ(�) ≤ δ(P) (P = (r,�) ∈ Cn(�)), and hence by (3.1)
∫

Hi(P)

rϕ(�)
|P − Q|n |g(Q)|dσQ � V (r)ϕ1−n(�)

∫
Sn(�;( 4

5 r,+∞))

W (t)
t

|g(Q)|dσQ

� V (r)ϕ1−n(�)ε

for i = 0, 1, 2, . . . , i(P).
So

PI42(P) � V (r)ϕ1−n(�)ε. (3.8)

Combining (3.2)–(3.8), (1.8) is proved.
Consider the Kelvin transformation (see [1, p. 59]) K : (r,�) → (r−1,�) and apply

(1.8) to the following function u∗(r,�) = r2−n(u ◦ K)(r,�)), we obtain (1.9) from (1.7).
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Thus we complete the proof of Theorem 1.

4. Proof of the Theorem 2. We remark that

lim
P∈Cn(�),P→Q∈Sn(�)

PIa
�[g](P) = g(Q) and lim

P∈Cn(�),P→Q∈Sn(�)
PIa

�[|g|](P) = |g(Q)| (4.1)

from Theorem 1. For the two subfunctions

U(P) = u(P) − PIa
�[g](P) and U ′(P) = u+(P) − PIa

�[|g|](P)

on Cn(�), we have

lim sup
P∈Cn(�),P→Q∈Sn(�)

U(P) ≤ 0 and lim sup
P∈Cn(�),P→Q∈Sn(�)

U ′(P) ≤ 0

from (1.10) and (4.1). Hence Lemma 7 (1) gives that the four limits VU , WU , VU ′ and
WU ′ (−∞ < VU ,WU ,VU ′ ,WU ′ ≤ +∞) exist.

Since

NU (r) = Nu(r) − NPIa
�[g](r) and NU ′ (r) = Nu+ (r) − NPIa

�[|g|](r),

it follows that the four limits Vu, Wu, Vu+ and Wu+ exist and that

VU = Vu, WU = Wu, VU ′ = Vu+ , WU ′ = Wu+ (4.2)

from Lemma 5.
Since

U+(P) ≤ u+(P) + (PIa
�[g])−(P),

we have

VU+ ≤ Vu+ < +∞ and WU+ ≤ Wu+ < +∞

from Lemma 5 and (1.11).
By applying Lemma 6 to U , we can obtain (1.12) from (4.2).

5. Proof of the Theorem 3. Put u(P) = h(P) and −h(P) in Theorem 2. Meanwhile,
Theorem 2 gives the existence of all limits Vh, Wh, Vh+ , Wh+ ,

V(−h)+ = Vh− and W(−h)+ = Wh− . (5.1)

Since

V|h| = Vh+ + Vh− and W|h| = Wh+ + Wh− , (5.2)

it follows that both limits V|h| and W|h| exist. Then we see that Vh+ , Vh− , Wh+ and
Wh− < +∞ from (5.1), (5.2) and (1.13). Hence, by applying Theorem 2 to u(P) = h(P)
and −h(P) again, we obtain from (1.12)

h(P) ≤ PIa
�[g](P) + (VhV (r) + WhW (r))ϕ(�)
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and

h(P) ≥ PIa
�[g](P) + (VhV (r) + WhW (r))ϕ(�)

respectively, which give (1.14).
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