A THEOREM OF PHRAGMÉN-LINDELÖF TYPE FOR SUBFUNCTIONS IN A CONE*

LEI QIAO
Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002, P.R. China
e-mail: qiaocqu@163.com
and GUANTIE DENG
School of Mathematical Science, Beijing Normal University, Laboratory of Mathematics and Complex Systems, MOE, Beijing 100875, P.R. China
e-mail: denggt@bnu.edu.cn

(Received 10 June 2010; revised 22 September 2010; accepted 18 November 2010; first published online 10 March 2011)

Abstract

For a subfunction u, associated with the stationary Schrödinger operator, which is dominated on the boundary by a certain function on a cone, we generalise the classical Phragmén-Lindelöf theorem by making an a-harmonic majorant of u.

2010 Mathematics Subject Classification. 31B10, 31B05.

1. Introduction and main results. Let \mathbf{S} be an open set in $\mathbf{R}^{n}(n \geq 2)$, where \mathbf{R}^{n} is the n-dimensional Euclidean space. The boundary and the closure of \mathbf{S} are denoted by $\partial \mathbf{S}$ and $\overline{\mathbf{S}}$, respectively. In cartesian coordinate, a point P is denoted by $\left(X, x_{n}\right)$, where $X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. Let $|P|$ be the Euclidean norm of P. Also denote $|P-Q|$ be the Euclidean distance of two points P and Q in \mathbf{R}^{n}.

For $P \in \mathbf{R}^{n}$ and $r>0$, let $B(P, r)$ denote the open ball with centre at P and radius r in $\mathbf{R}^{n} . S_{r}=\partial B(O, r)$.

A system of spherical coordinates for $P=\left(X, x_{n}\right)$ is given by

$$
|P|=r, \quad x_{1}=r \prod_{i=1}^{n-1} \sin \theta_{i}(n \geq 2), \quad x_{n}=r \cos \theta_{1}
$$

and if $n>2$, then

$$
x_{n-j+1}=r \cos \theta_{j} \prod_{i=1}^{j-1} \sin \theta_{i}(2 \leq j \leq n-1),
$$

where $0 \leq r<+\infty,-\frac{1}{2} \pi \leq \theta_{n-1}<\frac{3}{2} \pi$, and if $n>2$, then $0 \leq \theta_{i} \leq \pi(1 \leq i \leq n-2)$.
Relative to this system, the Laplace operator Δ may be written

$$
\Delta=\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}+\frac{\Delta^{*}}{r^{2}},
$$

where the explicit form of the Beltrami operator Δ^{*} is given by V. Azarin (see [2]).

[^0]Let D be an arbitrary domain in \mathbf{R}^{n} and \mathscr{A}_{a} denote the class of non-negative radial potentials $a(P)$, i.e. $0 \leq a(P)=a(r), P=(r, \Theta) \in D$, such that $a \in L_{l o c}^{b}(D)$ with some $b>n / 2$ if $n \geq 4$ and with $b=2$ if $n=2$ or $n=3$.

If $a \in \mathscr{A}_{a}$, then the stationary Schrödinger operator

$$
S c h_{a}=-\Delta+a(P) I=0
$$

where Δ is the Laplace operator and I is the identical operator, can be extended in the usual way from the space $C_{0}^{\infty}(D)$ to an essentially self-adjoint operator on $L^{2}(D)$ (see [7, Ch. 13]). We will denote it $S c h_{a}$ as well. This last one has a Green a-function $G_{D}^{a}(P, Q)$. Here, $G_{D}^{a}(P, Q)$ is positive on D and its inner normal derivative $\partial G_{D}^{a}(P, Q) / \partial n_{Q} \geq 0$, where $\partial / \partial n_{Q}$ denotes the differentiation at Q along the inward normal into D. We denote this derivative $P I_{D}^{a}(P, Q)$, which is called the Poisson a-kernel with respect to D.

In the proof, we need inequalities between Green a-function $G_{D}^{a}(P, Q)$ and that of the Laplacian, hereafter denoted by $G_{D}^{0}(P, Q)$. It is well known that, for any potential $a(P) \geq 0$,

$$
\begin{equation*}
G_{D}^{a}(P, Q) \leq G_{D}^{0}(P, Q) \tag{1.1}
\end{equation*}
$$

The inverse inequality is much more elaborate if D is a bounded domain in \mathbf{R}^{n}. Cranston, Fabes and Zhao (see [4], the case $n=2$ is implicitly contained in [3]) have proved

$$
\begin{equation*}
G_{D}^{a}(P, Q) \geq M(D) G_{D}^{0}(P, Q) \tag{1.2}
\end{equation*}
$$

where D is a bounded domain, a constant $M(D)=M(D, a(P))$ is positive and does not depend on points P and Q in D. If $a=0$, then obviously, $M(D) \equiv 1$.

We call a function $u \not \equiv-\infty$ that is upper semi-continuous in D a subfunction of the Schrödinger operator $S c h_{a}$ if its values belong to the interval $(-\infty,+\infty)$ and at each point $P \in D$ with $0<r<r(P)$ the generalised mean-value inequality

$$
u(P) \leq \int_{S(P, r)} u(Q) \frac{\partial G_{B(P, r)}^{a}(P, Q)}{\partial n_{Q}} d \sigma(Q)
$$

is satisfied, where $S(P, r)=\partial B(P, r), G_{B(P, r)}^{a}(P, Q)$ is the Green a-function of $S c h_{a}$ in $B(P, r)$ and $d \sigma(Q)$ is the surface area element on $S(P, r)$.

The class of subfunctions in D is denoted by $\operatorname{SbH}(a, D)$. If $-u \in \operatorname{SbH}(a, D)$, then we call u a superfunction and denote the class of superfunctions by $\operatorname{SpH}(a, D)$. If a function u is both subfunction and superfunction, it is, clearly, continuous and is called an a-harmonic function associated with the operator $S c h_{a}$. The class of a-harmonic functions is denoted by $H(a, D)=\operatorname{SbH}(a, D) \cap \operatorname{SpH}(a, D)$. In terminology, we follow B. Ya. Levin and A. Kheyfits (see [6]).

The unit sphere and the upper half unit sphere are denoted by \mathbf{S}^{n-1} and \mathbf{S}_{+}^{n-1}, respectively. For simplicity, a point $(1, \Theta)$ on \mathbf{S}^{n-1} and the set $\{\Theta ;(1, \Theta) \in \Omega\}$ for a set $\Omega, \Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and Ω, respectively. For two sets $\Xi \subset \mathbf{R}_{+}$and $\Omega \subset \mathbf{S}^{n-1}$, the set $\left\{(r, \Theta) \in \mathbf{R}^{n} ; r \in \Xi,(1, \Theta) \in \Omega\right\}$ in \mathbf{R}^{n} is simply denoted by $\Xi \times \Omega$. In particular, the half space $\mathbf{R}_{+} \times \mathbf{S}_{+}^{n-1}=\left\{\left(X, x_{n}\right) \in \mathbf{R}^{n} ; x_{n}>0\right\}$ will be denoted by \mathbf{T}_{n}.

By $C_{n}(\Omega)$, we denote the set $\mathbf{R}_{+} \times \Omega$ in \mathbf{R}^{n} with the domain Ω on \mathbf{S}^{n-1}. We call it a cone. Then T_{n} is a special cone obtained by putting $\Omega=\mathbf{S}_{+}^{n-1}$. We denote the
sets $I \times \Omega$ and $I \times \partial \Omega$ with an interval on \mathbf{R} by $C_{n}(\Omega ; I)$ and $S_{n}(\Omega ; I)$. By $S_{n}(\Omega ; r)$, we denote $C_{n}(\Omega) \cap S_{r}$. By $S_{n}(\Omega)$, we denote $S_{n}\left(\Omega ;(0,+\infty)\right.$), which is $\partial C_{n}(\Omega)-\{O\}$. Furthermore, we denote by $d S_{r}$ the $(n-1)$-dimensional volume elements induced by the Euclidean metric on S_{r}.

For positive functions h_{1} and h_{2}, we say that $h_{1} \lesssim h_{2}$ if $h_{1} \leq M h_{2}$ for some constant $M>0$. If $h_{1} \lesssim h_{2}$ and $h_{2} \lesssim h_{1}$, we say that $h_{1} \approx h_{2}$.

Let Ω be a domain on \mathbf{S}^{n-1} with smooth boundary and λ be the least positive eigenvlaue for Δ^{*} on Ω (see [8, p. 41])

$$
\begin{aligned}
\left(\Delta^{*}+\lambda\right) \varphi(\Theta)=0 & \text { on } \Omega \\
\varphi(\Theta)=0 & \text { on } \partial \Omega .
\end{aligned}
$$

Corresponding eigenfunction is denoted by $\varphi(\Theta), \int_{\Omega} \varphi^{2}(\Theta) d S_{1}=1$. In order to ensure the existence of λ and a smooth $\varphi(\Theta)$. We put a rather strong assumption on Ω : if $n \geq 3$, then Ω is a $C^{2, \alpha}$-domain $(0<\alpha<1)$ on \mathbf{S}^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see [5, pp. 88-89] for the definition of $C^{2, \alpha}$-domain).

Solutions of an ordinary differential equation

$$
\begin{equation*}
-Q^{\prime \prime}(r)-\frac{n-1}{r} Q^{\prime}(r)+\left(\frac{\lambda}{r^{2}}+a(r)\right) Q(r)=0, \quad 0<r<\infty . \tag{1.3}
\end{equation*}
$$

It is known (see, for example, [11]) that if the potential $a \in \mathscr{A}_{a}$, then the equation (1.3) has a fundamental system of positive solutions $\{V, W\}$ such that V is non-decreasing with

$$
0 \leq V(0+) \leq V(r) \quad \text { as } r \rightarrow+\infty
$$

and W is monotonically decreasing with

$$
+\infty=W(0+)>W(r) \searrow 0 \quad \text { as } r \rightarrow+\infty
$$

We will also consider the class \mathscr{B}_{a}, consisting of the potentials $a \in \mathscr{A}_{a}$ such that there exists the finite limit $\lim _{r \rightarrow \infty} r^{2} a(r)=k \in[0, \infty)$, moreover, $r^{-1}\left|r^{2} a(r)-k\right| \in$ $L(1, \infty)$. If $a \in \mathscr{B}_{a}$, then the (super)subfunctions are continuous (see [10]).

In the rest of paper, we assume that $a \in \mathscr{B}_{a}$ and we shall suppress this assumption for simplicity.

From now on, we always assume $D=C_{n}(\Omega)$. For the sake of brevity, we shall write $G_{\Omega}^{a}(P, Q)$ instead of $G_{C_{n}(\Omega)}^{a}(P, Q), P I_{\Omega}^{a}(P, Q)$ instead of $P I_{C_{n}(\Omega)}^{a}(P, Q), \operatorname{SpH}(a)$ (resp. $\operatorname{SbH}(a)$) instead of $\operatorname{SpH}\left(a, C_{n}(\Omega)\right)$ (resp. $\operatorname{SbH}\left(a, C_{n}(\Omega)\right)$) and $H(a)$ instead of $H\left(a, C_{n}(\Omega)\right)$.

Denote

$$
\iota_{k}^{ \pm}=\frac{2-n \pm \sqrt{(n-2)^{2}+4(k+\lambda)}}{2}
$$

then the solutions to the equation (1.3) have the asymptotic (see [5])

$$
\begin{equation*}
V(r) \approx r_{k}^{l_{k}^{+}}, \quad W(r) \approx r^{l_{k}^{-}}, \quad \text { as } \quad r \rightarrow \infty \tag{1.4}
\end{equation*}
$$

REMARK 1. If $a=0$ and $\Omega=\mathbf{S}_{+}^{n-1}$, then $\iota_{0}^{+}=1, \iota_{0}^{-}=1-n$ and $\varphi(\Theta)=$ $\left(2 n s_{n}^{-1}\right)^{1 / 2} \cos \theta_{1}$, where s_{n} is the surface area $2 \pi^{n / 2}\{\Gamma(n / 2)\}^{-1}$ of \mathbf{S}^{n-1}.

Let $u(r, \Theta)$ be a function on $C_{n}(\Omega)$. We introduce $M_{u}(r)=M(r, u)=\sup _{\Theta \in \Omega} u(r, \Theta)$, $u^{+}=\max \{u, 0\}$ and $u^{-}=\max \{-u, 0\}$.

We shall say that $u(P)(P=(r, \Theta))$ satisfies the Phragmén-Lindelöf boundary condition on $S_{n}(\Omega)$, namely,

$$
\begin{equation*}
\limsup _{P=(r, \Theta) \in C_{n}(\Omega), P \rightarrow Q \in S_{n}(\Omega)} u(P) \leq 0 . \tag{1.5}
\end{equation*}
$$

For any given positive real number r, the integral

$$
\int_{\Omega} u(r, \Theta) \varphi(\Theta) d S_{1}
$$

is denoted by $N_{u}(r)$, when it exists. The finite or infinite limit

$$
\lim _{r \rightarrow \infty} \frac{N_{u}(r)}{V(r)} \quad\left(\text { resp. } \lim _{r \rightarrow 0} \frac{N_{u}(r)}{W(r)}\right)
$$

is denoted by $\mathcal{V}_{u}\left(\right.$ resp. $\left.\mathcal{W}_{u}\right)$, when it exists.
If $f(l)$ is a real finite-valued function defined on an interval $(0,+\infty)$, then for any given $l_{1}, l_{2}\left(0<l_{1}<l_{2}<\infty\right)$ and $l \in(0,+\infty)$, we have

$$
\mathscr{E}\left(l ; f, V, W, l_{1}, l_{2}\right)=\left|\begin{array}{ccc}
f(l) & V(l) & W(l) \\
f\left(l_{1}\right) & V\left(l_{1}\right) & W\left(l_{1}\right) \\
f\left(l_{2}\right) & V\left(l_{2}\right) & W\left(l_{2}\right)
\end{array}\right| \geq 0
$$

if and only if

$$
f(l) \leq \mathscr{F}\left(l ; f, V, W, l_{1}, l_{2}\right)
$$

where $\mathscr{F}\left(l ; f, V, W, l_{1}, l_{2}\right)$ has the following expression:

$$
\left\{\frac{W(l)}{W\left(l_{1}\right)} f\left(l_{1}\right)\left(\frac{V\left(l_{2}\right)}{W\left(l_{2}\right)}-\frac{V(l)}{W(l)}\right)+\frac{W(l)}{W\left(l_{2}\right)} f\left(l_{2}\right)\left(\frac{V(l)}{W(l)}-\frac{V\left(l_{1}\right)}{W\left(l_{1}\right)}\right)\right\}\left\{\frac{V\left(l_{2}\right)}{W\left(l_{2}\right)}-\frac{V\left(l_{1}\right)}{W\left(l_{1}\right)}\right\}^{-1}
$$

We shall say that $f(l)$ is (V, W)-convex on $(0,+\infty)$ if $\mathscr{E}\left(l ; f, V, W, l_{1}, l_{2}\right) \geq 0\left(l_{1} \leq\right.$ $\left.l \leq l_{2}\right)$ for any $l_{1}, l_{2}\left(0<l_{1}<l_{2}<+\infty\right)$.

REmark 2. A function $f(l)$ is (V, W)-convex on $(0,+\infty)$ if and only if $W^{-1}(l) f(l)$ is a convex function of $W^{-1}(l) V(l)$ on $(0,+\infty)$, or, equivalently, if and only if $V^{-1}(l) f(l)$ is a convex function of $V^{-1}(l) W(l)$ on $(0,+\infty)$.

REmARK 3. If $f(l)$ is a (V, W)-convex function on $(0,+\infty)$, then for any $l_{1}, l_{2}(0<$ $\left.l_{1}<l_{2}<+\infty\right)$, we have $\mathscr{E}\left(l ; f, V, W, l_{1}, l_{2}\right) \leq 0$, where $0<l \leq l_{1}$ and $l_{2} \leq l<+\infty$.

Let $g(Q)$ be a locally integrable function on $S_{n}(\Omega)$ such that

$$
\begin{equation*}
\int^{\infty} t^{-1} V^{-1}(t)\left(\int_{\partial \Omega}|g(t, \Phi)| d_{\sigma_{\Phi}}\right) d t<+\infty \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0} t^{-1} W^{-1}(t)\left(\int_{\partial \Omega}|g(t, \Phi)| d_{\sigma_{\Phi}}\right) d t<+\infty \tag{1.7}
\end{equation*}
$$

where $d_{\sigma_{\Phi}}$ is the surface area element of $\partial \Omega$ at $\Phi \in \partial \Omega$.
The Poisson a-integral $P I_{\Omega}^{a}[g](P)$ of g relative to $C_{n}(\Omega)$ is defined by

$$
P I_{\Omega}^{a}[g](P)=\frac{1}{c_{n}} \int_{S_{n}(\Omega)} P I_{\Omega}^{a}(P, Q) g(Q) d \sigma_{Q}
$$

where

$$
P I_{\Omega}^{a}(P, Q)=\frac{\partial G_{\Omega}^{a}(P, Q)}{\partial n_{Q}}, \quad c_{n}= \begin{cases}2 \pi & n=2, \\ (n-2) s_{n} & n \geq 3,\end{cases}
$$

$\frac{\partial}{\partial n_{Q}}$ denotes the differentiation at Q along the inward normal into $C_{n}(\Omega)$ and $d \sigma_{Q}$ is the surface area element on $S_{n}(\Omega)$.

Our first aim is to be concerned with the solutions of the Dirichlet problem for the Schrödinger operator $S c h_{a}$ on $C_{n}(\Omega)$ and the growth property of them.

Theorem 1. Let $g(Q)$ be a continuous function on $S_{n}(\Omega)$ satisfying (1.6)-(1.7). Then the function $\mathrm{PI}_{\Omega}^{a}[g](P)(P=(r, \Theta))$ satisfies

$$
\begin{gather*}
P I_{\Omega}^{a}[g] \in C^{2}\left(C_{n}(\Omega)\right) \cap C^{0}\left(\overline{C_{n}(\Omega)}\right), \\
S c h_{a} P I_{\Omega}^{a}[g]=0 \quad \text { in } C_{n}(\Omega), \\
P I_{\Omega}^{a}[g]=g \quad \text { on } \partial C_{n}(\Omega), \\
\lim _{r \rightarrow \infty, P=(r, \Theta) \in C_{n}(\Omega)} V^{-1}(r) \varphi^{n-1}(\Theta) P I_{\Omega}^{a}[g](P)=0 \tag{1.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 0, P=(r, \Theta) \in C_{n}(\Omega)} W^{-1}(r) \varphi^{n-1}(\Theta) P I_{\Omega}^{a}[g](P)=0 . \tag{1.9}
\end{equation*}
$$

REMARK 4. If $a=0, \Omega=\mathbf{S}_{+}^{n-1}$ and g is a continuous function on ∂T_{n} satisfying $\int_{\partial T_{n}}|g(Y)|(1+|Y|)^{-n} d Y<+\infty$, we obtain from (1.4), Remark 1 and Theorem 1 that $P I_{\mathbf{S}_{+}^{n-1}}^{0}[g](x)=o\left(|x| \sec ^{n-1} \theta_{1}\right)$ as $|x| \rightarrow \infty$ in T_{n}, which is just the result of Siegel-Talvila (see [9, Corollary 2.1]).

It is natural to ask if 0 in (1.5) can be replaced with a general function $g(Q)$ on $S_{n}(\Omega)$? The following Theorem 2 gives an affirmative answer to this question. For related results, we refer the readers to the paper by B. Ya. Levin and A. Kheyfits (see [6, Sec. 3]).

Theorem 2. Let $g(Q)$ be a continuous function on $S_{n}(\Omega)$ satisfying (1.6)-(1.7) and let $u(P)$ be a subfunction on $C_{n}(\Omega)$ such that

$$
\begin{equation*}
\limsup _{P \in C_{n}(\Omega), P \rightarrow Q \in S_{n}(\Omega)} u(P) \leq g(Q) . \tag{1.10}
\end{equation*}
$$

Then all of the limits $\mathcal{V}_{u}, \mathcal{W}_{u}, \mathcal{V}_{u^{+}}$and $\mathcal{W}_{u^{+}}\left(-\infty<\mathcal{V}_{u}, \mathcal{W}_{u} \leq+\infty, 0 \leq \mathcal{V}_{u^{+}}, \mathcal{W}_{u^{+}} \leq+\infty\right)$ exist, and if

$$
\begin{equation*}
\mathcal{V}_{u^{+}}<+\infty \text { and } \mathcal{W}_{u^{+}}<+\infty \tag{1.11}
\end{equation*}
$$

then

$$
\begin{equation*}
u(P) \leq P I_{\Omega}^{a}[g](P)+\left(\mathcal{V}_{u} V(r)+\mathcal{W}_{u} W(r)\right) \varphi(\Theta) \tag{1.12}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$.
As an application of Theorems 1 and 2, we obtain the following result.
Theorem 3. Let $g(Q)$ be defined as in Theorem 2 and $h(P)$ be any solution of the Dirichlet problem for the Schrödinger operator $S_{c h}$ on $C_{n}(\Omega)$ with g. Then all of the limits $\mathcal{V}_{h}, \mathcal{W}_{h}, \mathcal{V}_{|h|}$ and $\mathcal{W}_{|h|}\left(-\infty<\mathcal{V}_{h}, \mathcal{W}_{h} \leq+\infty, 0 \leq \mathcal{V}_{|h|}, \mathcal{W}_{|h|} \leq+\infty\right)$ exist, and if

$$
\begin{equation*}
\mathcal{V}_{|h|}<+\infty \quad \text { and } \quad \mathcal{W}_{|h|}<+\infty \tag{1.13}
\end{equation*}
$$

then

$$
\begin{equation*}
h(P)=P I_{\Omega}^{a}[g](P)+\left(\mathcal{V}_{h} V(r)+\mathcal{W}_{h} W(r)\right) \varphi(\Theta) \tag{1.14}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$.
Remark 5. Theorems 2 and 3 for $a=0$ are due to H. Yoshida (see [13, Theorems 2 and 3 (II)]).
2. Some Lemmas. In our discussions, the following estimates for the kernel functions $P I_{\Omega}^{a}(P, Q), G_{\Omega}^{a}(P, Q)$ and $\partial G_{\Omega, R}^{a}(P, Q) / \partial R$ are fundamental, which follow from [6] and [2, Lemma 4 and Remark].

Lemma 1.

$$
\begin{gather*}
P I_{\Omega}^{a}(P, Q) \approx t^{-1} V(t) W(r) \varphi(\Theta) \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} \tag{2.1}\\
\left(\text { resp. } P I_{\Omega}^{a}(P, Q) \approx V(r) t^{-1} W(t) \varphi(\Theta) \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}}\right) \tag{2.2}
\end{gather*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in S_{n}(\Omega)$ satisfying $0<\frac{t}{r} \leq \frac{4}{5}$ (resp. $0<$ $\frac{r}{t} \leq \frac{4}{5}$);

$$
\begin{equation*}
P I_{\Omega}^{0}(P, Q) \lesssim \frac{\varphi(\Theta)}{t^{n-1}} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}}+\frac{r \varphi(\Theta)}{|P-Q|^{n}} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} \tag{2.3}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in S_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right)\right)$.
Lemma 2. If $h(r, \Theta)$ is an a-harmonic function on $C_{n}(\Omega)$ vanishing continuously on $S_{n}(\Omega)$, then

$$
\mathscr{E}\left(r ; N_{h}, V, W, r_{1}, r_{2}\right)=0
$$

for any $r_{1}, r_{2}\left(0<r_{1}<r_{2}<+\infty\right)$ and every $r(0<r<+\infty)$.

Proof. Making use of the assumptions on h and self-adjoint of the LaplaceBeltrami operator Δ^{*}, one can check directly (by differentiating under the integral sign) that the functions $N_{h}(r)$ satisfy the equation (1.3). This equation has a general solution

$$
N_{h}(r)=A V(r)+B W(r),
$$

where $r \in(0,+\infty), A$ and B are two constants. Since $N_{h}(r)$ takes value $N_{h}\left(r_{i}\right)(i=1,2)$, then

$$
N_{h}(r)=\mathscr{F}\left(r ; N_{h}, V, W, r_{1}, r_{2}\right),
$$

which gives the conclusion of Lemma 2.
Lemma 3. If $f(l)$ is (V, W)-convex on $\left(0, d_{1}\right)\left(0<d_{1} \leq+\infty\right)$, then

$$
\beta=\lim _{l \rightarrow 0} \frac{f(l)}{W(l)}(-\infty<\alpha \leq+\infty)
$$

exists. Further, if $\beta \leq 0$, then $V^{-1}(l) f(l)$ is non-decreasing on $\left(0, d_{1}\right)$.
Proof. Put

$$
G(s)=\frac{f(l(s))}{V(l(s))} \text { on }\left(l^{-1}\left(d_{1}\right),+\infty\right)
$$

where $W(l(s))=s V(l(s)), l^{-1}$ denotes the inverse $l(s)$ (see [6, Appendix C] for the existence of $l(s)$). Notice that $l \rightarrow 0$ as $s \rightarrow \infty$. Then $G(s)$ is a convex function on $\left(l^{-1}\left(d_{1}\right),+\infty\right)$ from Remark 2. Hence by Lemma 3.1 (see [12, p. 275])

$$
\beta=\lim _{s \rightarrow \infty} \frac{G(s)}{s}=\lim _{s \rightarrow \infty} \frac{f(l(s))}{W(l(s))}=\lim _{l \rightarrow 0} \frac{f(l)}{W(l)}(-\infty<\beta \leq+\infty)
$$

exists. Further, if $\beta \leq 0$, then $G(s)$ is non-increasing and hence $V^{-1}(l) f(l)$ is nondecreasing on $\left(0, d_{1}\right)$. Thus, we complete the proof of Lemma 3.

It is known that $C_{n}(\Omega)$ is regular, the Dirichlet problem for Δ and $S c h_{a}$ is solvable in it (see [6]). Based on this fact, Lemmas 4, 5 and 6 could be derived from (1.1), (1.2), (1.4), Remarks 2 and 3, Lemmas 2 and 3 with its means of proof essentially due to H. Yoshida (see [12, Theorems 3.1, 5.1] and [13, Lemma 3]). Herein, we remove its detailed proof information.

Lemma 4. If $u(r, \Theta)$ is a subfunction on $C_{n}(\Omega)$ satisfying the Phragmén-Lindelöf boundary condition on $S_{n}(\Omega)$, then

$$
N_{u}(r)>-\infty
$$

for $0<r<+\infty$ and $N_{u}(r)$ is (V, W)-convex on $(0,+\infty)$. If there are three numbers r_{1}, r_{2} and r_{0} satisfying $0<r_{1}<r_{0}<r_{2}<+\infty$ such that

$$
\mathscr{E}\left(r_{0} ; N_{u}, V, W, r_{1}, r_{2}\right)=0
$$

then we have that

$$
\text { (1) } \mathscr{E}\left(r ; N_{u}, V, W, r_{1}, r_{2}\right)=0 \quad\left(r_{1} \leq r \leq r_{2}\right) .
$$

(2) $u(r, \Theta)$ is an a-harmonic function on $C_{n}\left(\Omega ;\left(r_{1}, r_{2}\right)\right)$ and vanishes continuously on $S_{n}\left(\Omega ;\left(r_{1}, r_{2}\right)\right)$.

Lemma 5. Let $g(Q)$ be defined as in Theorem 2. Then $P I_{\Omega}^{a}[g](P)$ (resp. $\left.P I_{\Omega}^{a}[|g|](P)\right)$ is an a-harmonic function on $C_{n}(\Omega)$ such that both of the limits $\mathcal{V}_{P_{\Omega}^{a}[g]}$ and $\mathcal{W}_{P_{\Omega}^{a}[g]}\left(\right.$ resp. $\mathcal{V}_{P_{\Omega}^{a}[|g|]}$ and $\left.\mathcal{W}_{P_{\Omega}^{a}[g \mid]}\right)$ exist, and

$$
\mathcal{V}_{P I_{\Omega}^{a}[g]}=\mathcal{W}_{P I_{\Omega}^{a}[g]}=0 \quad\left(\text { resp. } \mathcal{V}_{P I_{\Omega}^{a}[|g|]}=\mathcal{W}_{P I_{\Omega}^{a}[|g|]}=0\right)
$$

Lemma 6. Let $u(P)$ be a subfunction on $C_{n}(\Omega)$ satisfying the Phragmén-Lindelöf boundary condition on $S_{n}(\Omega)$. If (1.11) is satisfied, then

$$
u(P) \leq\left(\mathcal{V}_{u} V(r)+\mathcal{W}_{u} W(r)\right) \varphi(\Theta)
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$.
By the Kelvin transformation (see [1, p. 59]), Lemmas 3 and 4, we immediately have the following result, which is due to H. Yoshida in the case $a=0$ (see [12, Theorem 3.3]).

Lemma 7. Let $u(P)$ be defined as in Lemma 6. Then
(1) Both of the limits \mathcal{V}_{u} and $\mathcal{W}_{u}\left(-\infty<\mathcal{V}_{u}, \mathcal{W}_{u} \leq+\infty\right)$ exist.
(2) If $\mathcal{W}_{u} \leq 0$, then $V^{-1}(r) N_{u}(r)$ is non-decreasing on $(0,+\infty)$.
(3) If $\mathcal{V}_{u} \leq 0$, then $W^{-1}(r) N_{u}(r)$ is non-increasing on $(0,+\infty)$.
3. Proof of the Theorem 1. For any fixed $P=(r, \Theta) \in C_{n}(\Omega)$, take two numbers R_{1}, R_{2} satisfying $R_{1}<\frac{4}{5} r, R_{2}>\frac{5}{4} r$. By Lemma 1, we have
$\frac{1}{c_{n}} \int_{S_{n}\left(\Omega ;\left(R_{2},+\infty\right)\right)} P I_{\Omega}^{a}(P, Q)|g(Q)| d \sigma_{Q} \lesssim V(r) \varphi(\Theta) \int_{R_{2}}^{+\infty} t^{-1} V^{-1}(t)\left(\int_{\partial \Omega}|g(t, \Phi)| d_{\sigma_{\Phi}}\right) d t$
and

$$
\frac{1}{c_{n}} \int_{S_{n}\left(\Omega ;\left(0, R_{1}\right)\right)} P I_{\Omega}^{a}(P, Q)|g(Q)| d \sigma_{Q} \lesssim W(r) \varphi(\Theta) \int_{0}^{R_{1}} t^{-1} W^{-1}(t)\left(\int_{\partial \Omega}|g(t, \Phi)| d_{\sigma_{\Phi}}\right) d t
$$

Thus $P I_{\Omega}^{a}[g](P)$ is finite for any $P \in C_{n}(\Omega)$ for (1.6) and (1.7). Since $P I_{\Omega}^{a}(P, Q)$ is an a-harmonic function of $P \in C_{n}(\Omega)$ for any $Q \in S_{n}(\Omega), P I_{\Omega}^{a}[g](P) \in H(a)$.

Now we study the boundary behaviour of $P I_{\Omega}^{a}[g](P)$. Let $Q^{\prime}=\left(t^{\prime}, \Phi^{\prime}\right) \in S_{n}(\Omega)$ be any fixed point and L be any positive number such that $L>\max \left\{t^{\prime}+1, \frac{4}{5} R_{2}\right\}$.

Set $\chi_{S(L)}$ is the characteristic function of $S(L)=\left\{Q=(t, \Phi) ; Q \in S_{n}\left(\Omega ;\left[R_{1}, \frac{5}{4} L\right]\right)\right\}$ and write

$$
P I_{\Omega}^{a}[g](P)=P I_{\Omega, 1}^{a}[g](P)+P I_{\Omega, 2}^{a}[g](P)+P I_{\Omega, 3}^{a}[g](P),
$$

where

$$
\begin{gathered}
P I_{\Omega, 1}^{a}[g](P)=\frac{1}{c_{n}} \int_{S_{n}\left(\Omega ;\left(0, R_{1}\right)\right)} P I_{\Omega}^{a}(P, Q) g(Q) d \sigma_{Q} \\
P I_{\Omega, 2}^{a}[g](P)=\frac{1}{c_{n}} \int_{S_{n}\left(\Omega ;\left(0,\left[R_{1}, \frac{5}{4} L\right]\right)\right)} P I_{\Omega}^{a}(P, Q) g(Q) d \sigma_{Q}
\end{gathered}
$$

and

$$
P I_{\Omega, 3}^{a}[g](P)=\frac{1}{c_{n}} \int_{S_{n}\left(\Omega ;\left(\frac{5}{4} L, \infty\right)\right)} P_{\Omega}^{a}(P, Q) g(Q) d \sigma_{Q}
$$

Notice that $P I_{\Omega, 2}^{a}[g](P)$ is the Poisson a-integral of $g(Q) \chi_{S(L)}$, we have

$$
\lim _{P \in C_{n}(\Omega), P \rightarrow Q^{\prime} \in S_{n}(\Omega)} P I_{\Omega, 2}^{a}[g](P)=g\left(Q^{\prime}\right)
$$

$P I_{\Omega, 1}^{a}[g](P)=O(W(r) \varphi(\Theta))$ and $P I_{\Omega, 3}^{a}[g](P)=O(V(r) \varphi(\Theta))$, which tend to zero from $\lim _{\Theta \rightarrow \Phi^{\prime}} \varphi(\Theta)=0$. So the function $P I_{\Omega}^{a}[g](P)$ can be continuously extended to $\overline{C_{n}(\Omega)}$ such that

$$
\lim _{P \in C_{n}(\Omega), P \rightarrow Q^{\prime} \in S_{n}(\Omega)} P I_{\Omega}^{a}[g](P)=g\left(Q^{\prime}\right)
$$

from the arbitrariness of L.
For any $\epsilon>0$, there exists $R_{\epsilon}>1$ such that

$$
\begin{equation*}
\int_{R_{\epsilon}}^{\infty} t^{-1} V^{-1}(t)\left(\int_{\partial \Omega}|g(t, \Phi)| d_{\sigma_{\Phi}}\right) d t<\epsilon \tag{3.1}
\end{equation*}
$$

Take any point $P=(r, \Theta) \in C_{n}(\Omega)$ such that $r>\frac{5}{4} R_{\epsilon}$, and write

$$
P I_{\Omega}^{a}[g](P) \lesssim P I_{1}(P)+P I_{2}(P)+P I_{3}(P)+P I_{4}(P)+P I_{5}(P)
$$

where

$$
\begin{aligned}
& P I_{1}(P)=\int_{S_{n}(\Omega ;(0,1])}\left|P I_{\Omega}^{a}(P, Q)\right||g(Q)| d \sigma_{Q}, \\
& P I_{2}(P)=\int_{S_{n}\left(\Omega ;\left(1, R_{\epsilon}\right]\right)}\left|P I_{\Omega}^{a}(P, Q) \| g(Q)\right| d \sigma_{Q}, \\
& P I_{3}(P)=\int_{S_{n}\left(\Omega ;\left(R_{\epsilon}, \frac{4}{5} r\right]\right)}\left|P I_{\Omega}^{a}(P, Q) \| g(Q)\right| d \sigma_{Q}, \\
& P I_{4}(P)=\int_{S_{n}\left(\Omega ;\left(\frac{5}{4} r \frac{5}{4} r\right)\right)}\left|P I_{\Omega}^{a}(P, Q) \| g(Q)\right| d \sigma_{Q}, \\
& P I_{5}(P)=\int_{S_{n}\left(\Omega ;\left[\frac{5}{4} r, \infty\right)\right)}\left|P I_{\Omega}^{a}(P, Q) \| g(Q)\right| d \sigma_{Q} .
\end{aligned}
$$

By (1.4), (2.1), (2.2) and (3.1) we have the following growth estimates:

$$
\begin{gather*}
P I_{2}(P) \lesssim W(r) \varphi(\Theta) \int_{S_{n}\left(\Omega ;\left(1, R_{\epsilon}\right]\right)} t^{-1} V(t)|g(Q)| d \sigma_{Q} \\
\lesssim W(r) R_{\epsilon}^{2 t_{k}^{+}+n-2} \varphi(\Theta) . \tag{3.2}\\
P I_{1}(P) \lesssim W(r) \varphi(\Theta), \tag{3.3}\\
P I_{3}(P) \lesssim \epsilon V(r) \varphi(\Theta), \tag{3.4}\\
P I_{5}(P) \lesssim \epsilon V(r) \varphi(\Theta) . \tag{3.5}
\end{gather*}
$$

By (2.3), we consider the inequality

$$
P I_{4}(P) \lesssim P I_{41}(P)+P I_{42}(P),
$$

where

$$
\begin{gathered}
P I_{41}(P)=\varphi(\Theta) \int_{S_{n}\left(\Gamma ;\left(\frac{4}{5} r, \frac{5}{4} r\right)\right)} \frac{V(t) W(t)}{t}|g(Q)| d \sigma_{Q}, \\
P I_{42}(P)=r \varphi(\Theta) \int_{\left.S_{n}\left(\Gamma ;\left(\frac{4}{5} r, \frac{5}{4} r\right)\right) \right\rvert\,} \frac{|g(Q)|}{|P-Q|^{2}} d \sigma_{Q} .
\end{gathered}
$$

We first have

$$
\begin{equation*}
P I_{41}(P) \lesssim \epsilon V(r) \varphi(\Theta) \tag{3.6}
\end{equation*}
$$

from (3.1).
Next, we shall estimate $P I_{42}(P)$. Take a sufficiently small positive number d_{2} such that $S_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right)\right) \subset B\left(P, \frac{1}{2} r\right)$ for any $P=(r, \Theta) \in \Pi\left(d_{2}\right)$, where

$$
\Pi\left(d_{2}\right)=\left\{P=(r, \Theta) \in C_{n}(\Omega) ; \inf _{z \in \partial \Omega}|(1, \Theta)-(1, z)|<d_{2}, 0<r<\infty\right\}
$$

and divide $C_{n}(\Omega)$ into two sets $\Pi\left(d_{2}\right)$ and $C_{n}(\Omega)-\Pi\left(d_{2}\right)$.
If $P=(r, \Theta) \in C_{n}(\Omega)-\Pi\left(d_{2}\right)$, then there exists a positive d_{2}^{\prime} such that $|P-Q| \geq$ $d_{2}^{\prime} r$ for any $Q \in S_{n}(\Omega)$, and hence

$$
\begin{equation*}
P I_{42}(P) \lesssim \epsilon V(r) \varphi(\Theta) . \tag{3.7}
\end{equation*}
$$

We shall consider the case $P=(r, \Theta) \in \Pi\left(d_{2}\right)$. Now put

$$
H_{i}(P)=\left\{Q \in S_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right)\right) ; 2^{i-1} \delta(P) \leq|P-Q|<2^{i} \delta(P)\right\},
$$

where $\delta(P)=\inf _{Q \in \partial C_{n}(\Omega)}|P-Q|$.
Since $S_{n}(\Omega) \cap\left\{Q \in \mathbf{R}^{n}:|P-Q|<\delta(P)\right\}=\varnothing$, we have

$$
P I_{42}(P)=\sum_{i=1}^{i(P)} \int_{H_{i}(P)} \frac{r \varphi(\Theta)}{|P-Q|^{n}}|g(Q)| d \sigma_{Q}
$$

where $i(P)$ is a positive integer satisfying $2^{i(P)-1} \delta(P) \leq \frac{r}{2}<2^{i(P)} \delta(P)$.
Since $r \varphi(\Theta) \leq \delta(P)\left(P=(r, \Theta) \in C_{n}(\Omega)\right)$, and hence by (3.1)

$$
\begin{aligned}
\int_{H_{i}(P)} \frac{r \varphi(\Theta)}{|P-Q|^{n}}|g(Q)| d \sigma_{Q} & \lesssim V(r) \varphi^{1-n}(\Theta) \int_{S_{n}\left(\Omega ;\left(\frac{4}{5} r,+\infty\right)\right)} \frac{W(t)}{t}|g(Q)| d \sigma_{Q} \\
& \lesssim V(r) \varphi^{1-n}(\Theta) \epsilon
\end{aligned}
$$

for $i=0,1,2, \ldots, i(P)$.
So

$$
\begin{equation*}
P I_{42}(P) \lesssim V(r) \varphi^{1-n}(\Theta) \epsilon \tag{3.8}
\end{equation*}
$$

Combining (3.2)-(3.8), (1.8) is proved.
Consider the Kelvin transformation (see [1, p. 59]) $K:(r, \Theta) \rightarrow\left(r^{-1}, \Theta\right)$ and apply (1.8) to the following function $\left.u^{*}(r, \Theta)=r^{2-n}(u \circ K)(r, \Theta)\right)$, we obtain (1.9) from (1.7).

Thus we complete the proof of Theorem 1.
4. Proof of the Theorem 2. We remark that

$$
\begin{equation*}
\lim _{P \in C_{n}(\Omega), P \rightarrow Q \in S_{n}(\Omega)} P I_{\Omega}^{a}[g](P)=g(Q) \text { and } \lim _{P \in C_{n}(\Omega), P \rightarrow Q \in S_{n}(\Omega)} P I_{\Omega}^{a}[|g|](P)=|g(Q)| \tag{4.1}
\end{equation*}
$$

from Theorem 1. For the two subfunctions

$$
U(P)=u(P)-P I_{\Omega}^{a}[g](P) \text { and } \quad U^{\prime}(P)=u^{+}(P)-P I_{\Omega}^{a}[|g|](P)
$$

on $C_{n}(\Omega)$, we have

$$
\limsup _{P \in C_{n}(\Omega), P \rightarrow Q \in S_{n}(\Omega)} U(P) \leq 0 \quad \text { and } \quad \limsup _{P \in C_{n}(\Omega), P \rightarrow Q \in S_{n}(\Omega)} U^{\prime}(P) \leq 0
$$

from (1.10) and (4.1). Hence Lemma 7 (1) gives that the four limits $\mathcal{V}_{U}, \mathcal{W}_{U}, \mathcal{V}_{U^{\prime}}$ and $\mathcal{W}_{U^{\prime}}\left(-\infty<\mathcal{V}_{U}, \mathcal{W}_{U}, \mathcal{V}_{U^{\prime}}, \mathcal{W}_{U^{\prime}} \leq+\infty\right)$ exist.

Since

$$
N_{U}(r)=N_{u}(r)-N_{P I_{\Omega}^{a}[g]}(r) \text { and } \quad N_{U^{\prime}}(r)=N_{u^{+}}(r)-N_{P I_{\Omega}^{a}[g \mid] \mid}(r),
$$

it follows that the four limits $\mathcal{V}_{u}, \mathcal{W}_{u}, \mathcal{V}_{u^{+}}$and $\mathcal{W}_{u^{+}}$exist and that

$$
\begin{equation*}
\mathcal{V}_{U}=\mathcal{V}_{u}, \quad \mathcal{W}_{U}=\mathcal{W}_{u}, \quad \mathcal{V}_{U^{\prime}}=\mathcal{V}_{u^{+}}, \quad \mathcal{W}_{U^{\prime}}=\mathcal{W}_{u^{+}} \tag{4.2}
\end{equation*}
$$

from Lemma 5.
Since

$$
U^{+}(P) \leq u^{+}(P)+\left(P I_{\Omega}^{a}[g]\right)^{-}(P)
$$

we have

$$
\mathcal{V}_{U^{+}} \leq \mathcal{V}_{u^{+}}<+\infty \quad \text { and } \mathcal{W}_{U^{+}} \leq \mathcal{W}_{u^{+}}<+\infty
$$

from Lemma 5 and (1.11).
By applying Lemma 6 to U, we can obtain (1.12) from (4.2).
5. Proof of the Theorem 3. Put $u(P)=h(P)$ and $-h(P)$ in Theorem 2. Meanwhile, Theorem 2 gives the existence of all limits $\mathcal{V}_{h}, \mathcal{W}_{h}, \mathcal{V}_{h^{+}}, \mathcal{W}_{h^{+}}$,

$$
\begin{equation*}
\mathcal{V}_{(-h)^{+}}=\mathcal{V}_{h^{-}} \quad \text { and } \quad \mathcal{W}_{(-h)^{+}}=\mathcal{W}_{h^{-}} \tag{5.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathcal{V}_{|h|}=\mathcal{V}_{h^{+}}+\mathcal{V}_{h^{-}} \quad \text { and } \quad \mathcal{W}_{|h|}=\mathcal{W}_{h^{+}}+\mathcal{W}_{h^{-}}, \tag{5.2}
\end{equation*}
$$

it follows that both limits $\mathcal{V}_{|h|}$ and $\mathcal{W}_{|h|}$ exist. Then we see that $\mathcal{V}_{h^{+}}, \mathcal{V}_{h^{-}}, \mathcal{W}_{h^{+}}$and $\mathcal{W}_{h^{-}}<+\infty$ from (5.1), (5.2) and (1.13). Hence, by applying Theorem 2 to $u(P)=h(P)$ and $-h(P)$ again, we obtain from (1.12)

$$
h(P) \leq P I_{\Omega}^{a}[g](P)+\left(\mathcal{V}_{h} V(r)+\mathcal{W}_{h} W(r)\right) \varphi(\Theta)
$$

and

$$
h(P) \geq P I_{\Omega}^{a}[g](P)+\left(\mathcal{V}_{h} V(r)+\mathcal{W}_{h} W(r)\right) \varphi(\Theta)
$$

respectively, which give (1.14).

REFERENCES

1. S. Axler, P. Bourdon and W. Ramey, Harmonic function theory (Springer-Verlag, New York, 1992).
2. V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Trans. 80(2) (1969), 119-138.
3. M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1988), 415-425.
4. M. Cranston, Conditional Brownian motion, Whitney squares and the conditional gauge theorm, in Seminar on stochastic processes, 1988 (Birkhäuser Verlag, Basel-Boston-Berlin, 1989), 109-119.
5. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order (Springer Verlag, Berlin, 1977).
6. B. Levin and A. Kheyfits, Asymptotic behavior of subfunctions of the stationary Schrödinger operator, Preprint, http://arxiv.org/abs/math/0211328v1, 2002.
7. M. Reed and B. Simon, Methods of modern mathematical physics, vol. 3 (Academic Press, New York, 1970).
8. G. Rosenblum, M. Solomyak and M. Shubin, Spectral theory of differential operators (VINITI, Moscow, 1989).
9. D. Siegel and E. O. Talvila, Uniqueness for the n-dimensional half space Dirichlet problem, Pacific J. Math. 175(2) (1996), 571-587.
10. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526.
11. G. M. Verzhbinskii and V. G. Maz'ya, Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary, Sibirsk. Math. J. 12(6) (1971), 874-899.
12. H. Yoshida, Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. Lond. Math. Soc. 54(3) (1987), 267-299.
13. H. Yoshida, Harmonic majorization of a subharmonic function on a cone or on a cylinder, Pacific J. Math. 148(2) (1991), 369-395.

[^0]: *Supported by SRFDP (No. 20060027023) and NSF of China (No. 10671022).

