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The Bernstein polynomials 

(1) Bn (/; x) = g /(*/»)( I ) xk (1 - *)— 

associated with a function / denned on [0, 1] have been the subject of much 
recent research and have been generalized in several directions (1 ; 2 ; 5 ). The 
generalized Lototsky or [F, dn] matrix (3) has also been the subject of extensive 
research. The elements ank of this matrix are defined by 

a00 = 1, a0jc = 0 (k T^ 0) , 

where {d*} is a sequence of complex numbers with dt 9e —1 (i = 1 ,2 , . . . ) . 
I t is the purpose of this note to point out a connection between the Lototsky 
matrix and the Bernstein polynomials which gives yet another extension of 
the latter. 

I t is convenient to make a change of notation. If we let ht = 1/(1 + d*), 
equation (2) has the form 

(3) II (*«y + l - A « ) = E anhy\ 

Now let {hi(x)} be a sequence of functions defined on [0, 1]. Let ank = an1c(x) 
be the elements of the Lototsky matrix given by (3) corresponding to the 
sequence {hi{x)\. For each / defined on [0, 1] let 

n 

(4) Ln(f;x) = X) f(k/n)ank(x). 

It is easy to see that if hi(x) = x (i = 1, 2, . . .), then Ln(f; x) = Bn(f; x). 
Therefore, in this sense, the functions Ln(f;x) provide an extension of the 
Bernstein polynomials. The following theorem gives sufficient conditions on 
the sequence {hi(x)} to insure that Ln(f;x) —>/(#). 

THEOREM. For f G C[0, 1] let Ln(f; x) be defined by (4) and let {st(x)} denote 
the (C, 1) transform of the sequence {ht(x)}. If 0 < ht(x) < 1 (i = 1, 2, . . .) 
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and if {st(x)} converges uniformly to x on [0,1], then 

Km Ln(f;x) = f(x) 
TI-ÏCQ 

uniformly on [0,1]. 

Proof. According to a theorem of Korovkin (4, p. 14) it is sufficient to 
show that 

±jn \L \ X) • 1 , l^n \t \ X) > X, ±jn \t J X) • X , 

uniformly on [0, 1] and that Ln is a positive linear operator. It is clear that 
Ln is linear. Furthermore, / > 0 implies that Ln > 0 since ank(x) > 0 when
ever 0 < hi(x) < 1. 

We have 
Ln(l;x) = 1 (n= 1 ,2 , . . . ) , 

and 

If we let 

and 

we have 

Ln(t;x) = J2 (k/n)ank(x), 

n 

Ln(t
2;x) = X) (k/n)2ank(x). 

Pn = I l (yht(x) + 1 - *,(*)) 
*=1 

^(x, ?) = 
hj(x) 

(5) 

and 

(6) P " 

^ ( x ) + 1 — &*(x) ' 

2 n 

- X) r/(x, ;y)f-Pn, 
1 = 1 

Z) rt(x,y) 
• i = l 

where the differentiation is with respect to y. Also 

(7) Pn' = E ^ . ( X ) / - 1 

A:=0 

and 

(8) Pn" = E É(ê - 1K & (X)/" 2 . 
A;=0 

If we set y = 1 in (5) and (7), we obtain 

1 n 

(9) - X ^ ( x ) = Sn(x). 
n k=o 
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Similarly, it follows from (6), (8), and (9) that 

1 n 1 
(10) -2 S k2ank(x) = - {sn(x) - tn(x)\ + sn\x), 

where {tn(x)\ is the (C, 1) transform of the sequence {hn
2(x)}. 

It is easy to see that 0 < ht(x) < 1 implies tn(x) = 0(1) so that tn(x)/n-*0 
uniformly on [0, 1]. This proves the theorem. 

COROLLARY. / / 0 < ht < 1 and if {hi(x)} converges uniformly to x on [0, 1], 
then 

\im Ln(f;x) = f(x) 
n->co 

uniformly on [0, 1]. 

Proof. The (C, 1) transform is a regular summability method and preserves 
uniform convergence so that sn(x) —* x uniformly on [0, 1]. 

It seems worth while to give an example of a sequence {hi{x)\ that is not 
convergent to x while its (C, 1) transform is. It is not difficult to see that 
the following example suffices: 

ht(x) = 
| (0 < x < J), ^ - | (J < x < 1), i odd, 

— (0 < x < | ) , - + - (J < x < 1), i even. 

The author wishes to express his appreciation to the referee for some helpful 
suggestions, which include the change of notation at the beginning of the 
article and the above example. 
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