THE LOTOTSKY TRANSFORM AND BERNSTEIN POLYNOMIALS

J. P. KING

The Bernstein polynomials

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{k=0}^{n} f(k / n)\binom{n}{k} x^{k}(1-x)^{n-k} \tag{1}
\end{equation*}
$$

associated with a function f defined on $[0,1]$ have been the subject of much recent research and have been generalized in several directions ($\mathbf{1}: \mathbf{2} ; \mathbf{5}$). The generalized Lototsky or $\left[F, d_{n}\right]$ matrix (3) has also been the subject of extensive research. The elements $a_{n k}$ of this matrix are defined by

$$
a_{00}=1, \quad a_{0 k}=0 \quad(k \neq 0)
$$

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{y+d_{i}}{1+d_{i}}=\sum_{k=0}^{n} a_{n k} y^{k}, \tag{2}
\end{equation*}
$$

where $\left\{d_{i}\right\}$ is a sequence of complex numbers with $d_{i} \neq-1(i=1,2, \ldots)$. It is the purpose of this note to point out a connection between the Lototsky matrix and the Bernstein polynomials which gives yet another extension of the latter.

It is convenient to make a change of notation. If we let $h_{i}=1 /\left(1+d_{i}\right)$, equation (2) has the form

$$
\begin{equation*}
\prod_{i=1}^{n}\left(h_{i} y+1-h_{i}\right)=\sum_{k=0}^{n} a_{n k} y^{k} . \tag{3}
\end{equation*}
$$

Now let $\left\{h_{i}(x)\right\}$ be a sequence of functions defined on [0, 1]. Let $a_{n k}=a_{n k}(x)$ be the elements of the Lototsky matrix given by (3) corresponding to the sequence $\left\{h_{i}(x)\right\}$. For each f defined on $[0,1]$ let

$$
\begin{equation*}
L_{n}(f ; x)=\sum_{k=0}^{n} f(k / n) a_{n k}(x) \tag{4}
\end{equation*}
$$

It is easy to see that if $h_{i}(x)=x(i=1,2, \ldots)$, then $L_{n}(f ; x)=B_{n}(f ; x)$. Therefore, in this sense, the functions $L_{n}(f ; x)$ provide an extension of the Bernstein polynomials. The following theorem gives sufficient conditions on the sequence $\left\{h_{i}(x)\right\}$ to insure that $L_{n}(f ; x) \rightarrow f(x)$.

Theorem. For $f \in C[0,1]$ let $L_{n}(f ; x)$ be defined by (4) and let $\left\{s_{i}(x)\right\}$ denote the $(C, 1)$ transform of the sequence $\left\{h_{i}(x)\right\}$. If $0 \leqslant h_{i}(x) \leqslant 1(i=1,2, \ldots)$

Received September 1, 1964.
and if $\left\{s_{i}(x)\right\}$ converges uniformly to x on $[0,1]$, then

$$
\lim _{n \rightarrow \infty} L_{n}(f ; x)=f(x)
$$

uniformly on $[0,1]$.
Proof. According to a theorem of Korovkin (4, p. 14) it is sufficient to show that

$$
L_{n}(1 ; x) \rightarrow 1, \quad L_{n}(t ; x) \rightarrow x, \quad L_{n}\left(t^{2} ; x\right) \rightarrow x^{2}
$$

uniformly on $[0,1]$ and that L_{n} is a positive linear operator. It is clear that L_{n} is linear. Furthermore, $f \geqslant 0$ implies that $L_{n} \geqslant 0$ since $a_{n k}(x) \geqslant 0$ whenever $0 \leqslant h_{i}(x) \leqslant 1$.

We have

$$
\begin{aligned}
& L_{n}(1 ; x)=1 \quad(n=1,2, \ldots) \\
& L_{n}(t ; x)=\sum_{k=0}^{n}(k / n) a_{n k}(x)
\end{aligned}
$$

and

$$
L_{n}\left(t^{2} ; x\right)=\sum_{k=0}^{n}(k / n)^{2} a_{n k}(x)
$$

If we let

$$
P_{n}=\prod_{i=1}^{n}\left(y h_{i}(x)+1-h_{i}(x)\right)
$$

and

$$
r_{i}(x, y)=\frac{h_{i}(x)}{y h_{i}(x)+1-h_{i}(x)},
$$

we have

$$
\begin{equation*}
P_{n}^{\prime}=\sum_{i=1}^{n} r_{i}(x, y) \cdot P_{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}^{\prime \prime}=\left\{\left[\sum_{i=1}^{n} r_{i}(x, y)\right]^{2}-\sum_{i=1}^{n} r_{i}^{2}(x, y)\right\} \cdot P_{n} \tag{6}
\end{equation*}
$$

where the differentiation is with respect to y. Also

$$
\begin{equation*}
P_{n}^{\prime}=\sum_{k=0}^{n} k a_{n k}(x) y^{k-1} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}^{\prime \prime}=\sum_{k=0}^{n} k(k-1) a_{n k}(x) y^{k-2} \tag{8}
\end{equation*}
$$

If we set $y=1$ in (5) and (7), we obtain

$$
\begin{equation*}
\frac{1}{n} \sum_{k=0}^{n} k a_{n k}(x)=s_{n}(x) \tag{9}
\end{equation*}
$$

Similarly, it follows from (6), (8), and (9) that

$$
\begin{equation*}
\frac{1}{n^{2}} \sum_{k=0}^{n} k^{2} a_{n k}(x)=\frac{1}{n}\left\{s_{n}(x)-t_{n}(x)\right\}+s_{n}^{2}(x), \tag{10}
\end{equation*}
$$

where $\left\{t_{n}(\mathrm{x})\right\}$ is the $(C, 1)$ transform of the sequence $\left\{h_{n}{ }^{2}(x)\right\}$.
It is easy to see that $0 \leqslant h_{i}(x) \leqslant 1$ implies $t_{n}(x)=O(1)$ so that $t_{n}(x) / n \rightarrow 0$ uniformly on $[0,1]$. This proves the theorem.

Corollary. If $0 \leqslant h_{i} \leqslant 1$ and if $\left\{h_{i}(x)\right\}$ converges uniformly to x on $[0,1]$, then

$$
\lim _{n \rightarrow \infty} L_{n}(f ; x)=f(x)
$$

uniformly on $[0,1]$.
Proof. The $(C, 1)$ transform is a regular summability method and preserves uniform convergence so that $s_{n}(x) \rightarrow x$ uniformly on $[0,1]$.

It seems worth while to give an example of a sequence $\left\{h_{i}(x)\right\}$ that is not convergent to x while its $(C, 1)$ transform is. It is not difficult to see that the following example suffices:

$$
h_{i}(x)= \begin{cases}\frac{x}{2}\left(0 \leqslant x \leqslant \frac{1}{2}\right), & \frac{3 x}{2}-\frac{1}{2}\left(\frac{1}{2} \leqslant x \leqslant 1\right), \\ \frac{3 x}{2}\left(0 \leqslant x \leqslant \frac{1}{2}\right), & \frac{x}{2}+\frac{1}{2}\left(\frac{1}{2} \leqslant x \leqslant 1\right), \\ i \text { even }\end{cases}
$$

The author wishes to express his appreciation to the referee for some helpful suggestions, which include the change of notation at the beginning of the article and the above example.

References

1. E. W. Cheney and A. Sharma, Bernstein power series, Can. J. Math., 16 (1964), 241-252.
2. J. J. Gergen, F. G. Dressel, and W. H. Purcell, Jr., Convergence of extended Bernstein polynomials in the complex plane, Pacific J. Math., 13 (1963), 1171-1180.
3. A. Jakimovski, A generalization of the Lototsky method of summability, Michigan Math. J., (1959), 277-290.
4. P. Korovkin, Linear operators and approximation theory (translated from Russian edition of 1959, Delhi, 1960).
5. W. Meyer-König and K. Zeller, Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89-94.

Lehigh University

