THE DENSEST PACKING OF FIVE SPHERES IN A CUBE

J. Schaer

(received February 22, 1965)

The purpose of this paper is to locate five points $P_{i}(1 \leq i \leq 5)$ in a closed unit cube C such that $\min _{i \neq j} d\left(P_{i}, P_{j}\right)$ is as large as possible, where $d\left(P_{i}, P_{j}\right)$ denotes the distance between P_{i} and P_{j}. We prove that this minimum distance cannot exceed $\frac{\sqrt{5}}{2}$ ($=m$, say), and if it is equal to m, then the corresponding configuration is congruent to the set of points shown in fig. 1, namely $P_{1}=A_{1}(0,0,0), P_{2}=A_{8}(1,1,1)$, $P_{3}=B_{1}(0,1 / 2,1), P_{4}=B_{3}(1 / 2,1,0)$ and $P_{5}=B_{5}(1,0,1 / 2)$.

Proof. Let S be any set of 5 points $P_{i}(1 \leq i \leq 5)$ of C with mutual distances not less than m :

$$
\begin{equation*}
d\left(P_{i}, P_{j}\right) \geq m \quad(i \neq j) \tag{1}
\end{equation*}
$$

We shall show that, up to symmetric ones, there is just one such set, namely the indicated one.
(A) If a point of S lies in a vertex of C, then S is the indicated set.

Indeed, assume for example $P_{1}=A_{1}$ (see fig. 1). The plane through the center M and orthogonai to $A_{1} M: x_{1}+x_{2}+x_{3}=3 / 2$, intersects C in a regular hexagon $B_{1} B_{2} B_{3} B_{4} B_{5} B_{6}$ and divides C into two halves. Every point of the half $x_{1}+x_{2}+x_{3}<3 / 2$ has a distance less than m from $P_{1}=A_{1}$ (this half being a polyhedron), for $d\left(B_{i} A_{1}\right)=m(i=1,2, \ldots, 6)$ and for any X on the hexagon we have $d\left(X, A_{1}\right)<m$. By (1) the other four points of

Canad. Math. Bull. vol. 9, no. 3, 1966
S must therefore lie in the other half with $x_{1}+x_{2}+x_{3} \geq 3 / 2$.
This other half may be divided into three parts by the three half planes through $A_{8} M: x_{1}=x_{2} \leq x_{3}, x_{1}=x_{3} \leq x_{2}$, and $x_{2}=x_{3} \leq x_{1}$, cutting the hexagon in $M D_{1}, M D_{2}$, and $M D_{3}$ respectively. These three parts, taken closed, are congruent. Since their union contains four points of S, one part must contain (at least) two points of S. But these parts have diameter m, which is assumed only between A_{8} and the points $B_{i}(1 \leq i \leq 6)$. By (1) another point of S, say P_{2}, must therefore be located at A_{8} and only the points $B_{i}(1 \leq i \leq 6)$ are left as possible locations of the last three points of S. It is easily seen that thus P_{3}, P_{4}, P_{5} lie either at B_{1}, B_{3}, B_{5} or at B_{2}, B_{4}, B_{6}. Both these configurations are congruent to the indicated solution, and so (A) is proved.
(B) We are left to show that there exists no set of five points $P_{i}(1 \leq i \leq 5)$ with (1), without at least one of the points P_{i} lying at a vertex of C.

Let us assume the contrary. Then around every vertex A_{i} there exists a largest open cube $C_{i}(1 \leq i \leq 8)$, with center A_{i} and edges parallel to those of C, which does not contain any point of S. With suitable numeration a smallest of them is C_{1}. Denote its side by $2 a(0<a \leq 1 / 2)$. Let Q_{i} be the open cube with center $A_{i}(1 \leq i \leq 8)$, side $2 a$, and edges parallel to those of C. Clearly $Q_{i} \subseteq C_{i}$, and therefore $S \subset C_{Q}$, where C_{Q} denotes the set of all points belonging to C but not to any Q_{i}. Since $Q_{1}=C_{1}$, on its boundary there must lie (at least) one point of S, say P_{1}. Without loss of generality we may assume that P_{1} lies on the square $\Sigma: 0 \leq x_{i} \leq a(i=1,2), x_{3}=a(s h a d e d i n f i g .2)$.

By (1), the subset $S_{1} \subset C_{Q}$ which is defined by the simultaneous conditions $x_{1}+x_{2}+x_{3} \leq 3 / 2$ and $x_{1}+x_{2} \leq 3 / 2-a$ (see fig. 2) cannot contain any point of S besides P_{1}, because all its points have a distance which is less than m from all the
points of Σ. This latter statement is easily verified by showing that all the distances between any vertex of Σ and any vertex of S_{1} are less than m.

The remaining part $C_{Q}-S_{1}$ of C_{Q} may now, by the same three half planes through $A_{8} M$ as used in (A), be subdivided into three parts. But although that part which contains (1, 1, 1/2) is increased, in comparison with (A), by part of the half space $x_{1}+x_{2} \geq 3 / 2-a$, because of the truncation of C by Q_{i} the diameters of all three parts are now less than m. (This is again proved by straight forward verification that the distance between any two vertices of such a part is less than m. For $a \leq 1 / 4$ the elimination of Q_{8} would suffice; see fig. 2. For $a>1 / 4$ also the elimination of Q_{2} and Q_{3} becomes important.) By (1) they can therefore lodge at most one point of S each, and S can contain at most four points, in contradiction to our assumption. This proves (B).

Fig. 1

Fig. 2

University of Alberta at Calgary

