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THE HIGHER DERIVATIVES OF FUNCTIONS

BOUNDED IN VARIOUS SENSES

SHINJI YAMASHITA

An extension (Theorem 1) of Schwarz and Pick's lemma motivates

us to study the analogues for functions which are bounded in

the sense of Bloch, normal, or Yoshida. A typical result is that, fora

function f holomorphic in D = { | z | < 1} and Bloch, that is,

o

a = sup(l - \z\ ) x |/'("z,)| < => , with the expansion f(w) =
zeD

cQ + c (w - z) + ... (n > 1) about z e D , we have

(1 - |s| ) \f (z)\/n! § A a , where A is an absolute constant;

the estimate is sharp.

1. Introduction.

The celebrated Schwarz-Pick lemma on functions / holomorphic

and bounded, |f| < 1 , in the disk D = {\z\ < 1} , states that

(1.1) (1 - \z\2)\f'(z)\/(l - \f(z)\2) & 1, z e D .

Our researches begin with the following extension.
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322 Shin j i Yamashita

THEOREM 1. Let f be a function holomorphia and bounded,

\f\ < 1, in D , and let z e D. Suppose that

(1.2) f(w) = aQ+ on(w - z)n + en+2(w - z)n+1 + . . .

in a neighbourhood of z , where n £ 1 depends on z and c = 0

is possible. Then,

(1.3) (1 - \z\2)n\f(n)(z)\/{n!(l - \f(z)\2)} < 1 .

The inequality (1.3) is sharp in the sense that equality holds for

the function

(1.4) f(w) = eLCL{(w - z)/(l - zw)}H (a; a real constant)

of W . Theorem 1 extends the Schwarz-Pick lemma because (1.1) is the

case n = 1 in Theorem 1.

Are similar results true for functions meromorphic or holomorphic

in D or in <T = { |s | < <*>} if they are bounded in appropriate senses?

For positive answers we consider three kinds of boundedness, namely,

Bloch, normal, and Yosida, which are explained below.

THEOREM 2. Let f be a function holomorphic in D with

(1.5) 0 < a = a(f) = sup(l - \z\2)\f'(z)\ < «» .

zeD

Suppose (1.2) also holds for this f. Then,

(1.6) (1 - \z\2)n\f(n)(z)\/n! §Ana ,

where

An = 1 , if n = 1 ,

n+ 1 2 n=l

(1 + ) , if n > 1 .
2n n - 1

The inequality (1.6) is sharp in the sense that the equaltiy holds

for the / of (1.4). We call / Bloch if (1.5) is satisfied [3]. The

case n = 1 is trivial. The sequence iAn) is increasing and tends to

e/2 , so that A < e/2 = 1.359 A calculation yields that for the

function w of w e D , A = l/a(w ) .
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To deal with a meromorphic function / in D or in C , we write

for n i l , and for a variable 2 ,

fn(z) = \f(n)(z)\/{n!(l + \f(z)\2)} , if f(z) * » ;

= (l/f)*n(n) , i f f(z) = » .

In particular, if (1.2) holds for this f at z where f(z) ̂  « , then

f (z) = \a \/(l + \o \ ) , while if f(z) = » with

(1.7) l/f(w) = pn(w - z)
n + Pn+1(w - z)

n+1 + ...

4}

in a neighbourhood of z, then (1/f) (z) = \p | S 0 .

The quantity f-,(z) is known as the spherical derivative of / at

z ; this is a continuous function of z e D .

THEOREM 3. Let f be a funotion meromorphio in D with

(1.8) 0 < B = B(f) = sup(l - \z\2)A(z) < » .

zeD

Suppose that (1.2) or (1.7) holds in a neighbourhood of z e. D with

n s 1 for this f . Then,

(1.9) (1 - \z\2)nf*(z) < B (&) ,
1 ' J n ~ n

where

(1.10) B (&) = inf (tan fix)/(tank x)n .

We have no information on the sharpness of (1.9). We call f

normal if (1.8) is satisfied [2]. Computations yield that B (&) = &

(thus, the case n = 1 is trivial) and the infimum in (1.10) for n > 1

is attained at the root x of the equation

(1.11) 6 sinhC2x; - n sin(2Ba:j = 0

lying in 0 < x <

THEOREM 4. Let f be a function meromorphio in S with

(1.12) 0 < y = y(f) = sup f#(z) < » .

zeE
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324 Shinji Yamashita

Suppose that (1.2) or (1.7) holds in a neighbourhood of z e D with

n a 1 for this f . Then,

(1. 13) fyz) i C/1 ,

where

(1.14) C = inf (tan x)/xn .
n 0<x<v/2

We have no information on the sharpness of the estimate (1.13). We

call / Yosida if (1.12) is satisfied; this is equivalent to saying that

f is of class (A) in K. Yosida's sense [6], The case n = 1 is trivial

because C- = 1 . The infimum in (1.14) for n > 1 is attained at the

root x of the equation

(1.15) 2x - n sin(2x) = 0

in 0 < x < TT/2 . Computations yield

Co = 1.54...; C_ = 1.46...; C. = 1.23...; Cc = 0.97...;
Z Q *t 0
C. = 0.73...; C~ = 0.54...; Co = 0.39. . .; and so on.

Hitherto we have been concerned with f at z under the

restriction (1.2) or (1.7). We shall later estimate the left-hand

sides of (1.3), (1.6), (1.9) and (1.13) without the cited restriction.

The results are, however, not complete enough in the sense that we have

no information on the sharpness of the bounds.

2. Proof of Theorem 1.

We note first that if h is holomorphic and bounded, \h\ < 1 3 in

D , then \h (0)\ g n! . This follows from the Cauchy formula for

h (0) expressed by the integral on the circle {|u| = r) . This gives

\h n (0)\ g n.'r~n _, 0 < r < 1 , and letting r -*• 1 we arrive at the

inequality.

LEMMA 2.1. Let f be meromorphic in D and suppose that

f(z) =t °° at a point z e D . Let

(2.1) g(w) = f((w + z)/(l + ~zw)) , w e D .

Then for n 2 1 ,
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(2.2) (1 - \z\2)nfM(z)/n! = n~Z( n:J )-tg(n~k)(0)/(n - k)! .
k=0 K

This lemma for meromorphic functions will also frequently be used

later. o. Szasz [4, p. 307] obtained (2.2) for / pole-free in D .

His method of proof does not carry over to meromorphic / and must be

modified.

For small V, 0 < v < 1 , the Cauchy formula reads:

- nJ_ f
d

Consequently, on setting w = (l, - z)/(l - ZX,) , we have

(2.3) f(n)(z)= ^ - p - f g(w)w-n-1(l +lw)n~1dw .
\ \ n \ \

p f
- \z\ )n > \w\=r

Substituting the identities

g(w)w-
k=0

~ ) n ~ 1 nl2 {n-l\-k k+ zw) = E 7 \z w

I k

and

k=0

in (2.3) we have (2.2) .

For the proof of Theorem 1 we consider g of (2.1) for the bounded

f of Theorem 1 , and further we define

(2.4) F(w) = {g(w) - g(0)}/{l - g(O)g(w)} , w e D .

On considering the n-th derivatives of both sides of

(2.5) F(w) - g(0)g(w)F(w) = g(w) - g(0)

at W = 0 we obtain

F(n)(0) - gl0T t \i\g(k)(0)F(n-k)(0) = gM(0) .
k=0 W

(k)
Since g(0) = f(z), g (0) = 0 for 1 s H n-1 for n 2 2 , it follows

from (2.2) that g(n)(0) = (1 - \z\2)nf(n)(z) . Therefore ,

- \g(0)\2 1 - \f(z)\2
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which, together with \F (0) I gn! , yields (1.3) .

For the function / of (1.4) we have g(w) = e W = F(w) . Since

n! = \F (0)| , we have equality in (1.3) .

Remark. One might suspect that (1.3) holds for each n i 2 and at

each z e. D without the restrict ion (1.2). A counterexample is supplied

by f(w) = w (n § 2) for sufficiently large k . Since

f(n) (W) = Q^, Q = (n +k)(n + k - i y (k + 1) > kn
 J

i t follows that, on the circle

we have

2n (n)._ i 16 .n i An)
(1 M ^ 1̂(1~ M ^ 1̂  fwjl = n + 2n}k/2+n

 >
 n + 2n}k/2+n

(1 + kJ (1 + kJ

Therefore

lim inf {minri - |u|2)U\fM (w)\} 2 (2n)n'/e1 > n! .

| |Accordingly, there exists k > 1 such that

(1 - \w\2)n\f(n)(w)\/{n!(l - \f(w)\2)} > 1

on the circle \w\ = r, . Since f'(w) / 0 at each point of \w\ = r, ,

this violates (1.3) if (1.2) is dropped.

3. Removal of condition (1.2) in Theorem 1.

If we do not assume the restriction (1.2) at z , then we have

THEOREM 5. Let f be a function holomorphio and boimded, \f\ < 1,

in D . Then, for each nil, and at each z e D , we have

(3.1) (1 - \z\2)n\f(n)(z)\/{n!(l - \f(z)\2)} s

g (1 + \z\ + \f(z)\)n~1 S f-
1 .

Again, Theorem 5 yields (1.1) in the case n = 1 . As in the proof

of Theorem 1 we observe g and F in (2.4). It then follows from (2.5)

that
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kf 3=0
3! k!

Since F(0) = 0 and \F (0)/\).'\ § 1 , v g J , i t follows that

(3.2)
k!

g J - | f fa; |^ + | f ra j | £ k > 1 .

Induction on (3.2) now shows that

*(k)ro)
k!

- \f(z)\2)(l + \f(z)\)k 1 fe g 1 ,

which, combined with (2.2), yields (3.1) .

4. Proof of Theorem 2.

We begin with

LEMMA 4.1. If g is Bloch, then

\gM(0)\ ± n.'A a(g) (n s 1) .

For the proof we may suppose that n > 1 . Then, for 0 < r < 1 ,

(4.1)

\gM(0)\=

(n - 1).
2TT I n-l i(n-l)t

' r> p.

where

v e

= nrn~1(l -

1/2The function $ has the minimum A at v = {(n - l)/(n + 1)}

which completes the proof of (4.1).

For the proof of Theorem 2 we consider g of (2.1) for our pole-free

f. Since a = a(f) = a(g) y and since

g(n)(0) = (1- \z\2)nf(n)(z) 3

it follows from Lemma 4.1, applied to this g , that (1.6) holds.

For the sharpness of (1.6) we note that g(w) = ̂ w1 for the f

of (1.4). Then,

n- = \gM(0)\ = (1 - \z\2)n\fM(z)\,

while a(f) = aCu ) = I/A .

These show that equality holds in (1.6) for the f of (1.4).
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5. Removal of condition (1.2) in Theorem 2.
If we remove the restr ict ion (1.2) at z , then we have
THEOREM 6. Let f be a funation hotomorphia in D satisfying

(1.5). Then, for each n > 1 and at each z e D} we have

(5.1) (1 - \3\
2)n\fM(z)

For the proof of (5.1) we have only to combine (2.2) with Lemma 4.1.

6. Proofs of Theorems 3 and 4.

For the proof of Theorem 3 we may assume that f(z) / °° and / has the

expansion (1.2) near Z . The case (1.7) is handled similarly by

considering 1/f instead of f with &(f) = 8(l/f) .

Consider g of (2.1) for this / and set

F(w) = {g(w) - g(0)}/{l + g(O)g(w)} , w e D .

Then B W = B(g) = &(f) yields that

^ l l C € D .

On integrating from 0 to W along the radius of D , we have

(6.1) tan" \F(w)\ g gtanh" \w\ < K (0 < K < TT/2) ,

if |w| < tanh(K/%) = R . The left-most quantity in (6.1) is the length

of the arc on the great circle (the meridian) between 0 and F(w) on

the Riemann sphere.

The function h(w) = F(Rj)/tan K of W e D is then bounded,

\h\ < 1 , so that \hM (0)\ < n! , or,

(6.2) \F(n) (0)\ < n/Ctan K)/lP .

I t now follows from

F(n) (0) + W) Z Og(k)(0)F(n-k)(0) = gM(0) ,
k=0 K

Ck)
together with g(0) = f(z), g (0) = 0 for 1 i k g n - 1 for n S 2 ,

and g(n) (0) = (1 - \z\2)nfM (z) resulting from (2.2), that

(1 + \f(z)\2)F(n)(0) = gM(0) = (1 - \z\2)nfM(z) .

Therefore, (1.9) follows from (6.2) on setting x = K/& and on taking the

infimum.
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The function §(x) = Ctan 3xV(tanh x)n , 0 < x < -n/(2&),
is increasing for n = 1 . If n > 1 , then the sign of <3>' is the same
as that of

V(x) = sinhf&ej - (n/&)sin(2$x) = X(x) - v(x) .

The graph y = X(x) has tangent y = 2x at the origin, is convex down-
wards, and increasing, while the graph y = \i(x) has tangent y = 2nx
at the origin and is convex upwards. Since V(v/(2&)) = sinh(-n/&) > 0 ,
i t follows that (1.11) holds only at one point x e (0,TI/(2B)) .

For the proof of Theorem 4 we set

g(w) = f(w + z) and F(w) = ig(w) - g(0)}/{l + g(O)g(w)} ,

w e (p . Then, y(F) = y(g) = y(f) , and, this timer (6.1) becomes

tan~1\F(w)| § y|u| < K (0 < K < v/2) ,

if |u| < K/y 5 7? . Observing that

(1+ \f(z)\2)FM(0) = gM(0) = fM(z)

in the case (1.2) for this f , we deduce (1.13) from

\FM (0) | ̂  n/rtan K)/!? = n/y^Vtan 10/1? .

The case (1.7) is treated similarly by considering 1/f .

The sign of the derivative of the function ("tan x)/x is the same

as that of 2x - n sin(2x) for 0 < x < IT/2 , so that, the minimum in the

case n > 1 is attained at the root of (1.15).

7. Meromorphic functions with neither condition (1.2) nor (1.7).

We begin with a counterpart of Theorem 3.

THEOREM 7. Let f be a fimation meromorphie in D satisfying

(1.8). Then, for each n 5 1 and at each z e D we have

(7.1) (1 - \z\2)nf^(z) sf^
tan

0<x<-n/2&) (tanh x)n
\z\tanh x + \f(z)\tan

if f(z) j » ;

(7.2) (1 - \z\2ff(z) g inf tan *x (1 + \z\tanh
0<x<-n/(2&) (tank x)

if f(z) = » .
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On replacing / in (7.1) by 1/f , we obtain (7.2). For

x = T\/(4&) we also have, for the function in the right-hand side of

(7.1) ,

(7.1) ' (1 - \z\Z)nf*n(z) S T~n(l + \z\T + Iff*)])"'1, f(z) / - ,

where T = tanh{ir/C4By' } .

For the proof of Theorem 7 we let g and F be as in the proof of

Theorem 3; we may assume that f(z) ̂  °° . It then follows from

that

(7.3)

F(w) + f(z)F(w)g(w) = g(w) - f(z)

(k)

f(z) JJ1L- Q«» v > 7
- -i)! ~ k! ' K = '(k - o)!

because F(0) = 0 . By the same reasoning as in the proof of (6.2) we

have, for each X. g 1 ,

\F(i)(0)/l!\ $ tan K /R% for R = tanh(K/8), 0 < K < v/2 .

It then follows from (7.3), together with g(0) = f(z) that, for k i 1

(7.4) g(k)(0)
k!

2.tan K \f(z)\ E ^f^
3=1 f~°

Induction on (7.4) now gives

r^ (1 + \f(z)\2)(l + |/r3;|tan K)k~1
3 k £ 1 .(7.5) k!

Combining (2.2) w i t h ( 7 . 5 ) , and s e t t i n g x = K/& , we o b t a i n ( 7 . 1 ) .

THEOREM 8. Let f be a function meromorphic in € with (1.12).

Then, for eaeh n s 1 and at each z e IS we have

(7.6)

(7.7)

§ yn inf \f(z)\tan x)n~l
 3

if f(z) ? - s

where C is the same as in (1.14) .n
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On replacing / in (7.6) by 1/f, we obtain (7.7), We emphasize
that (1.13) in case f(z) = °» is ameliorated:

If f(z) = 0 or f(z) = «= _, then, for each v £ 1 ,

(1.13)' f*(z) s C yV .

In effect, the case f(z) = 0 follows from (7.6), while the case

f(z) = oo is (7.7).

On substituting x = ti/4 in the function in the right-hand side of

(7.6) we have

(7.6) • f*n(z) % (4y/-n)
n(l + \f(z)\)n~1 , if f(z) ? - .

For the proof of Theorem 8 we may assume that f(z) ̂  <» . Let g

and F be as in the proof of Theorem 4. Since

\F(w)\ i tan K for |u| < K/y S if (0 < K < v/2) ,

(7.5) for this g and R is true. In this case,

\f(n)(z)/n!\ = \g(n)(0)/n!\

(1 + \f(z)\2)(l + |/r2
 n2

whence

f*n(z) * y n ^ ( l + |/fa; |tan K)^1 .
K

On setting K = x and on taking the infimum we obtain (7.6) .

8. Concluding remarks.

For / meromorphic and normal in D , with (1.8), the present author

proved that

(1 - \z\2)2/1(z)(f)
#
1(z)

is bounded in D [5, Theorem 1], and later, P. A. Lappan proved that the

continuous function

F(z)=(l- | a | V V (f(k))\(z)
n k=0 J

is bounded in D for each n > 1 [7, Theorem 1].

We shall find a concrete upper bound of F in terms of n > 1 and

n
T = tanh{ir/f4B<' } for nonconstant / , namely,
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P 7 7 n~^ U
(8.1) sup f (z) < n!2 nY~n(2 + T)n~d{2 + I \_Y/(2 + T)T/k!) .

zeD n k=l

The situation is similar for / meromorphic and Yosida in <F

with (1.12). For each n > 1 , the continuous function

Yl'1 (k) #G (z) = n (fKJ)*(z)
n k=0 J

is bounded in $" , namely,

- 7 n~^ V
(8.2) sup G (z) % n!2(4y/-n)n{2~ + I {.v/(8y)T/k!} .

nn k=l

We begin with

LEMMA 8.1 . [7 , Lemma 2 ] . For f meromorphia in D or in <p ,

for each n > 1 , and for eaeh z where f(z) / °° , we have

(8.3) n (f(k) )*(z) f,n!f*(z)/ n max(2:,\f
(k) (z)\).

k=0 1 n k=l

LEMMA 8.2. For f meromorphic in D or in it ; for each n > 1 ,

and for each z where f(z) j* 0 , °°, we have

(8.4) n!f*(z)/ n max(2,\f(k) (z)\)
n k=l

^n!21~n(l/f)#(z)+\n!22~n/f(z)\ I (l/f)#
 v(z)/k! .n k=1 n-K

Actually, applying the Leibniz rule to the identity f'(l/f) = 1

near z , we obtain

f(n) (z) = -f(z) I (\)f(k)(z)(l/f)(n~k)(z) .
k=0 K

Therefore,

\fM(z)\ $ \f(z)\2\(l/f)(n) (z)\ + \f(z)\\ (")\f(k)(z)(l/f)(n-k)(z)\ ,
k=l K

whence

nlj^(s) S \(l/f)M (z)\/(l + \l/f(z)f) +

+ \l/f(z)\ I (?)\f(k)(z)(l/f)(n~k)(z)\/(l + \l/f(z)\2) .
k K
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On dividing both sides by

n-1 ,, ,
n max(2}\r

KJ (z)\)
k=l

we obtain (8.4).

For the proof of (8.1) we begin with the case \f(z)| S 1 .

Then, (7.1)' yields that

(1- \z\)fh

whence, together with (8.3), we obtain

(8.5) Fn(z) S n!2
1~nT~n(2 + T)n~2 .

In the case 1 < \f(z)\ < °° , it follows frcm (7.1)' for 1/f and

n - k (n > k § 0) that

(1 - \z\2)n(l/f){_k(z) I (1 - \z\Z)n-k(l/f)l_k(z)

which, t o g e t h e r wi th (8.3) and ( 8 . 4 ) , y i e l d s t h a t

P (z) S n!21~nV~n(2 + xf1'1 + n!22~nY~n(2 + vf'1 I {V/(2 + T)}k/k! .
n k=l

Combining t h i s with (8 .5) , and observing tha t F i s continuous in D ,

we have (8 .1) .

For the proof of (8.2), we first consider the case \f(z)\ £ 1 .

Then, (7.6)' yields that

fn(z) S (4y/-n)
n2n~1 ,

which, together with (8.3), asserts that

(8.6) Gn(z) S n!(4y/v)
n .

In the case 1 < \f(z)| < » , (7.6)' for 1/f and for n - k reads that

(l/f)*n_k(z) i (4yA)
n-k2n-k-1 ,

which, together with (8.3) and (8.4), yields that

n~1
G (z) < n!(4y/-n)n + n!2(4y/v)n Z {tt/(8y)T/k! .
" k=l

Combining this with (8.6), and observing that G is continuous in (P ,
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we have (8.2).

Finally, we cannot expect a similar estimate for Bloch functions.

Actually, for the Bloch function f(z) = - XogCl - z) (f(0) = 0) in D ,

we have f '(z) = (k - 1)1(1 - z) (k > 1) . Therefore, for 0 < x < 1

and for n > 1 ,

(i - x2)n n f(k)(x) = ( I (k - i)> )(i + x)n(i - x ) n ( 1 ~ n ) / 2 ,
k=l k=l

so that this tends to » as x ->• 1-0 .
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