REPRESENTATION OF PRIMES BY BINARY QUADRATIC FORMS OF DISCRIMINANT $-256 q$ AND $-128 q$

by FRANZ HALTER-KOCH

(Received 29 January, 1992)
Introduction. Recently, P. Kaplan and K. S. Williams [10] considered (as an example) the representation of primes by binary quadratic forms of discriminant -768 . These forms fall into 4 genera, each consisting of two classes. In particular, they considered the forms

$$
F=3 X^{2}+64 Y^{2} \text { and } G=12 X^{2}+12 X Y+19 Y^{2}
$$

It follows from genus theory (as explained in [10]) that every prime $p \equiv 19 \bmod 24$ is represented by exactly one of the forms F and G. Based on numerical data, they conjectured that a prime $p \equiv 19 \bmod 24$ is represented by

$$
\begin{cases}F, & \text { if } \quad V_{(p+1) / 4} \equiv 2 \bmod p \\ G, & \text { if } \\ V_{(p+1) / 4} \equiv-2 \bmod p\end{cases}
$$

where

$$
V_{0}=2, \quad V_{1}=-4, \quad V_{n+2}=-4 V_{n+1}-V_{n} \quad(n \geq 0) .
$$

In this note, we prove this criterion as a special case of a more general result using class field theory and the methods developed in [4].

1. Notations and preliminaries. We start by recalling some facts from Gauss' theory of binary quadratic forms and its relations with class field theory, cf. [1] and [2], part III.

Let D be a discriminant of positive definite primitive integral binary quadratic forms (i.e., $D \in \mathbb{Z}, D<0, D \equiv 0$ or $1 \bmod 4$), and let $\mathscr{H}(D)$ be the class group of such forms of discriminant D (with respect to proper equivalence) under Gauss' composition. The principal class of $\mathscr{H}(D)$ will always be denoted by I, and we use the notation

$$
[a, b, c]=a X^{2}+b X Y+c Y^{2} \in \mathbb{Z}[X, Y] .
$$

We say that a class $C \in \mathscr{H}(D)$ represents an integer w and write $C \rightarrow w$, if $w=f(x, y)$ for some form $f \in C$ and $x, y \in \mathbb{Z}$ such that $\operatorname{gcd}(x, y)=1$. There is a canonical epimorphism

$$
\phi_{D}: \mathscr{H}(4 D) \rightarrow \mathscr{H}(D)
$$

induced by $[a, 2 b, 4 c] \mapsto[a, b, c]$. If $\bar{C} \in \mathscr{H}(4 D)$ and $w \in \mathbb{Z}$ is odd, then obviously $\bar{C} \rightarrow w$ implies $\phi_{D}(\bar{C}) \rightarrow w$.

Every discriminant is of the form $D=D_{0} f_{D}^{2}$, where D_{0} is the fundamental discriminant and f_{D} is the conductor associated with D. The group $\mathscr{H}(D)$ is isomorphic to the ring class group modulo f_{D} in $\mathbb{Q}\left(\sqrt{D_{0}}\right)$. If τ denotes the complex conjugation, then τ acts on the ring class group modulo f_{D} and hence on $\mathscr{H}(D)$ by $A^{\tau}=A^{-1}$.

Associated with $\mathscr{H}(D)$, there is a ring class field $k(D)$ over $\mathbb{D}\left(\sqrt{D_{0}}\right)$ and an Artin isomorphism
$((\cdot)):\left\{\begin{array}{l}\mathscr{H}(D) \simeq \operatorname{Gal}\left(k(D) / \mathbb{Q}\left(\sqrt{D_{0}}\right)\right) \\ A \mapsto((A))\end{array}\right.$
Glasgow Math. J. 35 (1993) 261-268.
possessing the following two fundamental properties;

1) $\operatorname{Gal}(k(D) / \mathbb{Q})$ is given by the splitting group extension

$$
1 \rightarrow \mathscr{H}(D) \xrightarrow{((\cdot))} \operatorname{Gal}(k(D) / \mathbb{Q}) \rightarrow\langle\tau\rangle \rightarrow 1 ;
$$

2) For a class $C \in \mathscr{H}(D)$ and a rational prime $p \nmid D$ we have $C \rightarrow p$ if and only if $((C)) \in \operatorname{Gal}(k(D) / \mathbb{Q})$ is the Frobenius automorphism of some prime divisor \mathfrak{B} of p in $k(D)$.

We may assume that the Artin isomorphism is normalized in such a way that

$$
((\bar{C})) \mid k(D)=\left(\left(\phi_{D}(\bar{C})\right)\right)
$$

for every class $\bar{C} \in \mathscr{H}(4 D)$ (observe that, by definition, $((\bar{C})) \in \operatorname{Gal}(k(4 D) / \mathbb{Q})$ and $k(4 D) \supset k(D))$.

In this note, we shall mainly be concerned with the 2-parts of class groups. We consider the decomposition

$$
\mathscr{H}_{(D)}(D) \mathscr{H}_{2}(D) \times \mathscr{H}^{\prime}(D)
$$

where $\mathscr{H}_{2}(D)$ is the 2 -Sylow subgroup of $\mathscr{H}(D)$, and $\mathscr{H}^{\prime}(D)$ is of odd order. We set $h(D)=\# \mathscr{H}(D), h^{\prime}(D)=\# \mathscr{H}^{\prime}(D)$, and we denote by $k_{2}(D) \subset k(D)$ the fixed field of $\mathscr{H}^{\prime}(D)$ (whence $k_{2}(D)$ is the maximal 2-extension of \mathbb{Q} inside $k(D)$). For a class $A \in \mathscr{H}_{2}(D)$, we set

$$
[A]=((A)) \mid k_{2}(D) \in \operatorname{Gal}\left(k_{2}(D) / \mathbb{Q}\left(\sqrt{D_{0}}\right)\right)
$$

The following lemma collates the basic properties of the symbol $[\cdot]$.
Lemma 1. i) $[\cdot]: \mathscr{H}_{2}(D) \underset{\rightarrow}{ } \operatorname{Gal}\left(k_{2}(D) / \mathbb{Q}\left(\sqrt{D_{0}}\right)\right)$ is a group isomorphism, and $\operatorname{Gal}\left(k_{2}(D) / \mathbb{Q}\right)$ is given by the splitting group extension

$$
1 \rightarrow \mathscr{H}_{2}(D) \xrightarrow{\cdot \cdot l} \operatorname{Gal}\left(k_{2}(D) / \mathbb{Q}\right) \rightarrow\langle\tau\rangle \rightarrow 1 .
$$

ii) Let $C \in \mathscr{H}_{2}(D)$ be a class satisfying $C^{4}=I$, and let p be a rational prime not dividing D. Then we have $C \rightarrow p^{h^{\prime}(D)}$ if and only if the fixed field of $[C]$ in $k_{2}(D)$ is the decomposition field of p in $k_{2}(D)$.
iii) If $\bar{C} \in \mathscr{H}_{2}(4 D)$, then $\phi_{D}(\bar{C}) \in \mathscr{H}_{2}(D)$ and $[\bar{C}] \mid k_{2}(D)=\left[\phi_{D}(\bar{C})\right]$.

Proof. i) The canonical epimorphism $\mathscr{H}(D) \rightarrow \operatorname{Gal}\left(k_{2}(D) / \mathbb{Q}\left(\sqrt{D_{0}}\right)\right.$, given by $C \mapsto$ $((C)) \mid k_{2}(D)$, has kernel $\mathscr{H}^{\prime}(D)$; now the assertion follows from the decomposition $\mathscr{H}(D)=\mathscr{H}_{2}(D) \times \mathscr{H}^{\prime}(D)$.
ii) It suffices to consider primes p splitting in $\mathbb{Q}\left(\sqrt{D_{0}}\right)$; let \mathfrak{p} be a prime divisor of p in $\mathbb{Q}\left(\sqrt{D_{0}}\right)$ and $\psi \in \operatorname{Gal}(k(D) / k)$ the Frobenius automorphism of p. Then $C \rightarrow p^{h^{\prime}(D)}$ is equivalent to $\psi^{h^{\prime}(D)}=((C))^{ \pm 1}$, since both automorphisms, $\psi^{h^{\prime}(D)}$ and $((C))^{ \pm 1}$, are of 2-power order, we have $\psi^{h^{\prime}(D)}=((C))^{ \pm 1}$ if and only if $\left(\psi \mid k_{2}(D)\right)^{h^{\prime}(D)}=[C]^{ \pm 1}$. Since $C^{4}=I$, the last equality holds if and only if $\psi \mid k_{2}(D)$ and [C] generate the same cyclic subgroup of $\operatorname{Gal}\left(k_{2}(D) / \mathbb{Q}\left(\sqrt{D_{0}}\right)\right)$. Since the fixed field of $\psi \mid k_{2}(D)$ in $k_{2}(D)$ is exactly the decomposition field of p, the assertion follows.
iii) $[\bar{C}]\left|k_{2}(D)=\{((\bar{C})) \mid k(D)\}\right| k_{2}(D)=\left(\left(\phi_{D}(\bar{C})\right)\right) \mid k_{2}(D)=\left[\phi_{D}(\bar{C})\right]$.
2. Class groups of discriminant $-2^{\prime} q$. From now on, we consider discriminants of the following two types:
(I) $D=-256 q, q$ is a prime, $q \equiv 3 \bmod 4$;
(II) $D=-128 q, q$ is a prime, $q \equiv 3 \bmod 8$
(for these discriminants, $\mathscr{H}_{2}(D)$ has the same structure as for $D=-768$).
The associated fundamental discriminant is given by

$$
D_{0}= \begin{cases}-q & \text { in case (I) } \\ -8 q & \text { in case (II) }\end{cases}
$$

and we set, for $s \geq 0$,

$$
D_{s}=2^{2 s} D_{0}
$$

which implies

$$
D= \begin{cases}D_{4} & \text { in case (I) } \\ D_{2} & \text { in case (II) }\end{cases}
$$

The group $\mathscr{H}\left(D_{s}\right)$ is isomorphic to the ring class group modulo 2^{s} in $\mathbb{Q}\left(\sqrt{D_{0}}\right)$, and therefore there is an exact sequence

$$
\begin{equation*}
1 \rightarrow \mathscr{P}_{0}(s) \rightarrow \mathscr{H}\left(D_{s}\right) \xrightarrow{\psi_{s}} \mathscr{H}\left(D_{0}\right) \rightarrow 1, \tag{*}
\end{equation*}
$$

where $\psi_{s}=\phi_{D_{s-1}}{ }^{\circ} \phi_{D_{s-2}}{ }^{\circ} \ldots{ }^{\circ} \phi_{D_{0}}$, and $\mathscr{P}_{0}(s)$ is defined as follows: let $\mathscr{P}(s)$ be the prime residue class group modulo 2^{s} in $\mathbb{Q}\left(\sqrt{D_{0}}\right), \mathscr{P}_{*}(s)$ the subgroup of all $\left(a \bmod 2^{s}\right) \in \mathscr{P}_{0}(s)$, where either $a \in \mathbb{Z}$ or a is a root of unity, and set $\mathscr{P}_{0}(s)=\mathscr{P}(s) / \mathscr{P}_{*}(s)$. By $[5], \mathscr{P}_{0}(s)$ is (for $s \geq 2$) of type

$$
\begin{array}{rll}
\left(2^{s-2}, 2\right), & \text { if } & D_{0} \equiv 1 \bmod 8 \text { or } D_{0}=-3 \\
\left(2^{s-2}, 2,3\right), & \text { if } & D_{0} \equiv 5 \bmod 8, \quad D_{0} \neq-3 \\
\left(2^{s}\right), & \text { if } & D_{0} \equiv 0 \bmod 8
\end{array}
$$

In case (I), $\mathscr{H}_{2}\left(D_{0}\right)$ is trivial, and therefore $\mathscr{H}_{2}\left(D_{s}\right)$ is of type ($2^{s-2}, 2$) (for $s \geq 2$). In case (II), $\mathscr{H}_{2}\left(D_{0}\right)$ is of order 2 ; for $s \geq 1, \mathscr{H}_{2}\left(D_{s}\right)$ is not cyclic by genus theory, and therefore $(*)$ splits. Hence $\mathscr{H}_{2}\left(D_{s}\right)$ is of type $\left(2^{s}, 2\right)$ in case (II).

In both cases, $\mathscr{H}_{2}(D)$ is of type $(4,2)$ and $\mathscr{H}_{2}(4 D)$ is of type $(8,2)$. We choose generators such that

$$
\mathscr{H}_{2}(4 D)=\langle\bar{A}, \bar{B}\rangle, \quad \bar{A}^{8}=\bar{B}^{2}=I,
$$

and we set

$$
A=\phi_{D}(\bar{A}), \quad B=\phi_{D}(\bar{B})
$$

then we have

$$
\mathscr{H}_{2}(D)=\langle A, B\rangle, \quad A^{4}=B^{2}=I .
$$

By means of this normalization it is possible to identify the four ambigous classes of $\mathscr{H}_{2}(D): A^{2}$ and I belong to the principal genus, $A^{2} B$ and B not; B is the ϕ_{D}-image of an ambigous form of $\mathscr{H}_{2}(4 D), A^{2} B$ not.

For these reasons, the four ambiguous classes

$$
I, A^{2}, B, A^{2} B
$$

of $\mathscr{H}^{2}(D)$ contain the forms

$$
\begin{cases}{[1,0,64 q],[4,4,1+16 q],[q, 0,64],[4 q, 4 q, q+16]} & \text { in case (I) } \\ {[1,0,32 q],[4,4,1+8 q],[q, 0,32],[4 q, 4 q, q+8]} & \text { in case (II) }\end{cases}
$$

respectively.
The classes of $\mathscr{H}_{2}(D)$ fall into 4 genera:
$\mathscr{G}_{1}=\left\{I, A^{2}\right\}$, represents numbers $a \equiv 1 \bmod 8$,
$\mathscr{C}_{2}=\left\{B, A^{2} B\right\}$, represents numbers $a \equiv q \bmod 8$,
$\mathscr{G}_{3}=\left\{A, A^{3}\right\}$ and $\mathscr{G}_{4}=\left\{A B, A^{3} B\right\}$.
Let $\alpha, \beta \in \mathbb{Z}$ be such that $(\mathbb{Z} / 8 \mathbb{Z})^{\times}=\{\overline{1}, \bar{q}, \bar{\alpha}, \bar{\beta}\}$. Since we are free to replace A by $A B$, we can normalize the generators in such a way, that \mathscr{G}_{3} represents numbers $a \equiv \alpha \bmod 8$ and \mathscr{G}_{4} represents numbers $a \equiv \beta \bmod 8$.

From Lemma 1 and the given description of genera we obtain the following criterion (cf. the Example in [10]).

Lemma 2. Let D be a discriminant of type (I) or (II) and p a rational prime satisfying $\left(\frac{D_{0}}{p}\right)=1$. Then $p^{h^{\prime}(D)}$ is represented by
both A and A^{3}, if $p \equiv \alpha \bmod 8$;
both $A B$ and $A^{3} B$, if $p \equiv \beta \bmod 8$;
exactly one of I and A^{2}, if $p \equiv 1 \bmod 8$;
exactly one of B and $A^{2} B$, if $p \equiv q \bmod 8$.
In [9] (Corollary on p .17), we proved a criterion for a prime $p \equiv 1 \bmod 8$ to be represented either by I or by A^{2}. In the sequel we concentrate our attention to primes $p \equiv q \bmod 8$, and we start by describing the Galois theory of the field $k_{2}(4 D)$ for discriminants D as in (I) or (II).

By Lemma 1, we obtain

$$
\operatorname{Gal}\left(k_{2}(4 D) / \mathbb{Q}\right)=\langle[\bar{A}],[\bar{B}], \tau\rangle
$$

and $[\bar{A}]^{8}=[\bar{B}]^{2}=\tau^{2}=\mathrm{id},[\bar{A}][\bar{B}]=[\bar{B}][\bar{A}],[\bar{B}] \tau=\tau[\bar{B}],[\bar{A}] \tau=\tau[\bar{A}]^{-1}$.
$k_{2}(4 D)$ possesses 3 subfields on degree 16 containing $k=\mathbb{Q}\left(\sqrt{-D_{0}}\right)$, namely:
$k_{2}(D), \quad$ the fixed field of $[\bar{A}]^{4} ;$
\bar{L}^{\prime}, \quad the fixed field of $[\bar{B}]$;
$\bar{L}^{\prime \prime}, \quad$ the fixed field of $\left[\bar{A}^{4} \bar{B}\right]$.
\bar{L}^{\prime} and $\bar{L}^{\prime \prime}$ are Galois extensions of \mathbb{Q}, cyclic of degree 8 over k and having dihedral groups of order 16 as their absolute Galois groups.

Observing $[\bar{A}] \mid k_{2}(D)=[A]$ and $[\bar{B}] \mid k_{2}(D)=[B]$, we obtain $\operatorname{Gal}\left(k_{2}(D) / \mathbb{Q}=\right.$ $\langle[A],[B], \tau\rangle$. The field $k_{2}(D)$ possesses 3 subfields of degree 8 containing k, namely
K^{*}, \quad the fixed field of $[A]^{2} ;$
L^{\prime}, \quad the fixed field of $[B]$;
$L^{\prime \prime}$, the fixed field of $\left[A^{2} B\right]$.
K^{*} is an absolutely abelian extension of type (2,2,2), and a simple conductor calculation shows that $K^{*}=\mathbb{Q}(\sqrt{q}, \sqrt{2}, \sqrt{-1})$, cf. also [7]. L^{\prime} and $L^{\prime \prime}$ are Galois extensions of \mathbb{Q}, cyclic of degree 4 over k, and having dihedral groups of order 8 as their absolute Galois groups. We are able to distinguish between L^{\prime} and $L^{\prime \prime}: L^{\prime}$ is a subfield of a dihedral field of degree 16 over \mathbb{Q} (e.g., \bar{L}^{\prime} or $\bar{L}^{\prime \prime}$), while $L^{\prime \prime}$ is not.

Let $L_{0} \subset k_{2}(D)$ be the fixed field of $\left\langle\left[A^{2}\right],[B]\right\rangle$; obviously, $k \subset L_{0} \subset L^{*}$, and $L_{0}=L^{\prime} \cap L^{\prime \prime}$. Since L_{0} has an embedding in a dihedral field cyclic over k (namely L^{\prime}), it follows by [6], Satz 22 that

$$
L_{0}=\left\{\begin{array}{lll}
\mathbb{Q}\left(\sqrt{D_{0}}, \sqrt{2}\right), & \text { if } & q \equiv 7 \bmod 8 \\
\mathbb{Q}\left(\sqrt{D_{0}}, \sqrt{-2}\right), & \text { if } & q \equiv 3 \bmod 8
\end{array}\right.
$$

There are two other subfields of K^{*} which are of interest, namely $k_{0}=\mathbb{Q}\left(\sqrt{\left|D_{0}\right|}\right)$ and $K=k k_{0}=\mathbb{Q}\left(\sqrt{D_{0}}, \sqrt{-D_{0}}\right)$. Let $\epsilon_{0}>1$ be the fundamental unit of k_{0}, and set

$$
M=\left\{\begin{array}{lll}
K\left(\sqrt[8]{-\epsilon_{0}}\right), & \text { if } & q \equiv 7 \bmod 8 \\
K\left(\sqrt[8]{-4 \epsilon_{0}}\right), & \text { if } & q \equiv 3 \bmod 8
\end{array}\right.
$$

The field M was considered in [4], Sätze $1,1 \mathrm{a}$ and 1 b , where the following facts were proved:
M / \mathbb{Q} is a Galois extension of degree $32, K^{*} \subset M, M / K$ is cyclic of degree 8 , and there exists a subfield $L \subset M$ such that $M=L K, L / \mathbb{Q}$ is a Galois extension of degree 16 with a dihedral group as Galois group, $k \subset L$, and L / k is cyclic of degree 8 .

Let M_{0} be the unique intermediate field between K^{*} and M. By [6], Satz $11, L$ is contained in a ring class field over k, and since M / k is unramified outside 2 , we infer $L \subset k_{2}\left(D_{s}\right)$ for some $s \geq 2$. It follows from the structure of $\mathscr{H}_{2}\left(D_{s}\right)$ (determined above) that every cyclic extension of degree 8 over k contained in some $k_{2}\left(D_{s}\right)$ is already contained in $k_{2}(4 D)$. This implies $L \in\left\{\bar{L}^{\prime}, \bar{L}^{\prime \prime}\right\}$, and consequently $M_{0}=L^{\prime} K$.

The following lemma concerns the splitting type of primes $p \equiv q \bmod 8$ in M.

Lemma 3. Let D be a discriminant of type (I) or (II) and parational prime satisfying $\left(\frac{D_{0}}{p}\right)=1$ and $p \equiv q \bmod 8$. Then p is inert in k_{0} and splits in M_{0} into primes of (absolute) degree 2. Moreover, exactly one of the following two assertions holds true:

1) p splits completely in L^{\prime}, and the prime divisors of p in M are of degree 2.
2) p splits completely in $L^{\prime \prime}$, and the prime divisors of p in M are of degree 4 .

Proof. Since $\left(\left|D_{0}\right| / p\right)=-\left(D_{0} / p\right)=-1, p$ is inert in k_{0}. For every subfield Ω of M, we denote by $f(\Omega)$ the degree of the prime divisors of p in Ω. We have $f(k)=1$, $f\left(k_{0}\right)=2$, and since K^{*} / Q is of type $(2,2,2)$, we infer $f\left(K^{*}\right)=2$. Since $p \equiv 7 \bmod 8$ splits in $\mathbb{Q}(\sqrt{2})$ and $p \equiv 3 \bmod 8$ splits in $\mathbb{Q}(\sqrt{-2})$, we obtain $f\left(L_{0}\right)=1$, and since M_{0} / L_{0} is of type $(2,2)$ and $K^{*} \subset M_{0}$, we obtain $f\left(M_{0}\right)=2$ as asserted.
$k_{2}(D) / L_{0}$ is an extension of type $(2,2)$ with intermediate fields $L^{\prime}, L^{\prime \prime}$ and K^{*}. Since $f\left(L_{0}\right)=1$ and $f\left(K^{*}\right)=2$, we obtain $f\left(k_{2}(D)\right)=2$, and either $f\left(L^{\prime}\right)=1, f\left(L^{\prime \prime}\right)=2$ or $f\left(L^{\prime}\right)=2, f\left(L^{\prime \prime}\right)=1$. If $f\left(L^{\prime}\right)=1$, then we infer $f(M)=2$, since M / L^{\prime} is of type $(2,2)$, $M_{0} \subset M$ and $f\left(M_{0}\right)=2$. If $f\left(L^{\prime}\right)=2$, then we infer $f\left(\bar{L}^{\prime}\right)=f\left(\bar{L}^{\prime \prime}\right)=4$ since \bar{L}^{\prime} / L_{0} and $\bar{L}^{\prime \prime} / L_{0}$ are cyclic, and consequently $f(M)=4$ as asserted.

3. Main results.

Theorem. Let D be a discriminant of type (I) or (II), i.e., either
(I) $D=-256 q, q$ prime, $q \equiv 3 \bmod 4$ or
(II) $D=-128 q, q$ prime, $q \equiv 3 \bmod 8$.

Let p be a rational prime satisfying $(D / p)=1$ and $p \equiv q \bmod 8$. Let $\epsilon_{0}>1$ be the fundamental unit of $k_{0}=\mathbb{Q}(\sqrt{|D|})$.
i) $-\epsilon_{0}$ is a quartic residue modulo p in k_{0}, and exactly one of the classes $A^{2} B$ and B represents $p^{h^{\prime}(D)}$.
ii) $B \rightarrow p^{h^{\prime}(D)}$ if and only if $-\epsilon_{0}$ is an octic residue modulo p in k_{0}.

Proof. We set

$$
\alpha_{0}=\left\{\begin{array}{lll}
-\epsilon_{0}, & \text { if } & q \equiv 7 \bmod 8 \\
-4 \epsilon_{0}, & \text { if } & q \equiv 3 \bmod 8
\end{array}\right.
$$

whence $M=k\left(\sqrt[8]{\alpha_{0}}\right)$ and $M_{0}=K\left(\sqrt[4]{\alpha_{0}}\right)$. The prime p is inert in k_{0} and splits in M_{0} by Lemma 3, and therefore α_{0} is a quartic residue modulo p in k_{0}.

By Lemma 2, exactly one of the classes B and $A^{2} B$ represents $p^{h^{\prime}(D)}$. By Lemma 1, we have $B \rightarrow p^{h^{\prime}(D)}$ if L^{\prime} is the decomposition field of p in $k_{2}(D)$, and $A^{2} B \rightarrow p^{h^{\prime}(D)}$ if $L^{\prime \prime}$ is it. By Lemma 3, p splits completely in exactly one of the fields L^{\prime} and $L^{\prime \prime}$. Therefore we obtain $B \rightarrow p^{h^{\prime}(D)}$ if and only if p splits completely in L^{\prime}. Again by Lemma 3, p splits completely in L^{\prime} if and only if the prime divisors of p in K split completely in M / K, and since $M=K\left(\sqrt[8]{\alpha_{0}}\right)$, this is the case if and only if α_{0} is an octic residue modulo p in k_{0}. Thus we have proved:
α_{0} is a quartic modulo p in k_{0}, and $B \rightarrow p^{h^{\prime}(D)}$ if and only if α_{0} is an octic residue modulo p.

To arrive at the assertions of the theorem, we must prove that, for $q \equiv 3 \bmod 8,2$ is a quartic residue modulo p in k_{0} (then 4 is an octic residue); but this is easy, cf. [8], Lemma 2.

Finally we give an interpretation of the criterion stated in the theorem in terms of recurrent sequences.

Proposition. Let $m>2$ be a square-free integer, $u, v \in \mathbb{N}, \epsilon=u+v \sqrt{m}>1$ and $u^{2}-m v^{2}=1$. Let $p \equiv 3 \bmod 4$ be a prime satisfying $(m / p)=-1$. Define the sequence $\left(V_{n}\right)_{n \geq 0}$ by $V_{0}=2, V_{1}=-2 u$ and $V_{n+2}=-2 u V_{n+1}-\left(u^{2}-m v^{2}\right) V_{n}(n \geq 0)$.
i) For any $n \geq 0$, we have $V_{n}=(-u+v \sqrt{m})^{n} \pm(-u-v \sqrt{m})^{n}$.
ii) $-\epsilon$ is a quadratic residue modulo p in $\mathbb{Q}(\sqrt{m})$, and $V_{(p+1) / 2} \equiv \pm 2 \bmod p$.
iii) $-\epsilon$ is a quartic residue modulo p in $\mathbb{Q}(\sqrt{m})$ if and only if $V_{(p+1) / 2} \equiv 2 \bmod p$; in this case we have $V_{(p+1) / 4} \equiv \pm 2 \bmod p$.
iv) Let - ϵ be a quartic residue modulo p in $\mathbb{Q}(\sqrt{m})$. Then $-\epsilon$ is an octic residue modulo p in $\mathbb{Q}(\sqrt{m})$ if and only if $V_{(p+1) / 4} \equiv 2 \bmod 4$.
Proof. i) follows by induction.
For the proof of the remaining assertions, let $F=\mathbb{Z}[\sqrt{m}] /(p)$ be the residue class field modulo p, and denote by $\bar{y} \in F$ the residue class of an element $y \in \mathbb{Z}[\sqrt{m}] . F$ is a field of p^{2} elements, containing the subfield $F_{0}=\mathbb{Z} / p \mathbb{Z}$ of rational residue classes. The non-trivial automorphism of F / F_{0} is induced by that of $\mathbb{Q}(\sqrt{m}) / \mathbb{Q}$ and is given by ($\zeta \mapsto \zeta^{p}$). Since $\mathcal{N}(\epsilon)=u^{2}-m^{2} v=1$, we obtain $\bar{\epsilon}^{1+p}=\overline{1} \in F$, and

$$
\bar{V}_{n}=(-\bar{\epsilon})^{n}+(-\bar{\epsilon})^{-n} \quad(n \geq 0)
$$

Therefore $V_{n} \equiv \pm 2 \bmod p$ is equivalent with
i.e.

$$
\left[(-\bar{\epsilon})^{n}\right]^{2} \mp 2\left[(-\bar{\epsilon})^{n}\right]+\overline{1}=\overline{0}
$$

$$
(-\bar{\epsilon})^{n}= \pm \overline{1} \in F .
$$

Let $\omega \in \mathbb{Z}[\sqrt{m}]$ be a primitive root modulo p, i.e. $F^{\times}=\langle\bar{\omega}\rangle$, and set $-\bar{\epsilon}=\bar{\omega}^{\prime}$ with $l \in \mathbb{N}_{0}$. Since $\bar{\epsilon}^{1+p}=\overline{1}$, we obtain $l=(p-1) r$ for some $r \in \mathbb{N}$. If $v \in \mathbb{N}_{0}, 2^{v} \mid p+1$, then $2^{v+1} \mid p^{2}-1$, and consequently $-\epsilon$ is a 2^{v+1} th power residue modulo p if and only if $2^{v} \mid r$. If $2^{v} \mid p+1$, then we have

$$
(-\bar{\epsilon})^{(p+1) / 2^{v}}=\bar{\omega}^{\left(p^{2}-1\right) r / 2^{v}}=\overline{1}
$$

if and only if $2^{v} \mid r$, and in this case we obtain (provided that $2^{v+1} \mid p+1$)

$$
(-\bar{\epsilon})^{(p+1) / 2^{v+1}}= \pm \overline{1}
$$

Applying these arguments for $v \in\{0,1,2\}$, the assertions of the Proposition follow.
Remark 1. There are analogues of the proposition above concerning the residuacity character of ϵ or $\pm 2 \epsilon$. They also may be used together with the theorem to obtain criteria for the representation by $A^{2} B$ or B.

Remark 2. If $m=3$, then $A^{2} B$ contains the form [12, 12, 9] and B contains [3, 0, 64]; we have $\epsilon_{0}=2+\sqrt{3}$, and the theorem together with the proposition implies the conjecture of Kaplan and Williams.

REFERENCES

1. D. A. Buell, Binary quadratic forms (Springer-Verlag 1989).
2. H. Cohn, A classical invitation to algebraic numbers and class fields (Springer-Verlag 1978).
3. S. Gurak, On the representation theory for full decomposable forms, J. Number Theory 13 (1981), 421-442.
4. F. Halter-Koch, Quadratische Einheiten als 8. Potenzreste in Proc. Int. Conf. on Class Numbers and Fundamental Units (Katata 1986), 1-15.
5. F. Halter-Koch, Einseinheitengruppen und prime Resklassengruppen in quadratischen Zahlkörpern, J. Number Theory 4 (1972), 70-77.
6. F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443.
7. F. Halter-Koch, Geschlechtertheorie der Ringklassenkörper, J. Reine Angew. Math. 250 (1971), 107-108.
8. F. Halter-Koch and N. Ishii, Ring class fields modulo 8 of $\mathbb{Q}(\sqrt{-m})$ and the quartic character of units of $\mathbb{Q}(\sqrt{m})$ for $m \equiv 1 \mathrm{mod} 8$, Osaka J. Math. 26 (1989), 625-646.
9. F. Halter-Koch, P. Kaplan and K. S. Williams, An Artin character and representations of primes by binary quadratic forms II, Manuscr. Math. 37 (1982), 357-381.
10. P. Kaplan and K. S. Williams, Representation of primes in arithmetic progressions by binary quadratic forms, J. Number Theorey, to appear.

Institut für Mathematik
Karl-Franzens-Universität
Heinrichstrasse 36/IV
A-8010 Graz, Österreich.

