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Introduction. Recently, P. Kaplan and K. S. Williams [10] considered (as an
example) the representation of primes by binary quadratic forms of discriminant —768.
These forms fall into 4 genera, each consisting of two classes. In particular, they
considered the forms

and G = 12*2 + 12XY + 1972.

It follows from genus theory (as explained in [10]) that every prime p = 19 mod 24 is
represented by exactly one of the forms F and G. Based on numerical data, they
conjectured that a prime p = 19 mod 24 is represented by

\F, if
C if

where
Vo = 2, V, = - 4 , Vn+2=-Wn+i-Vn («>0).

In this note, we prove this criterion as a special case of a more general result using class
field theory and the methods developed in [4].

1. Notations and preliminaries. We start by recalling some facts from Gauss' theory
of binary quadratic forms and its relations with class field theory, cf. [1] and [2], part III.

Let D be a discriminant of positive definite primitive integral binary quadratic forms
(i.e., D e Z, D < 0, D = 0 or 1 mod 4), and let dK(D) be the class group of such forms of
discriminant D (with respect to proper equivalence) under Gauss' composition. The
principal class of df£{D) will always be denoted by / , and we use the notation

[a, b, c] = aX2 + bXY + cY2 e Z[X, Y].

We say that a class C e #?(D) represents an integer w and write C—>w, if w =f(x,y) for
some form/ e C and x,y eZ such that gcd(x,y) = 1. There is a canonical epimorphism

induced by [a, 2b, 4c] >-* [a, b, c]. If C e %(4D) and w e Z is odd, then obviously C—» w
implies (pD(C)—>w.

Every discriminant is of the form D = Dof2
D, where Do is the fundamental

discriminant and/D is the conductor associated with D. The group dK{D) is isomorphic to
the ring class group modulo fD in Q(VD^). If r denotes the complex conjugation, then T
acts on the ring class group modulo fD and hence on $f(D) by AT = A~l.

Associated with $f(£>), there is a ring class field k(D) over Q(VD^) and an Artin
isomorphism
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possessing the following two fundamental properties;
1) Gal(k(D)/Q) is given by the splitting group extension

1 ^ X(D)&£*Gal(k(D)/Q)-> (z)-»1;

2) For a class C e ^f(D) and a rational prime p \ D we have C—*p if and only if
((C)) e Gal(A:(D)/Q) is the Frobenius automorphism of some prime divisor ty of p in
k(D).

We may assume that the Artin isomorphism is normalized in such a way that

for every class Ce#f(4£>) (observe that, by definition, ((C)) e Gal(fc(4D)/Q) and
*(4D) =>*(/))).

In this note, we shall mainly be concerned with the 2-parts of class groups. We
consider the decomposition

%(D) = X^D) x X'(D),

where X^D) is the 2-Sylow subgroup of %(D), and X'(D) is of odd order. We set
h(D) = #%(D), h'(D) = #W{D), and we denote by k2(D)ck(D) the fixed field of
W(D) (whence k2(D) is the maximal 2-extension of Q inside k(D)). For a class
A e 3^(D), we set

[A] = ((A)) | k2(D) G Gal(A:2(D)/Q(V^)).

The following lemma collates the basic properties of the symbol [•].

LEMMA 1. i) [•]: StC2(D)^.Ga\(k2(D)/Q(VD0)) is a group isomorphism, and
Ga\(k2(D)/Q) is given by the splitting group extension

U-* Gal(*2(D)/Q)-> < T > - > 1 .

ii) Let C e dfCz{D) be a class satisfying C4-I, and let p be a rational prime not
dividing D. Then we have C—>ph(D) if and only if the fixed field of [C] in k2(D) is the
decomposition field of p in k2(D).

iii) IfCe %(4D), then 4>D(C) e X^D) and [C] | k2(D) = [<t>D(C)].

Proof, i) The canonical epimorphism %!(D)—>Ga.\(k2(D)/Q(VD0), given by C ^
((C)) | k2(D), has kernel Vt'{D)\ now the assertion follows from the decomposition
X{D) = XiiD) x X'(D).

n}_ It suffices to consider primes p splitting in Q(VD^) ; let p be a prime divisor of p in
Q(VD0) and ip eGa\(k(D)/k) the Frobenius automorphism of p. Then C-*ph(D) is
equivalent to iph(D) = ((C))±l; since both automorphisms, iph'{D) and ((C))*1, are of
2-power order, we have rph'(D) = ((C))*1 if and only if (ip | *2(D))*'(D) = [C]*1. Since
C4 = /, the last equality holds if and only if i/> | Ar2(D) and [C] generate the same cyclic
subgroup of Gal(k2(D)/Q(VDo)). Since the fixed field of ip \ k2(D) in k2(D) is exactly the
decomposition field of p, the assertion follows.

iii) [C] | *2(*>) = {((C)) | k(D)} | M O ) = ( (^ (C)) ) | k2(D) = [<t>D(C)l
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2. Class groups of discriminant — 2'q. From now on, we consider discriminants of
the following two types:

(I) D = —256<7, q is a prime, q = 3 mod 4;
(II) D = —128<7, q is a prime, q = 3 mod 8

(for these discriminants, ^ ( D ) has the same structure as for D = —768).
The associated fundamental discriminant is given by

—q in case (I),
—8q in case (II),

and we set, for s > 0,

which implies

34 in case (I),
)2 in case (II).

The group 5if(D )̂ is isomorphic to the ring class group modulo 2s in Q(VDo), and
therefore there is an exact sequence

where \ps = (j>Ds_,°(l>Ds_2°- • O0DO, and %(*) is defined as follows: let ^{s) be the prime
residue class group modulo 2s in Q(VD^), SP*(S) the subgroup of all (a mod 2*) e $o(s)>
where either a e 1 or a is a root of unity, and set ^ ( s ) = ^(s) /^*^) . By [5], ^ ( s ) is (for
s a 2) of type

(2J"2,2), if Do = 1 mod 8 or D() = - 3 ,

(2S~2,2, 3), if Do = 5 mod 8, D o * - 3 ,

(2s), if Dn = 0 mod 8.

In case (I), W2(Do) is trivial, and therefore ^ 2 (A) is of type (2S~2, 2) (for $ 2 2). In
case (II), 2Kj(D0) is of order 2; for s > l , ^(D,) is not cyclic by genus theory, and
therefore (*) splits. Hence 5^(DJ is of type (2s, 2) in case (II).

In both cases, Vt^D) is of type (4,2) and ^ (4D) is of type (8,2). We choose
generators such that

and we set

A = 4>D(A), B = <t>D(B);

then we have

By means of this normalization it is possible to identify the four ambigous classes of
§^(D) : J4 2 and / belong to the principal genus, A2B and B not; B is the #o-image of an
ambigous form of ^ (4D) , A2B not.
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in case (I),
in case (II),

For these reasons, the four ambiguous classes
I,A2,B,A2B

of 3€2(D) contain the forms
f [1,0,64?], [4, 4,1 + 169], [<?, 0, 64], [Aq, Aq,q + 16]

, 0, 32q], [4,4,1 + 8q], [q,0, 32], [4q,4q, q+8]
respectively.

The classes of ^(D) fall into 4 genera:
% = {I, A2}, represents numbers a = 1 mod 8,
% = {B, A2B}, represents numbers a = q mod 8,
%={A,A3} and % = {AB,A3B}.

Let a, fl e Z be such that (Z/8Z)X = {1, q, a, $}. Since we are free to replace A by AB,
we can normalize the generators in such a way, that % represents numbers a = a mod 8
and % represents numbers a = 13 mod 8.

From Lemma 1 and the given description of genera we obtain the following criterion
(cf. the Example in [10]).

LEMMA 2. Let D be a discriminant of type (I) or (II) and p a rational prime satisfying

(—1 = 1. Then ph(D) is represented by
\p I

both A and A3, if p = a mod 8;
both AB and A3B, if p = /3 mod 8;
exactly one of I and A2, if p = 1 mod 8;
exactly one of B and A2B, if p = q mod 8.
In [9] (Corollary on p. 17), we proved a criterion for a prime p = lmod8 to be

represented either by / or by A2. In the sequel we concentrate our attention to primes
p = q mod 8, and we start by describing the Galois theory of the field k2(4D) for
discriminants D as in (I) or (II).
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By Lemma 1, we obtain

Ga\(k2(4D)/Q) =

and [Af = [Bf =r2 = id, [A][B] = [B][A], [B]T = r[B], [A]r = T\A]~1.

k2{4D) possesses 3 subfields on degree 16 containing k = Q(V-D0), namely:

k2(D), the fixed field of [A]*;
L', the fixed field of [B];
L", the fixed field of [A*B].

L' and L" are Galois extensions of Q>, cyclic of degree 8 over k and having dihedral
groups of order 16 as their absolute Galois groups.

Observing [A] \ k2{D) = [A] and [B]\k2(D) = [B], we obtain Gal(*2(D)/Q =
([A], [B], T) . The field k2(D) possesses 3 subfields of degree 8 containing k, namely

K*, the fixed field of [A]2;
U, the fixed field of [B];
L", the fixed field of [A2B].

K* is an absolutely abelian extension of type (2, 2, 2), and a simple conductor calculation
shows that K* = Q(Vq, V2, V11!), cf. also [7]. V and L" are Galois extensions of Q,
cyclic of degree 4 over k, and having dihedral groups of order 8 as their absolute Galois
groups. We are able to distinguish between L' and L":L' is a subfield of a dihedral field
of degree 16 over Q (e.g., L' or L"), while L" is not.

Let Lock2(D) be the fixed field of ([,42],[fi]); obviously, kcLoczL*, and
Lo = L' fl L". Since Lo has an embedding in a dihedral field cyclic over k (namely L'), it
follows by [6], Satz 22 that

fQ(VAbV2), if ? = 7 mod 8,
0 lQ(VZJb,V=2), if g=3mod8.

There are two other subfields of K* which are of interest, namely k0 = i
K = kk0 = Q(VAb V—Do). Let e0 > 1 be the fundamental unit of k0, and set

q = l mod 8,
q = 2> mod 8.

The field M was considered in [4], Satze 1, la and lb, where the following facts were
proved:

M/Q is a Galois extension of degree 32, K*czM, M/K is cyclic of degree 8, and
there exists a subfield LcAf such that M = LK, L/Q is a Galois extension of degree 16
with a dihedral group as Galois group, kcL, and L/k is cyclic of degree 8.

Let Mo be the unique intermediate field between K* and M. By [6], Satz 11, L is
contained in a ring class field over k, and since M/k is unramified outside 2, we infer
L c k2(Ds) for some s > 2. It follows from the structure of ^ (D s ) (determined above)
that every cyclic extension of degree 8 over k contained in some k2(Ds) is already
contained in k2(4D). This implies Le {L1, £"}, and consequently Mo = L'K.

The following lemma concerns the splitting type of primes p = q mod 8 in M.
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LEMMA 3. Let D be a discriminant of type (I) or (II) and p a rational prime satisfying

(—1 = 1 and p = q mod 8. Then p is inert in k0 and splits in Mo into primes of (absolute)
\p I
degree 2. Moreover, exactly one of the following two assertions holds true:

1) p splits completely in L', and the prime divisors of p in M are of degree 2.
2) p splits completely in L", and the prime divisors of p in M are of degree 4.
Proof. Since (\D0\/p) = -(Djp) = - 1 , p is inert in k0. For every subfield Q of M,

we denote by f(Q) the degree of the prime divisors of p in Q. We have f(k) = 1,
f(k0) = 2, and since K*/Q is of type (2, 2, 2), we infer f(K*) = 2. Since p = l mod 8 splits
in Q(V2) and p = 3 mod 8 splits in Q(V^2), we obtain /(Lo) = 1, and since Mo/Lo is of
type (2, 2) and K* a Mo, we obtain f(M0) = 2 as asserted.

k2(D)/L0 is an extension of type (2, 2) with intermediate fields L', L" and K*. Since
/(L0) = l and f(K*) = 2, we obtain /(*2(D)) = 2, and either / (L ' ) = l, f(L") = 2 or
/(L') = 2, /(L") = 1. If / (L') = 1, then we infer f{M) = 2, since MIL' is of type (2,2),
Moc: A/ and/(M0)=2. If f(L') = 2, then we infer / ( £ ' )= / (£" ) = 4 since £'AL0 and
Z'V^o are cyclic, and consequently f(M) = 4 as asserted.

3. Main results.

THEOREM. Let D be a discriminant of type (I) or (II), i.e., either
(I) D = -256q, q prime, q = 3 mod 4 or

(II) D = -128<?, q prime, q = 3 mod 8.
Le/ p be a rational prime satisfying (D/p) = l and p = q mod 8. Let e o > l ^ ^«
fundamental unit of k0 = Q(VJL)j).

i) — e0 is a quartic residue modulo p in k0, and exactly one of the classes A2B and B
represents ph{D]'.

ii) B—>ph(D) if and only if - e 0 is an octic residue modulo p in k0.

Proof. We set

f -e 0 , if <7 = ,
OCn= \

l -4e0 , if q = 3 mod 8,

whence M = k(y/~a^) and Mo = K(VOQ). The prime p is inert in &0 and splits in Mo by
Lemma 3, and therefore o^ is a quartic residue modulo p in k0.

By Lemma 2, exactly one of the classes B and A2B represents ph(D). By Lemma 1,
we have B-*ph'(D) if L' is the decomposition field of p in k2(D), and A2B->ph(D) if L" is
it. By Lemma 3, p splits completely in exactly one of the fields L' and L". Therefore we
obtain B^>ph(D) if and only Up splits completely in L'. Again by Lemma 3, p splits
completely in L' if and only if the prime divisors of p in K split completely in M/K, and
since M = AT(Va )̂, this is the case if and only if aQ is an octic residue modulo p in k0.
Thus we have proved:

a0 is a quartic modulo p in fc0, and B—>ph(D) if and only if a-0 is an octic residue
modulo p.

To arrive at the assertions of the theorem, we must prove that, for q = 3 mod 8, 2 is a
quartic residue modulo p in k0 (then 4 is an octic residue); but this is easy, cf. [8], Lemma
2.
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Finally we give an interpretation of the criterion stated in the theorem in terms of
recurrent sequences.

PROPOSITION. Let m>2 be a square-free integer, u,veN, e = u + v^/m>l and
u2 — mv2=l. Let p = 3mod4 be a prime satisfying (m/p) = — 1. Define the sequence
(KO^o by Vo = 2, V, = -2u and Vn+2 = -2uVn+l - (u2 - mv2)Vn (n > 0).

i) For any n =: 0, we have Vn = (—u + uVm)" + (—u — vyjm)n.
ii) — e is a quadratic residue modulo p in Q(Vm), and V(/,+1)/2 = ±2 modp.
iii) -e is a quartic residue modulo p in Q(Vm) if and only if V(p+1)/2 = 2modp; in

this case we have V(p+1)/4 = ±2 modp.
iv) Let — e be a quartic residue modulo p in Q(Vwt). Then —e is an octic residue

modulo p in Q(Vm) if and only if V(p+1)/4 = 2 mod 4.

Proof, i) follows by induction.
For the proof of the remaining assertions, let F = Z[Vm]/(p) be the residue class

field modulo p, and denote by y e F the residue class of an element y e Z[^/m\. F is a field
of p2 elements, containing the subfield Fo = Z/pZ of rational residue classes. The
non-trivial automorphism of F/FQ is induced by that of Q(Vm)/Q and is given by
(£ >-> £")• Since Jf(e) = u2- m2v = 1, we obtain ii+p = 1 e F, and

Vn = ( -e)n w- ( -€)-" («>0).

Therefore Vn = ±2 modp is equivalent with

[(-e)f =F2[(-*r] + i = 0,
i.e.

( -e)" = ± l e F .

Let 0) e Z[Vm] be a primitive root modulo p, i.e. Fx = (d>), and set - e = d>' with / 6 No.
Since e'+p = l, we obtain l = {p-\)r for some reN. If veN0, 2v\p + l, then
2 ^ ' | p2 — 1, and consequently — e is a 2v+1th power residue modulo p if and only if 2V | r.
If 2 v | p + l, then we have

if and only if 2V | r, and in this case we obtain (provided that 2V+1 | p + 1)
(_£)(p+iy2-+' _ ± j

Applying these arguments for v e {0,1,2}, the assertions of the Proposition follow.

REMARK 1. There are analogues of the proposition above concerning the residuacity
character of e or ±2e. They also may be used together with the theorem to obtain criteria
for the representation by A2B or B.

REMARK 2. If m = 3, then A2B contains the form [12,12,9] and B contains [3,0, 64];
we have e0 = 2 + V3~, and the theorem together with the proposition implies the
conjecture of Kaplan and Williams.
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