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Introduction. Isotropes play a distinguished role in the algebra of spinors. Let V be
an even-dimensional real vector space equipped with an inner product B of arbitrary
signature. An isotrope of (V, B) is a subspace of the complexification Vc on which Bc is
identically zero. Denote by p the spin representation of the complex Clifford algebra
C(VC, Bc) on a space 5 of spinors.

An isotrope Z of (V, B) annihilates a nonzero subspace Sz of 5 under p. Chevalley
has shown that if Z is a maximal isotrope of (V, B) then Sz is one-dimensional. Let W be
a non-maximal isotrope of (V, B)\ WcVc is a proper subspace of its orthogonal
Wx c Vc, and the quotient Wx/W inherits an inner product Bw. We show that Sw is
canonically a spin module for the Clifford algebra of (Wx/W, Bw).

The groups Spin(V, B) and Spinc(V, B), along with the Clifford groups T(V, B) and
r(V, B), may be realized as groups of units in C(VC, Bc) stabilizing V c C(VC, Bc)
under the twisted adjoint representation. We denote by ^(VyB-^) the subgroup of
P(V, B) stabilizing Z <= Vc in the vector representation of P(K, B) as orthogonal
transformations of (V, B). If Z is an isotrope of (V, B) then the spin representation of
r(V, B; Z) stabilizes Sz c S.

If Z is a maximal isotrope of (V, B) then the spin action of V{V, B;Z) on the
complex line Sz is given by a character; the identification of this character is implicit in
Chevalley. Let L <= V be a real isotrope of (V, B) ; identify L with Lc cz Kc. Orthogonal
transformations of (V, B) stabilizing L induce orthogonal transformations of the real
inner product space (Lx/L, BL); the resulting homomorphism of orthogonal groups may
be called isotropic reduction. We show that this homomorphism lifts naturally to the level
of Clifford groups and deduce that isotropic reduction of special orthogonal groups lifts to
the level of spin groups.

Our results have clear implications for pseudoriemannian geometry and for mathe-
matical physics; these we shall pursue elsewhere. Many of our results concerning the spin
representation were inspired by their counterparts for its symplectic analogue, the
metaplectic representation. However, there are notable differences: for instance, the
symplectic counterpart of isotropic reduction does not lift to metaplectic double covers.
See [S] for a detailed account of the metaplectic representation.

This paper is organized as follows. Section 1 contains a brief account of Clifford
algebras and their various groups of units; this material is quite standard and may be
found in [1], [2], [3], [4]. In §2 we describe completely the space of spinors annihilated by
an arbitrary isotrope. This description reveals properties of Clifford groups and spin
groups, which we present in §3.

1. Clifford algebras. Let V be a real vector space equipped with a nonsingular
symmetric bilinear form B. We assume that V is of even dimension 2m but make no
assumption regarding the signature of B.
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The orthogonal group O(V, B) is the group of all linear automorphisms g of V
satisfying

the special orthogonal group SO(K, B) is defined by

) = {geO(V,B)\Detg = l}.

A Clifford map for (V, B) is a pair (A, 0) consisting of an algebra A together with a
linear map </>: V —> A satisfying the Clifford property

Clifford maps for (V, B) form the objects of a category ^(V, B); the morphisms from
(Ax, (fix) to (A2, #2) are algebra maps x m-Ax—* A2 such that / ° <px = <f>2-

A Clifford algebra for (V, B) is a universally repelling object in <£(V, B); such exists
and is uniquely determined up to a unique isomorphism. Choose and fix a Clifford algebra
(C, ip) for (V, B). The Clifford map ip:V—>C is injective; this allows us to identify V
with xpVcC. For emphasis we shall write C as C(V, B), or simply C(V); thus
V c C(V, B).

By universality, there exists a unique automorphism y of C(V, B) whose restriction
to V is minus the identity, y is an involution: y2 = /; as a consequence, C(V, B)
decomposes as the linear direct sum

C(V, B) = C0(V, B) 0 d (V, B)

with y = / on C0(V, B) and y = - / on CX(V, B). We refer to the elements of C0(V, B) as
even and to the elements of CX{V, B) as odd. Again by universality, there exists a unique
antiautomorphism a of C(V, B) whose restriction to V is - / ; we remark that ay = ya.

Let G(V, B) be the group of units in C(V, B). The twisted adjoint representation of
G(V, B) on C{V, B) is given by

u. x = y{u)xu~l

for u e G(V, B) and x e C(V, B). The inclusion of V in C{V, B) picks out a subgroup
T(V, B) of G(V, B) as follows:

r(V, B) = {ue G(V, B) \ v e V^> y{u)vu~l e V};

we refer to T(V, B) as the Clifford group of (V, B). A surjective homomorphism

o:T(y,B)->0(y,B)

is defined by the prescription

o(u)v = y{u)vu~x

for ueT(V,B) and veV; the kernel of a consists precisely of the nonzero scalars
R*<=r(V, fl). If ueT(V,B) then a(u)er(V,B) and o(a(u)u) = I; thus a ( u ) n e R \
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The resulting map

TJ : T(V, B)-> U': u >-* a(u)u

is a character of the Clifford group. Spin(V, B) is the group of all even elements u in
F(V, B) such that r}(u) = ±1; o restricts to an epimorphism from Spin(V, B) to SO(V, B)
having kernel {±1}.

All of the above applies to the complex case in suitably modified form. The
complexified algebra C(V, B)c is naturally isomorphic to the Clifford algebra C(VC, Bc)
of the complexification (Vc, Bc). We have the Clifford group

T(KC, Bc) = {ue G(VC, Bc) \ y{u)Vcu~l = Vc}

and a character

7}: T(yc, fic)-* C*: u *-H> a(u)u.

We denote by P(V, B) the group of all elements u in G(VC, Bc) preserving
V c C(VC, Bc) in the sense y{u)Vu~x = V; we have a central short exact sequence

1 —» C —»• P(V, B) - ^ 0{V, B)
and a character

Note that we can identify T(V, B) with the subgroup of P(V, B) fixed pointwise under
the natural conjugation in C(VC,BC); note also that rj restricts to the squaring map on
C c r(V, B). We denote by Spinc(V, B) the group of all even elements u in V{V, B)
such that \r](u)\ = 1; we have a central short exact sequence

—> Spinc(K, B) -% SO(V, B) -^ 1

and a unitary character

rj:Spinc(V, fl)-*t/(l).

The complex Clifford algebra C(VC, Bc) is isomorphic to a full matrix algebra. Fix a
minimal left ideal 5 in C(VC, Bc); left multiplication defines an algebra isomorphism

p:C(Kc,fl c)->EndS,

which we call the spin representation on the space 5 of spinors. Note that the Clifford
property of C(VC, B€) implies the following anticommutation relations for p: if x, y e Vc

then

2. Isotropes and spinors. A complex isotrope of (V, B) is a (complex) subspace
ZcVc such that

x,yeZ=>Bc(x,y) = 0;
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real isotropes are defined similarly, as subspaces of V on which B vanishes identically.
Maximal complex isotropes of (V, B) have dimension m; the dimension of a maximal real
isotrope is min{p, q) when B has signature (p, q).

Fix a space S of spinors for (V, B) with corresponding spin representation p. If Z is a
subspace of Vc then we set

From the anticommutation relations for p it is clear that Sz is zero unless Z is an isotrope.
In this section we describe the space Sz for any isotrope Z of (V, B).

The case of a maximal complex isotrope is familiar.

THEOREM 2.1. If Z is a maximal complex isotrope of(V, B) then Sz is a complex line.

Proof. See pp. 71-72 of [2].

Now suppose Wto be a non-maximal complex isotrope of (V, B)\ W is then a proper
subspace of its orthogonal

WL = {v e Vc | w e W 4> Bc(v, w) = 0}.

The quotient space Wx/W naturally inherits a nonsingular symmetric bilinear form Bw

defined by

Bw(x + W, y + W) = B(x, y)

whenever x, y e Wx. The assignment

is a bijection from the space of all isotropes Z of (V, B) such that W c Z t o the space of
all isotropes of (Wx/W, Bw); moreover, Zw is maximal iff Z is maximal.

From the anticommutation relations for p it follows that if v eWx then p(v)
stabilizes Sw c S; by definition, if w e W then p(w) is zero on Sw. The induced map from
Wx/W to End(5vv) has the Clifford property and so extends to an algebra map from
C(WX/W, Bw) to End(Sw).

Fix a space Sw of spinors for (Wx/W, Bw); we then have the spin representation pw

of C(WX/W, Bw) on Sw. Our description of 5W is embodied in the statement that Sw and
Sw are equivalent as C(WX/W, Bw)-modules.

THEOREM 2.2. There exists an isomorphism

Uw '• ^ —* *JW

intertwining the respective representations of C(WX/W, Bw).

Proof. Let N be a maximal (complex) isotrope of (V, B) with W cN and choose a
maximal isotrope P such that Vc = N © P. Let fP be the product of the elements in a basis
for P. According to [2], we may take 5 to be the left ideal in C(VC, Bc) generated by fP,
and the map x^xfP defines a linear isomorphism from the exterior algebra A(N) = C(N)
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to 5; moreover, p{y){xfP) = {yAx)fP for x e A(N) and y e N. It follows from Section 5.26
of [4] that Sw consists precisely of those spinors xfP with x in the ideal of A{N) generated
by the product fw of elements in a basis for W. Let Q = W i n P ; the quotient
M = (Q + W)/W is then a maximal isotrope of (W^/W, Bw) complementary to the
maximal isotrope Nw = N/W, and we may take Sw to be the left ideal A(N/W)fM c
C(WX/W, Bw). Let q:A(N)^-A(N/W) be the canonical map induced from the quotient
map N-* N/W. An isomorphism dw is now defined by

Ow(xfwfp) = q(x)fM

for x e A(N). That 0w intertwines the representations of C(W±/W, Bw) is verified by a
routine argument based on explicit formulae for p such as those presented in Section 2.2
of [2]; we omit the details.

REMARK 2.3. 6W is unique up to multiplication by a nonzero complex number; this is
so since 6W intertwines the representations of C(W±/W, Bw) and the spin representation
is irreducible.

REMARK 2.4. If Z is an isotrope of (V, B) such that W c Z then dw restricts to an
isomorphism from Sz cz Sw to (Sw)Zw.

3. Isotropes and Clifford groups. Let Z be an isotrope of (V, B). If g e O(V, B)
t h C n g.Z = {gc(v)\veZ}

is an isotrope of (V, B). We write O(V, B; Z) for the stabilizer of Z under this action of
O(V, B) on the space of all isotropes of (V, B); similarly

S O ( K B • Z) = {g e S O ( V , B)\g.Z = Z}.

We denote by r(V, B; Z) the full preimage of O(V, B; Z) in r(V, B) under a; thus

r(V, B; Z) = {ue r(V, B) \ y{u)Zu~l = Z).

In like manner we define subgroups T(V, B; Z) cz T(V, B), Spinc(V, B; Z) <= Spinc(V, B)
and Spin(V, fl;Z)cSpin(V, B). It is clear that the spin representation of r(V, B;Z)
stabilizes Sz aS and so defines a representation of T^iV, B;Z) on Sz; likewise for the
spin representations of T{V, B; Z), Spinc(V, B; Z) and Spin(V, B; Z).

If Z is a maximal complex isotrope of (V, B) then Sz is one-dimensional; the spin
action of P(V, B; Z) on Sz is thus given by a character

with
p(u)(f) = Pz(u)f

for u e r(V, B; Z) and / e Sz. Hue r(V, B; Z) then g = o(u) stabilizes Z c F c and the

prescription Detz« = Detc(gc | Z)

defines a character Detz of T(V, B; Z).
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THEOREM 3.1. If Z is a maximal complex isotrope of (V, B) then

(pz)2 = »?.Detz.

Proof. A routine consequence of III.2.6 on p. 80 of [2] modulo differences in
convention.

As an immediate corollary of this theorem, a canonical splitting

s: SO(V, B; Z) -»• Spinc(V, B; Z)

of the short exact sequence

1 -^ C/(l) —• Spinc(V, B;Z) - ^ SO(K, B;Z) —> 1

is defined as follows: if g e SO(V, B; Z) then s(g) is the unique element u of Spinc(V, B)
such that o(u) = g and pz(w) = |Detc(gc | Z)\m.

Now suppose L to be a real isotrope of (V, B) such that the complex isotrope
W = Lc is non-maximal; it will be notationally convenient to confuse L and W.

If g e 0(V, B; L) then g stabilizes the orthogonal L x c V and descends to an element
of O(LLIL, BL) given by

gL{v + L) = gv + L

for v e Lx; the resulting homomorphism

is surjective. Since B identifies K/Z/ with the dual L*, if geSO(V, B;L) then
gL e SO(LX/L, flj; vL maps SO(V, B; L) onto SO(LX/L, BL).

Let u e r ( V , B; L). The spin action of u stabilizes SLczS and so induces an
automorphism 6L°p{u)° dj} of SL; see Theorem 2.2 and Remark 2.3. Denote by uL the
corresponding element of C(L±/L, BL)C; thus

Since 6L intertwines the representations of C(L±/L, BL)C, it follows that uL lies in
FC(LX/L, BL) and that ^(w^) = vL(o(u)), where aL is the standard homomorphism from
r(Lx/L, BL) onto O{LLIL, BL).

In this way we construct a surjective homomorphism

which lifts vL:

fft»vc
t = vt» a.

We claim that if u e TC{V, B; L) then

»?t(«£) = *?(«)DetL u,

where r/i. is the standard character of ^{L^IL, BL).
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Consider first the special case of an element u e P(V, B; L) for which oL(uL) = /. Let
Z be a maximal complex isotrope of (V, B) with LcaZ; since ZL is stabilized by
CTz.(wz.) - A it follows that Z is stabilized by o{u). According to Theorem 3.1, we have

Pz(u)2 = ri(u)Detz(u);

similarly

PzJ,uL)2 =

From Remark 2.4, we see that

elementary linear algebra reveals

Detz(u) = DetZL(uL)DetL u.

It now follows that

in this special case.
In order to complete the proof of our claim, it suffices to show that if

h e O(LXIL, BL) then

= r)(u)DetL u

for some u e P(K, B; L) such that crL(uL) = h; we do this as follows.
Some preparation is necessary. Let R be a real isotrope paired to L via B, so that

and B is nonsingular on Lx n / ? x ; see 1.3.2 on p. 13 of [2]. The quotient map L^^L^IL
restricts to an isometric isomorphism Lx D Rx —» Lx/L and so induces an isomorphism of
Clifford algebras C(LX n Rx)^> C{L^IL, BL). Since V is the orthogonal sum of L®R
and L-Ln/?±, C(V, B) is the graded tensor product C(L®R) teCiL-1 n /? x ) ; see
Section 10.7 of [4]. Let S(L@R) and SiL'-nR1) be minimal left ideals in C(L®R)C

and CtZ/n/?-1-)0 respectively. We may then take 5 to be 5 ( L © « ) 0 5(LX ni? x )
and SL to be the image of S (L x nf l x ) in C(LL/L, BLf; in this case, SL is
S(L © i?)L <S> 5(LX n i?x) and 0L corresponds to a choice of basis vector in the complex
line S(L®R)L.

Now choose any / e T°{LXIL, BL) with oL(t) = h; we may regard t as an element of
P(LX n /?x). By considering the spin action on SL = S{L © K)^ ® S{LX D i?x), it is clear
that u = l ® f is then an element of P(K, B;L) with uL = t and a (« ) |L = /. From
r)(u) = rjL(t), we now deduce that

= r](u)DetL u

as required.
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Our claim is thus completely justified; we formalize it as follows.

THEOREM 3.2. Ifue r(V, B; L) then r}L(uL) = r?(«)DetL u.

Let *: be the natural conjugation in C(V, B)c. The conjugate KS = S of 5 is a minimal
left ideal in C(VC, Bc); denote by p the spin representation on 5. If u e C(VC, Bc) then
clearly

p(u)°K = K° p(u).

Similar considerations apply to the spin representation p~Z of C(L±/L, BL)C on KLSL = SL.
Since L is real, K maps SL to SL; as intertwining operator SL—>SL we may take
eL = KL°6L°K~\ If u e r ( K B;L) then

= 8L ° K o p(u) ° K'1 O &Z1

whence

Now suppose u to lie in r(V, B; L); thus M e P(V, B; L) and M = M. From above it
follows that u L e P ( L x / L , flL) satisfies UI = M ;̂ thus uLeT(LxlL, BL). We have estab-
lished the following.

THEOREM 3.3. Ifue T(V, B; L) then uL e T(L^IL, BL).

A surjective homomorphism

is defined by the prescription

for u e r°(V, B; L). In view of Theorem 3.2, we have the relation

VL(VL(U)) = r?(«)sign VetL u

whenever u e F(V, B; L); in view of Theorem 3.3, vL maps T(V, B; L) to r(L±/L, BL).
These observations have the following noteworthy consequence.

THEOREM 3.4. vL restricts to a lift Spin(V, B; L)^Spin(L1/L, BL) of vL to the level
of Spin groups.

Proof. Let u e Spin(V, B;L); then ueT(V,B;L) is even and rj(u) = ±l. Since
sign Detf, u = ±1, it follows that t]L(vL(u)) = ±1; being an even element of r(L1/L, BL),
vL(u) therefore lies in Spin(LJ"/L, BL).
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REMARK 3.5. The lift of vL to Spin groups is not unique when L is nonzero. If L is
maximal as a real isotrope then there are two distinct lifts; otherwise there are four.
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