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On the beta expansion of Salem numbers of degree 8

Hachem Hichri

Abstract

Boyd showed that the beta expansion of Salem numbers of degree 4 were always eventually
periodic. Based on an heuristic argument, Boyd had conjectured that the same is true for Salem
numbers of degree 6 but not for Salem numbers of degree 8. This paper examines Salem numbers
of degree 8 and collects experimental evidence in support of Boyd’s conjecture.

1. Introduction and basic definitions

The representations of numbers in a non-integer base β > 1 was pioneered by Rényi [11], where
he introduced the beta expansion (called also greedy expansion) to represent any real number
x of the interval [0, 1] in base β by a sequence of digits x1x2x3 . . . which can be computed by
the following algorithm.

Greedy algorithm. Denote by byc and {y} the integer part and the fractional part of a
real number y, respectively.

Set r0 = x and for i > 1, xi = bβri−1c, ri = {βri−1}.
Or, similarly, using the beta transformation T = Tβ of the unit interval which is the mapping:

T : [0, 1] −→ [0, 1)

x 7−→ βx mod(1)

where for every i > 1, xi = bβT i−1(x)c.
The beta expansion of x is denoted by dβ(x) = x1x2x3 . . . and it satisfies many proprieties

(see, for instance, [5, 9]). Mainly, we have ∀i > 1, xi ∈ Aβ = {0, 1, . . . , bβc} and

x =

∞∑
i=1

xiβ
−i.

In this paper, we are only concerned with the beta expansion of 1 in some particular base
and we will use the following notation.

The β expansion of a given β > 1, is the sequence of integers (c1, c2, . . .) defined by

∀n > 1, cn = bβαn−1c, where α0 = 1 and αn = Tn(1).

Parry [9] defined β to be a beta number (more recently also called Parry numbers), if the
orbit {αn : n > 1} is finite. In this case, there exist smallest m > 1 and p > 1 for which
αm = αm+p, we denote D = D(β) = card{αn} = m+ p− 1.

In particular, if αm = 0 (so cn = 0 for n > m ), we write dβ(1) = (c1, c2, . . . , cm) and β is
called a simple beta number.

Otherwise, if αm = αm+p 6= 0, then dβ(1) will be eventually periodic and we write dβ(1) =
(c1, . . . , cm : cm+1, . . . , cm+p). The values m and p are known as the preperiod length and the
period length, respectively.
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It is not difficult to check by induction that for all n > 1, αn = Pn(β) where

Pn(x) = xn − c1xn−1 . . .− cn.

Consequently, if β is a beta number, then β is a root of a monic polynomial R with integral
coefficients, called the companion polynomial of β, with

R(x) =

{
Pm(x) if αm = 0,

Pm+p(x)− Pm(x) if αm = αm+p 6= 0.

Hence, any beta number is, in particular, an algebraic integer and its minimal polynomial
P (x) divides the companion polynomial R(x). It is useful to note that the degree of P (x) is
always less than or equal to the degree of R(x), which is exactly equal to D(β). In addition,
in this case we will have R(x) = P (x)Q(x), where the polynomial Q(x) (possibly constant) is
called the cofactor of the beta expansion.

Parry [9] showed that the roots of the companion polynomial R(x) other than β (called
beta-conjugates) lie in the disk |z| < min(2, β), and this was improved to |z| 6 (

√
5 + 1)/2 by

Solmyak [14] and independently by Flatto, Lagarias, and Poonen [4].
We recall the following facts.

(1) A Perron number is a real algebraic integer β > 1 such that all of its Galois conjugates
β(i) satisfy |β(i)| < β.

(2) A Pisot number is a real algebraic integer β > 1 such that all of its Galois conjugates
have modulus less than one (see [10]).

(3) A Salem number is a real algebraic integer β > 1 such that all of its Galois conjugates
have modulus at most one, and at least one conjugate has modulus one (see [12]).

The last definition implies that a Salem number is an algebraic integer where its minimal
polynomial is monic, reciprocal, and with even degree. Furthermore, its minimal polynomial
has one root τ outside the unit disk, one root 1/τ inside the unit disk, and all other roots on
the unit disk. In the rest of the paper we will call such polynomial a ‘Salem polynomial’.

Bertrand [1] and Schmidt [13] have independently shown that if β is a Pisot number,
then Per(β) = [0, 1) ∩ Q(β), where Per(β) is the set of periodic points under Tβ in [0, 1).
Consequently, all Pisot numbers are beta numbers.

Furthermore, Schmidt conjectured that the same statement is true also for the case of Salem
numbers [13]. If indeed this conjecture is true, then all Salem numbers would also be beta
numbers.

The structure of the beta expansion of Pisot numbers was extensively studied and hence it
is very well known compared with the case of Salem numbers (see, for instance, [8, 15, 16]).
Next we summarize some related known results.

Boyd [2] showed that a Salem number cannot be a simple beta number and that all Salem
numbers of degree 4 are beta numbers. More precisely, he proved that for every Salem number
β of degree 4, we have:

(1) the preperiod m = 1;
(2) the orbit size D(β) 6 2 trace(β)− 3;
(3) the companion polynomial is reciprocal and the cofactor is cyclotomic.

Boyd [2, 3] also computed the beta expansion for all, but 86, of the Salem numbers of degree
6 and trace at most 15 (there are 11 836 such numbers). He showed, through experimental
results, that there are many differences between the case of degree 4 and the case of degree 6,
which are mainly as follows.

(1) The preperiod m is not always equal to one and it can take many other values.
(2) The orbit size D(β) can be very large relative to the size of β.
(3) The companion polynomial is not always reciprocal and the cofactor can be non-

cyclotomic.
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More recently, Hare and Tweedle [6] have studied the beta expansion of some sequences of
Salem numbers approaching certain Pisot numbers. In particular, they showed the existence
of infinite families of Salem numbers having eventually periodic beta expansion.

A heuristic probabilistic model proposed by Boyd [3], based on the ideas of the geometry of
numbers, predicts that almost all Salem numbers of degree 6 are beta numbers. It also predicts
that there exists a strictly positive proportion of Salem numbers of any fixed degree at least
eight, which are not beta numbers. Motivated by this latter prediction, we study, in this paper,
the case of Salem numbers of degree 8.

We start in § 2 by determining the sufficient and necessary conditions for the coefficients of
a reciprocal polynomial of degree 8, to become a Salem polynomial. We use this to determine
numerically (using a Maple program) the set of all Salem numbers of degree 8 and of trace at
most 15.

In § 3, we characterize the reciprocal algebraic integers β, of degree 2n, which are beta
numbers having minimal value of (m, p) = (1, 2n − 1). As a consequence we get a complete
characterization of Salem numbers of degree 8 which are beta numbers having minimal
values of (m, p) = (1, 7). Based on the numerical results, the set of such Salem numbers of
degree 8 is quite large. In addition we determine a characterization of Salem numbers having
(m, p) = (1, 8).

Finally, § 4 summarizes the results of computational experiments on the beta expansion of
Salem numbers of degree 8, which are, in particular, in connection with Boyd’s conjecture and
which allow us to make a comparison between the case of degree 6 and the case of degree 8. In
the end we look for other eventual factors on which the orbit size of Salem number depends.

2. Characterization of Salem numbers of degree 8

Let P be a reciprocal integer polynomial of degree 8,

P (x) = x8 + ax7 + bx6 + cx5 + dx4 + cx3 + bx2 + ax+ 1. (2.1)

By definition, P is a minimal polynomial of a Salem number β if and only if P is irreducible
and

P (x) = (x− β)

(
x− 1

β

) 3∏
i=1

(x− βi)(x− βi),

where β > 1 and |βi| = 1 for i ∈ {1, 2, 3}, thus the trace of β satisfies

trace(β) = −a =

(
β +

1

β

)
+

3∑
i=1

(βi + βi).

However, the fact that P is irreducible and |βi| = 1 gives us βi + βi > −2 for i ∈ {1, 2, 3}. In
addition, from β > 1 we get β + 1/β > 2. Therefore,

−a =

(
β +

1

β

)
+

3∑
i=1

(βi + βi) > 2− 6 = −4,

which gives us the first necessary condition:

a 6 3.

The basic idea behind our characterization is classic and it was used by Boyd [2, 3] to
characterize Salem numbers of degree 4 and 6. However, the calculations for degree 8 are much
more complicated. For this reason we give, here, just the necessary steps of the calculation
without going into the details.
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First, we determine the polynomial U of degree 4 that satisfies

P (x) = x4U

(
x+

1

x

)
(2.2)

and we find that

U(x) = x4 + ax3 + (b− 4)x2 + (c− 3a)x+ d− 2b+ 2. (2.3)

Note that the zeros of U are the numbers β+1/β > 2 and −2 < βi+1/βi < 2 for i ∈ {1, 2, 3}.
Note also that P can only be factored into factors of even degree (reciprocals), since the roots
β and 1/β must belong to the same factor. Otherwise, there would be a factor where the
product of whose roots is in absolute value less than one, which is clearly impossible. Thus, P
is irreducible if and only if U is irreducible.

Consequently, a polynomial P of the form in (2.1) defines a Salem number of degree 8 if
and only if U is an irreducible polynomial that has four distinct real roots, where three are
in the interval (−2, 2) and one root is greater than two. To simplify the formalization, the
value

√
9a2 − 24b+ 96 is denoted by the symbol δ and we denote ∆(U) the discriminant of

the polynomial satisfying (2.3).

Proposition 2.1. The polynomial P defined in (2.1) is a Salem polynomial if and only if
P is irreducible and the following relations are true:

(i) ∆(U) > 0;
(ii) |d/2 + b+ 1| < −(a+ c) AND c+ 9a < 4b+ 16;

(iii) |3a+ δ| < 24;
(iv) c+ 9a 6 −4b+ 16 OR (c+ 9a > −4b+ 16 AND −3a+ δ < 24).

Proof. We start by showing that all of these conditions are necessary.
First, in order for U to have four distinct real roots, it is necessary that the discriminant of

the polynomial U satisfy ∆(U) > 0.
Next, to obtain a polynomial U without roots in the interval (−∞,−2) and having a root

in the interval (2,∞), it is necessary in our case that U(−2) > 0, U ′(−2) < 0, and U(2) < 0,
which is equivalent to ∣∣∣∣d2 + b+ 1

∣∣∣∣ < −(a+ c)

and
c+ 9a < 4b+ 16.

Now, if the polynomial U satisfies the conditions above, it will have four distinct real roots
y1 < y2 < y3 < y4 and consequently the polynomial U ′′ will have two distinct real roots which
we denote r1 < r2. As we need that −2 < y1 < y2 < y3 < 2, we must have −2 < r1 < 2, which
is equivalent to

|3a+ δ| < 24.

Finally, we need y4 to be the only root in the interval (2,∞), which means y3 < 2 < y4. By
considering all possible cases, it is not difficult to check that the condition to add is

U ′(2) 6 0 OR (U ′(2) > 0 AND r2 < 2).

which is equivalent to

c+ 9a 6 −4b+ 16 OR (c+ 9a > −4b+ 16 AND − 3a+ δ < 24).

Conversely, under all of the previous conditions, the polynomial U has four distinct real
roots y1 < y2 < y3 < y4 where y4 > 2 and with at least a root in (−2, 2). Hence, to end the
proof, it will be sufficient to show that the case where U has two roots less than −2 and the
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case where has three roots greater than two do not hold. For the first case, U ′ has a root less
than −2 and by the condition U ′(−2) < 0, U ′ has another root less than −2 and this leads
immediately to a contradiction because U ′′ has no root less than −2. For the second case, if
we denote by x1 < x2 < x3 the roots of U ′, we will have x1 < r1 < 2 and 2 < x2 < x3 which
gives r2 > 2 and U ′(2) > 0; by (4) we obtain a contradiction. 2

Note that, without the condition of irreducibility, Proposition (2.1) always gives a polynomial
where its dominant root is a Salem number. But this Salem number can be of degree 8, 6, 4
or also a reciprocal Pisot number (which is considered as a degenerate Salem number). To get
a Salem number of degree 8 only, we must assure the irreducibility of P . For that we can use
the following point.

Remark 2.2. Any polynomial P , of the form in (2.1) and satisfying the four conditions
of Proposition 2.1, has always one root β outside the unit disk, one root 1/β inside the unit
disk, and all other roots are on the unit disk. So, in case P is reducible, it becomes necessarily
divisible by an integer polynomial Q such that all of its roots are of modulus one (since P is
reciprocal and the roots β and 1/β must belong to the same factor). But this means, by the
famous Kronecker’s theorem [7], that Q is a product of cyclomatic polynomials of degree at
most six, which are of the form:

x− 1, x+ 1,

x2 + 1, x2 − x+ 1, x2 + x+ 1,

x4 − x3 + x2 − x+ 1, x4 + x3 + x2 + x+ 1, x4 − x2 + 1, x4 + 1, x4 + x2 + 1,

x6 +x5 +x4 +x3 +x2 +x+ 1, x6−x3 + 1, x6 +x3 + 1 and x6−x5 +x4−x3 +x2−x+ 1.

Therefore, to get irreducible polynomials only, we must eliminate the above cases, which is
equivalent to

d 6= −2(1 + a+ b+ c), − 2(1− a+ b− c), 1− 2a+ b+ c, 2b− 2, 1 + 2a+ b− c,

(c, d) 6= (0, 1− b), (a, 2), (−2a, b+ 1), (1 + a− b, b− a), (a+ b− 1, a+ b),

(b, c, d) 6= (1,−1,−a), (1, 1, a), (a+ 1, a+ 1, a+ 1), (1− a, a− 1, 1− a).

3. Particular cases

Regarding the beta expansion of Salem numbers of degree 8, we find that there is relatively a
large proportion for which (m, p) = (1, 7). Note that the particularity in this case is the size of
the orbit {Tn(1)}n∈N, which is D = m+ p = 8. It is minimal and the companion polynomial
coincides with the minimal polynomial (that is the cofactor of beta expansion is equal to one).
All of the above, motivates us to ask the question of when a Salem number of degree 2n is a
beta number satisfying (m, p) = (1, 2n− 1).

We try here to give a partial response to this question with a more general statement. Let
us first recall Parry’s criterion.

Lemma 3.1 (Parry). Let (c1, c2, . . .) be a sequence of non-negative integers which is different
from 1(0)w and satisfying the following inequalities c1 > 0 and ck 6 c1 for k > 1. The unique
solution β > 1 of

x = c1 + c2x
−1 + c3x

−2 + . . .

has c1c2c3 . . . as the beta expansion of one if and only if

∀k > 1, σk(c1, c2, . . .) <lex (c1, c2, . . .)

where σ(c1, c2, . . .) = (c2, c3, . . .).
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Proof. See Corollary 1 of Theorem 3 of [9]. 2

Lemma 3.2. Every beta number is a Perron number without a proper real conjugate greater
than one.

Proof. It is a direct consequence of Proposition 7.2.21 and Remark 7.2.23 of [5, p. 218]. 2

Notation. For simplicity, if a sequence s = (cj)j>0 is periodic with period ` and pre-period
n, we write

s = c1, . . . , cn : cn+1, . . . , cn+`

where cn+i+k` = cn+i, for all k, i ∈ N.

Theorem 3.3. Let P be the following irreducible reciprocal integer polynomial:

P (x) = x2n + a1x
2n−1 + . . .+ an−1x

n+1 + anx
n + an−1x

n−1 + . . .+ a1x+ 1.

Here P has a unique root β in (1,∞) and β is a beta number with (m, p) = (1, 2n − 1) if
and only if:

(i) a1 6 −1;
(ii) ai 6 0 for 2 6 i 6 n;

(iii) σk(s) <lex s for all k > 1, where

s = −a1 : −a2, . . . ,−an, . . . ,−a2,−a1 − 1,−a1 − 1. (3.1)

If β is a such beta number, then

dβ(1) = −a1 : −a2, . . . ,−an, . . . ,−a2,−a1 − 1,−a1 − 1.

Proof. First, suppose that the polynomial P has a root β > 1 which is a beta number with
(m, p) = (1, 2n−1) and let s = dβ(1) = c1 : c2, . . . , cn, . . . , c2n−2, c2n−1, c2n its beta expansion.
Then β is a root of the companion polynomial which is

R(x) = Pm+p(x)− Pm(x) = P2n(x)− P1(x).

Note that R is monic and an integer polynomial, which has the same degree of P the minimal
polynomial of β. So we will have R = P which implies that

c1 : c2, . . . , cn, . . . , c2n−2, c2n−1, c2n = −a1 : −a2, . . . ,−an, . . . ,−a2,−a1 − 1,−a1 − 1.

The condition ci > 0 implies that for all i such that 2 6 i 6 n, we have ai 6 0, which proves
point (2). It also implies that −a1 − 1 > 0, which proves point (1). Finally, the condition
(c1, c2, . . .) >lex (ck, ck+1, . . .) for all k > 1 gives us point (3) directly.

Conversely, we set

s = c1: c2, . . . , cn, . . . , c2n−2, c2n−1, c2n

= a1:−a2, . . . ,−an, . . . ,−a2,−a1 − 1,−a1 − 1.
(3.2)

It is clear that the conditions of Parry’s criterion follow, for the sequence s, from the
inequalities (1), (2), and (3) of Theorem 3.3. Thus, according to Lemma 3.1, the unique
solution β > 1 of

x = c1 + c2x
−1 + c3x

−2 + . . .

has as beta expansion s = dβ(1) = c1 : c2, . . . , c2n. But this implies in particular that T (1) =
T 2n(1) and then β will be a root of the polynomial P2n(x)−P1(x) which is exactly P according
to (3.2).
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However P is monic and irreducible, so it is the minimal polynomial of β. Consequently, by
Lemma 3.2, β must be a Perron number without a real conjugate strictly greater than one,
which implies that P has only one root β in the interval (1,∞) which is a beta number having
(m, p) = (1, 2n− 1) and

dβ(1) = −a1(−a2, . . . ,−an, . . . ,−a2,−a1 − 1,−a1 − 1)w. 2

Remark 3.4. The assumed periodicity of s allows us to check condition (3) of Theorem 3.3
only for a finite number of cases. More precisely, condition (3) holds only if for all 1 6 k 6 2n−2,
σk(s) <lex s.

The next corollary gives a very easy sufficient condition which can be more useful in practice.

Corollary 3.5. Let n > 2 and let P be the following irreducible, reciprocal, and integer
polynomial:

P (x) = x2n + a1x
2n−1 + . . .+ an−1x

n+1 + anx
n + an−1x

n+1 + . . .+ a1x+ 1.

If a1 < ai 6 0 for 2 6 i 6 n, then P has a unique root β in (1,∞) and β is a beta number
having (m, p) = (1, 2n− 1).

Proof. It is clear that all conditions of Theorem 3.3 are satisfied. 2

Remark 3.6. In Theorem 3.3 or Corollary 3.5, β is not necessarily a Salem number since
it can have Galois conjugate in {z ∈ C; |z| > 1} which is forbidden for Salem number. For
instance, the polynomial x8 − 8x7 − 6x6 − 7x4 − 6x2 − 8x + 1 satisfies the conditions of
Corollary 3.5 and then we know immediately that it will have a unique root β in the interval
(1,∞) which will be a beta number with (m, p) = (1, 7). But here β is not a Salem number
since it has a Galois conjugate γ ' −1.1320.

Theorem 3.3 generalizes the theorem given by Boyd [3, p. 866] for Salem numbers of degree
6 and also the case (ii) of Theorem 1 [2, p. 61] for Salem numbers of degree 4. It can also be
applied to all Salem numbers of degree 2n.

As an example, if we apply the Theorem 3.3 to Salem numbers of degree 8 we get the
following corollary.

Corollary 3.7. Let β be a Salem number of degree 8 whose minimal polynomial is given
by (2.1). Here β is a beta number having (m, p) = (1, 7) if and only if:

(i) a 6 −1;
(ii) a 6 min(b, c, d) 6 max(b, c, d) 6 0;

with the further conditions:
(iii) if a = c, then b 6 d;
(iv) if a = d, then b 6 c.

Proof. According to Theorem 3.3, we have that β is a beta number having (m, p) = (1, 7) if
and only if a 6 −1, max(b, c, d) 6 0 and for all k > 1, σk(s) <lex s, where s = c1 : c2, . . . , c8 =
−a : −b,−c,−d,−c,−b,−a − 1,−a − 1. This proves the corollary and the further conditions
follow from the definition of lexicographic order. 2

Using Parry’s criterion again, we give in the next theorem a characterization of Salem
numbers of degree 8, which are beta numbers having (m, p) = (1, 8) (the cofactor of its beta
expansion will be x+ 1).

https://doi.org/10.1112/S1461157014000035 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000035


296 h. hichri

Theorem 3.8. Let β be a Salem number of degree 8 whose minimal polynomial is given by
(2.1). Then, β is a beta number having (m, p) = (1, 8), if and only if:

(i) a 6 −2;
(ii) a+ 1 6 min(a+ b, b+ c, c+ d) 6 max(a+ b, b+ c, c+ d) 6 0;

with the further conditions:
(iii) if a+ 1 = b+ c, then a+ b 6 c+ d;
(iv) if a+ 1 = c+ d, then b = 1.

Proof. First, suppose that (m, p) = (1, 8), then the beta expansion of β is

dβ(1) = c1 : c2, . . . , c9.

This implies that the companion polynomial of β is

R(x) = P9(x)− P1(x) = x9 − c1x8 − . . .− c7x2 − (c8 + 1)x− (c9 − c1).

Since β is a root of the integer polynomial R, the minimal polynomial P must divide R.
According to the degrees and coefficients of P and R, the quotient will be of the form x + e
where e ∈ Z∗ (if e = 0 we will have c8 = −2 < 0, which is impossible since ck is always a
positive integer).

By the result of Solomyak [14], since the integer −e is a root of R other than β, we will have
|e| < (1 +

√
5)/2 and hence e = ±1. On the other hand, by Parry’s criterion e = c1 − c9 > 0

which means e = 1 and so R(x) = (x+ 1)P (x). By identification we obtain

c1 : c2, . . . , c9 = −(a+ 1) : −(a+ b),−(b+ c),−(c+ d),−(c+ d),

−(b+ c),−(a+ b),−(a+ 2),−(a+ 2).

Now, using the facts that ck > 0 and (ck, ck+1, . . .) <lex c1, c2, . . . for all k > 1, we can easily
show that

a 6 −2

and that
a+ 1 6 min(a+ b, b+ c, c+ d) 6 max(a+ b, b+ c, c+ d) 6 0.

For the particular cases, they follow from the definition of lexicographic order. We need that
(c3, c4, . . .) <lex (c1, c2, . . .) so that if a+ 1 = b+ c, then we will have c1 = c3. Thus, we must
have c2 > c4, which is equivalent to a+ b 6 c+ d.

We also need that (c4, c5, . . .) <lex (c1, c2, . . .), so that if a + 1 = c + d, then we will have
c1 = c4. Thus, we must have c2 > c5 meaning a + b 6 c + d. But in this case we will have
a+ 1 6 a+ b 6 c+ d = a+ 1, which gives b = 1.

Conversely, it is easy to verify from the inequalities in the statement of Theorem 3.8 that
Parry’s criterion follows for

s = c1 : c2, . . . , c9

= −(a+ 1) : −(a+ b),−(b+ c),−(c+ d),−(c+ d),−(b+ c),

−(a+ b),−(a+ 2),−(a+ 2)

(3.3)

Indeed, the assumed periodicity of the sequence s involves checking only a finite number of
cases, we give here just two examples and the remaining cases are similar.

(1) To verify that (c3, c4, . . .) <lex (c1, c2, . . .), we note that a + 1 6 b + c gives c1 > c3,
and that c3 = c1 holds only if a + 1 = b + c, which implies, according to condition (3) of
Theorem 3.8, that a+ b 6 c+ d and then c2 > c4.
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Next, note that according to condition (2) of Theorem 3.8, we have a + 1 6 a + b, which
implies 1 6 b. In addition, the fact that a+1 = b+c implies that c 6 a. If we also have c2 = c4
meaning a+ b = c+ d, then we get b 6 d. Finally, we have two subcases:

(i) if b < d, then we have b+ c < c+ d, which means c3 > c5;
(ii) if b = d, then we have a = c, which implies c4 = c6 and c5 = c7, but c6 > c8.

(2) To verify that (c4, c5, . . .) <lex (c1, c2, . . .), we note that c1 > c4 follows from a+1 6 c+d,
and that c4 = c1 holds only if a + 1 = c + d. According to condition(3) of Theorem 3.8, this
means that b = 1 and a+ b = a+ 1 6 c+ d, and hence we have c2 > c5. Also, if c2 = c5, then
we have c3 = c6 (always true here) and c4 = c7, but c5 > c8.

Therefore, the sequence s, defined in (3.3), is the beta expansion for some real number β′ > 1
with m = 1 and p a divisor of eight.

From other part, the relation (3.3) implies T (1) = T 9(1) and so β′ is a root of the polynomial
P9(x)− P1(x) which is exactly (x+ 1)P (x) according to (3.3). However, the fact that β′ > 1
implies that β′ is a root of the irreducible polynomial P which is of degree 8 and consequently
we must have m+ p > 8. Hence, we get β′ = β and (m, p) = (1, 8) immediately. 2

Remark 3.9. Corollary 3.7 and Theorem 3.8 explain why we get numerically more and
more Salem numbers which are beta numbers having (m, p) = (1, 7) and (m, p) = (1, 8) for
large values of −a = trace(β).

4. Numerical results

The aim of this section is mainly to provide some information and examples for the beta
expansion of Salem numbers of degree 8 and to test the predictions of Boyd’s model for such
numbers.

First, using the characterization given in Theorem 2.1 and Remark 2.2, we can determine
numerically all Salem numbers of degree 8 of the same trace (same coefficient a). Since, for
each fixed value of a there are only a finite number of possible values for the coefficients b, c
and d. Table 1 gives an idea about the distribution of such numbers according to their trace.

Section 4.1 describes the results of the computation of the beta expansion for the 26 715
Salem numbers of degree 8 and trace at most eight. A special attention is given to the
distribution of the pairs (m, p) and the nature of the companion polynomial. This allows
us to make a comparison between beta expansion of Salem numbers of degree 8 and of degree
6 as was described in [2, 3] and then to list some differences between the two cases.

Finally in § 4.2 we test the predictions given by Boyd’s model and we look for more eventual
factor on which the size of orbit of D(β) depends.

Table 1. Distribution of Salem numbers of degree 8 with respect to their trace.

trace(β) Salem numbers trace(β) Salem numbers
−1 1 9 14 810
0 14 10 20 387
1 76 11 27 257
2 251 12 35 551
3 651 13 45 387
4 1387 14 56 922
5 2598 15 70 281
6 4400 – –
7 6955 – –
8 10 382 – –

Total for trace(β) 6 8 26 715 – –
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4.1. General description

By examining the numerical results of the computation of the beta expansion of the set of
26 715 Salem numbers of degree 8 and of trace at most 8, the following observations can be
made.

(1) The majority of Salem numbers are beta numbers with m = 1. Indeed, among the 26 715
Salem numbers, there are 20 938 beta numbers for which D = m+p < 1000 (about 78%)
and 17 023 for which m = 1 (about 64%).

(2) The smallest Salem number of degree 8 that has a very large orbit size (or perhaps an
infinite orbit) is β0 ≈ 2.03 of the minimal polynomial x8 − x7 − 3x5 − x4 − 3x3 − x+ 1,
which is numerically checked to be D > 7.107.

(3) There is a very large diversity in the values taken by the pair (m, p). But we can say that
the most common factor is that each pair (m, p) appears many times in regularity with
some relations between coefficients of the minimal polynomial P . This is quite noticeable,
in particular, for small values of the type (1, 7), (1, 8), (1, 9), (1, 10), (1, 11), and so on.

(4) We note also that, for the most part, the preperiod m is less than the period p. But,
there are also many cases where the preperiod is very large compared with the period.
For example, the Salem number defined by the polynomial x8− 2x7− 5x6− 3x5− 3x3−
5x2 − 2x+ 1 has (m, p) = (2525, 64).

Remark 4.1. We make the following remarks.
(1) These results are, in great part, similar to Salem numbers of degree 6 as described in

[3]. However, Table 2 shows that the proportion of Salem numbers of degree 8, having
max(m, p) > 1000, is very large compared with the case of degree 6.

(2) Another eventual difference is the following: Boyd mentioned that for all Salem numbers
of degree 6 that he has checked, the companion polynomial is reciprocal if m = 1 and
non-reciprocal if m > 1, see [2]. Although this also remains true for most Salem numbers
of degree 8, which we have investigated, we note that there are few exceptions. Indeed,
we find 14 counterexamples in the interval [1, 5]. As an example, consider the Salem
number β ' 4.2 of minimal polynomial x8− 3x7− 4x6− 5x5− 3x4− 5x3− 4x2− 3x+ 1.
It is a beta number having (m, p) = (1, 12), yet its companion polynomial R(x) is not
reciprocal:

R(x) = x13 − 4x12 − x11 − 2x9 − 2x8 − 3x7 − x6 − 3x5 − 3x4 − 4x3 − 4x+ 1.

Table 3 presents the distribution of Salem numbers of degree 8 depending on the trace of β,
and the percentage of those having D(β) 6 1000. It can be seen that this percentage increases
with larger values of trace(β).

Table 2. Comparison between Salem numbers of degree 6 and 8.

Type Degree 6 and trace 6 15 Degree 8 and trace 6 8
Salem numbers 11 836 26 715

max(m, p) > 1000 199 5746
Percentage 1.68% 21.5%

Table 3. Percentage of Salem numbers which have D(β) 6 1000 and with trace up to 15.

trace(β) 9 10 11 12 13 14 15
Salem numbers 14 810 20 873 27 387 35 551 45 387 56 922 70 281
D(β) 6 1000 11 991 16 699 22 424 29 436 37 738 47 596 58 904
Percentage 80.96% 81.91% 82.26% 82.79% 83.14% 83.61% 83.81%
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4.2. Study of interaction between C(β), trace(β), and D(β)

We recall that the heuristic argument given by Boyd [3] suggests that the expected magnitude
of D(β) = m+ p of a Salem number of degree d, is linked directly to the magnitude of

C(β) =
βd−1

(
π/6

)(d−2)/2
|disk(β)|1/2

.

More precisely, according to Boyd [3, pp. 873–874], the probability that the orbit size of the
beta expansion for a Salem number of degree 8 (d = 8) is less than or equal to an integer n is

pn = Pr{D(β) 6 n} = 1−
n∏
k=1

(
1− 1

C(β)k2

)
. (4.1)

Consequently, one expect that Salem numbers of degree 8 having small values of C(β) should
have small orbits and vice versa.

To test this prediction, we distribute the sets of all Salem numbers of degree 8 and trace at
most 8, of trace 11 and 15 into subsets according to the value of C(β) and we illustrate the
results of the computation in Tables 4, 5, and 6, respectively.

As an example, according to (4.1), the Salem number β ' 12.59 of minimal polynomial
P (x) = x8 − 8x7 − 48x6 − 112x5 − 145x4 − 112x3 − 48x2 − 8x+ 1 has the largest probability,
among all Salem numbers of degree 8 and trace at most eight, to have a very large orbit size.
This is because it has the largest value of C(β) , namely (C(β) ' 145). In this case, we checked
numerically that D(β) > 7.107.

The aforementioned results clearly support the connection between C(β) and D(β). But we
note that there are many exceptions, which indicates that C(β) cannot be the only factor that
determines the size of the orbit. We cite here just two examples.

Table 4. Salem numbers of degree 8 and trace at most eight.

C(β) range

(0, 0.001) [0.001, 0.01) [0.01, 0.1) [0.1, 1) [1,∞)

Salem numbers 4175 18 295 3572 605 68
D(β) = m+ p 6 1000 4051 15 139 1653 91 4

Percentage 97.03% 82.74% 46.27% 15.04% 5.88%

Table 5. Salem numbers of degree 8 and trace 11.

C(β) range

(0, 0.001) [0.001, 0.01) [0.01, 0.1) [0.1, 1) [1,∞)

Salem numbers 3797 18 761 3967 651 81
D(β) = m+ p 6 1000 3721 16 309 2241 146 7

Percentage 97.99% 86.93% 56.49% 22.42% 8.64%

Table 6. Salem numbers of degree 8 and trace 15.

C(β) range

(0, 0.001) [0.001, 0.01) [0.01, 0.1) [0.1, 1) [1,∞)

Salem numbers 9427 48 709 10 668 1774 266
D(β) = m+ p 6 1000 9266 42 709 6458 436 35

Percentage 98.29% 88.70% 60.53% 24.57% 13.15%
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(1) The Salem number defined by the polynomial

x8 − 7x7 − 7x6 + x5 + 4x4 + x3 − 7x2 − 7x+ 1

satisfies D(β) = m+ p > 9.107, although C(β) ' 0.0009, which is relatively very small.
(2) Inversely, the Salem number defined by the polynomial

x8 − 11x7 + 36x6 − 67x5 + 81x4 − 67x3 + 36x2 − 11x+ 1

is an example for which the constant C(β) is relatively very large but D(β) = m + p
is quite small. For this example we have C(β) = 9.4787 and (m, p) = (1, 66), that is
D(β) = 67.

Remark 4.2. We think that it is important to note that Tables 4, 5, and 6 show that the
increase in percentages holds for all classes of C(β). This indicates that the orbit size D(β),
effectively depends on trace(β) and not only on C(β).

Moreover, the results of Table 7 suggest that the orbit size D(β) also depends on whether
trace(β) > β or trace(β) < β,and then on the distribution of Galois conjugates of β on the
unit circle.

5. Conclusion

In this work, we was unable to do a definitive verification or refutation of Boyd’s conjecture,
but we think that this paper helps understand more the structure of the beta expansion of
Salem numbers, and make a contribution to the efforts for answering the question if Salem
number can be a non-beta number or not.

In fact, all of the experimental results in this paper support the predictions of Boyd’s model
and show that there are some differences between the cases of Salem numbers of degree 6 and
of degree 8. This implies that Salem numbers, of degree 8 that are not beta numbers, would
eventuality exist. Moreover, it confirms the fact that, to look for some eventual examples of
such numbers, it would be sufficient to consider only the set of Salem numbers which are not
very large but having large values of C(β).

Acknowledgements. The author is indebted to Professor Jean-Louis Verger-Gaugry for
several very helpful conversations. I am also very grateful to the referee for his careful reading
and for several remarks that helped us to improve most of results in this paper.

Table 7. Another eventual factor on which D(β) depends.

Salem numbers β < trace(β) β > trace(β)
Total 6642 12 119

0.001 6 C(β) < 0.01 D(β) 6 1000 6131 10 178
Percentage 92.30% 83.98%

Total 1097 2861
0.01 6 C(β) < 0.1 D(β) 6 1000 769 1463

Percentage 70.10% 51.13%

Total 143 508
0.1 6 C(β) < 1 D(β) 6 1000 57 89

Percentage 39.86% 17.52%

Total 15 66
C(β) > 1 D(β) 6 1000 6 1

Percentage 40% 1.51%
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