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1. Introduction

In 1942, Burgers [1] observed that in cylindrical polar coordinates, the steady
Navier-Stokes equation governing viscous incompressible fluid motion can be
reduced to a set of ordinary differential equations if the velocity components
vr,v0 and vz are assumed to have a special form. Specifically, if we write

(1) V, = - fM • VQ = 1 g(X)- Vz = 2zf'(X)
r r

where x = r2 and the prime denotes differentiation with respect to x, the equations
governing/and g are

(2) 2vxg"+fg' = 0

(3) 2vxf" " + (4v + / ) / " ' - / ' / " = 0

Here, the parameter v is the kinematic viscosity, and is positive. The solution
Burgers considered is

/ = Ax, A > 0

g = B(l-e-Ax/2D)

which describes a type of vortex motion. The radial velocity vr = —Ar does not
change sign, and the vortex is usually referred to as one-celled. In 1962, Donaldson
and Sullivan [2] considered the numerical solution of equations (2) and (3) with
boundary conditions at r = 0 and r = R, in an attempt to understand the flow
pattern in a vortex tube. In general, oscillatory solution corresponding to multi-
celled vortices were obtained.

Now the special form assumed for the velocity components places severe
restrictions on the functional form of the pressure. It is easily verified from the
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Navier-Stokes equation that d2pldrdz = 0. For this reason, solutions of equations
(2) and (3), satisfying two point boundary conditions, may not necessarily de-
scribed any real fluid flow. However, no approximation has been made in the
derivation of (2) and (3), so that their solutions are exact solutions of the Navier-
Stokes equations. As such they are of some intrinsic interest. In this note, we prove
that the system consisting of equations (2) and (3), together with suitable boundary
conditions at r = 1 and r = oo, admits a solution with two-celled structure, that
is, the function/(x) changes sign.

2. The boundary value problem

Writing 2v/ = / , we can scale out the parameter v in equations (2) and (3).
If we then omit the tilde in/, we have

(2') xg"+fg' = 0

(3') x/ '"+(2+/)/" ' - / ' /" = 0.

Equation (3') can be integrated once to give

(4) xf"' + (l+f)f"=f'2-a2

where a2 is the integration constant, assumed positive. We impose the following
boundary conditions:

( 5 ) / ( l ) = Z><0; / ' ( l ) = 0; g(l) = c

/'(oo) = a > 0; g(co) = k.

We shall prove that there exists at least one solution to the system (2'), (4),
(5) by a shooting method. This method of proving existence consists of seeking
appropriate initial conditions fo r / " ( I ) and g'{\) so that the solution of the
resulting initial value problem has the correct limiting behaviour as x tends to
infinity. The method has been used by Ho and Wilson [3] and McLeod and
Serrin [4].

Since equation (4) is independent of g, we shall first prove that (4) admits
a solution satisfying the boundary conditions. A solution to (2') will be established
separately.

3. The sets S+ and S~

We consider equation (4) with the initial values

where — oo < ft < oo. The solution of this initial value problem will be simply
referred to as / . It is evident that the solution can be continued for all JC > 1 as
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long a s / ' remains uniformly bounded. We define two sets S+ and S~ of values of
P as follows:

5 + : P e S+ if there exists a value x+ > 1 such that f'(x+) > a and f > 0
for 1 < x < x+.

S~: P e S~ if there exists a value x~ > 1 such that f'(x~) < 0 and f < a
for 1 < x < x~.

LEMMA 1. The sets S + and S~ are disjoint and open.

PROOF. That S+ and S~ are disjoint follows from their definition. Since
solutions of (4) depend continuously on their initial values, it is clear that S+

and S~ are open sets.

LEMMA 2. p is in S+ if

(6) p ̂  ea[2a + a2]

and Pis in S~ if P g 0.

PROOF. Clearly P < 0 is in S ~. Since

/ '"(1)= -a2-(l+b)p,
it is clear that

/ ' " ( I ) = -a2 if p = 0

so that / ' < 0 for some x > 1. Hence jS = 0 is also in 5".
Let / = (1, x*), where (JC* — 1) ^ 1, be the maximal open interval in which

0 < / ' < a. Clearly, for x e / , we have

(7)
C* f

b\ogx<\ — dt < a(x-\)-(a-b)\ogx.
J ! t

Let E(x) = / " exp [ftf/tdt], and F =f"E(x). Equation (4) can be written as

(8) (xF)' = (f'2-a2)E(x).

Using (7), and that a — b > 0, by assumption, we have

(xF)' > -a2ea

and
xF> p-a2ea(x-l) > p-a2ea

from which we obtain after some simplication

/ " > axeJ
and hence

f >a{x-\).

From the definition of / , it is clear that there exists an x+ > x* at which
/ ' ( x + ) > a. Hence PeS+.
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4. The complement of S+ and ST~

Since S+ and S~ are disjoint non-empty open sets, their complement is also
non-empty. Clearly the complement is the union of three sets A, B and C defined
as follows:

A: PeA if there exists xA such thatf'(xA) = a and 0 < / ' for 1 < x < xA.
B: P e B if there exists xB such that f'(xB) = 0 andf < a for 1 < x < xB.
C: P e C if the solution of the initial value problem can be continued for all

x > 1 with 0 < / ' < a.

We want to show that B = S~ and A = S+ n D where D is defined as

D: PeDifPeA andf"(xA) = 0.

It is clear that B a S~. Conversely, suppose P e B. If f"(xB) < 0, then
Pe S~. lff"(xB) > 0, again p e S~ for we must have x~ < xB. Iff"(xB) = 0,
then it follows from (4) that/'"(;cB) = —a2/xB and so P e S~. Hence we have
B = S~ as claimed.

In a similar manner, we note that if f"(xA) ^ 0, then P e S+. If however
f"(xA) = 0, that is, p e D, then it follows from (3) and (4) that f(n\xA) = 0 for
n ^ 2, so that if D is non-empty, a solution of the boundary value problem is
obtained. If D is empty, then clearly C is non-empty. We proceed as follows:

LEMMA 3. If P e C, then l im/' = a.

PROOF. Let G = xf'E, then equation (3') can be written as

xG"-fG'-2f'G = 0.

Since/' > 0 if p e C, it is evident that G cannot have a positive maximum. Hence
G is ultimately zero or of one sign, and so / ' is ultimately zero or of one sign.
That/' is bounded implies that l im/" = 0 and lim/' exists.

Suppose lim/' = 0, then since P > 0 , / ' must have a local maximum at which
f" < 0. Since/' cannot have a local minimum for 0 < / ' < a,f" must change
from negative to positive through a zero at which/" < 0. This is however im-
possible since it follows from (3') that at the zero of/"'

xf" =f'f" < 0.
Hence, timf ? 0.

From the above, we readily establish Mm fix = /'(oo), and that lim (f'2-a2)
exists. Suppose lim/' # a, then from (8), we have

^[\f'2-a2)E{t)dt
Mmff" = lim ^ i .

E(x)
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Using L'Hopital's rule, we readily obtain

limff" = l im( / ' 2 - a 2 ) .

If lim (f'2-a2) # 0, then since | / | ^ const, x, we have | /" | £ const./* for all
sufficiently large x. Thus / ' ' is not integrable, contradicting the boundedness of
/ ' . Hence, we must have lim/' = a.

Since we have already shown that C is non-empty, it follows that equation
(4) with the prescribed boundary conditions has at least one solution.

5. The g equation

Equation (2) can be integrated to give

(9) '

Clearly, with the solution for/just determined, the integral in (9) converges for
x tending to infinity. Writing / = lim \\ dt/E(t), we have

k = c+g'{\)L

Hence if we choose g'{\) = k — c/I, equation (3) with the prescribed boundary
condition will have a solution.

We have proved:

THEOREM. The boundary value problem (2'), (4) and (5) has a solution.

REMARK. We have obtained a bound for / " ( I ) , 0 < / " ( l ) < e"(2a+a2)
in the course of the proof.
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