
Embedding Economies of Scale
Concepts in the Model of Optimal
Locations of Fresh Produce
Aggregation Hubs

Houtian Ge, Patrick Canning, Stephan Goetz, Agnes Perez,
and Jie Li

Food hubs are of interest in regional and local food system development because
they potentially enhance the sustainability of food supply chains. Expanding on
earlier literature, this study introduces economies of scale into an aggregation
hub location model and disaggregates production into four seasons to account
for geographic and seasonal variation of US fresh produce production. A mixed
integer linear programming model is formulated with the objective of minimizing
total costs of assembly and first-handler operations. Results suggest scale
economies have significant effects on the optimal number, locations, and sizes of
aggregation hubs. We model regional and local food systems in a manner more
consistent with economic theory and provide a richer framework for policy
analysis.
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Introduction

The development of regional food hubs1 within food supply chains is interesting
to researchers and policy makers for several reasons, such as supporting rural
communities and agribusiness, supplying alternative food markets, and
enhancing food security and sustainability (Brown and Miller 2008, Tropp
2008, King et al. 2010, Martinez et al. 2010, Boys and Hughes 2013, O’Hara
and Pirog 2013, Bonanno and Li 2015, Jablonski, Schmit and Kay 2016).
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1 A food hub, as defined by the USDA, is a business or organization that actively manages the
aggregation, distribution, and marketing of locally/regionally produced food product (Dimiero
and Mayfield 2014).
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In the public realm, the US Department of Agriculture (USDA) promotes various
policies and programs to strengthen local economies and food systems. The
USDA’s “Know Your Farmer, Know Your Food” initiative, for example, sought
to better connect farmers and consumers while supporting local and regional
food systems (USDA n.d.). The development of regional food hubs can be key
to this strategy.
Hubs are a key component of food value chains (Hardesty et al. 2014, Ge et al.

2015). Even as demand for local food has created new marketing opportunities
for producers (Brown et al. 2014), it is difficult for smaller and mid-sized farms
to access rapidly growing retail, institutional, and commercial foodservice
markets. On the other hand, large buyers, including institutions, restaurants,
and grocery stores, have difficulty finding local producers who can
consistently supply food. In many cases, individual farmers are limited in
their ability to satisfy a large buyer. By offering a suite of aggregation,
distribution, and marketing services, food hubs enable farmers to gain entry
into new large-volume outlets (Barham et al. 2012) while allowing larger
buyers to meet the growing demand for local foods (Matson et al. 2015). In
this way, food hubs connect producers of all sizes into mainstream food
procurement and distribution systems and facilitate large-scale buying of
farm products with desired attributes at lower costs.
In this paper, we examine the hub location problem, focusing on the case of

the US fresh produce supply chain.2 Fresh produce has two important
traits—perishability and seasonality. In this study, we segment the post-
harvest fresh produce value chain into two stages: (i) aggregation of seasonal
domestic harvest plus imports by domestic first-handlers, and (ii) marketing
of all first-handler seasonal inventory to domestic and export buyers serving
the consumer market. Our research focuses on the first-handler problem, and
although, in practice, many first-handler establishments may also be growers,
retailers, or exporters, they all confront the problem of procuring large
volumes and varieties of highly perishable produce from individual farms as
quickly and efficiently as possible. This segmentation of the first-handler
stage for what is increasingly a vertically integrated value chain allows for
subsequent modeling (beyond the scope of this research) of trade between
first-handler regional hubs holding all seasonal inventories, called
aggregation hubs in this study, and consumer marketing area buyers
representing all regional markets.
Aggregation hub sizes and locations significantly impact the marketability of a

region’s fresh produce, as well as its viability as a site for fresh produce imports.
This study will build an optimization model to identify the optimal locations
and scale for county-level aggregation hubs sourcing from growers and

2 As noted, hubs can fulfill multiple functions, ranging from first-stage assembly to final
distribution. Here we focus on aggregation hubs.
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importers located in multiple US counties. In doing so, we identify
characteristics of a nationally coordinated optimal hub system, in part to
examine if these characteristics are determinative of the structure of our
current system. Our study attempts to answer some key questions for
policymakers, investors, or hub operators around selecting hub locations,
determining operating costs, and developing efficient strategies to operate
hubs seasonally.
Hub location decisions are crucial determinants of supply chain efficiency for

the aggregation and distribution of products. Here we characterize and model
an optimal US network of fresh produce assembly in which hub sizes and
locations at county-level are endogenously determined. The hub network
minimizes total costs of assembling US domestically produced fresh produce
products for domestic consumption plus imports from other regions beyond
the US. This study falls within the scope of strategic planning for facility
location of supply chains, where optimization models have proven useful for
solving heuristic decision-making problems (Buccola and Conner 1979,
Alumur and Kara 2008, Ge et al. 2018a). However, previous comparable
applications to food systems (Jacobs 1972, Faminow and Sarhan 1983,
Etemadnia et al. 2013, Etemadnia et al. 2015) use overly simplistic
assumptions about hub operating patterns. First, they assume homogeneous
operation costs across hubs with varying handling capacities when in fact
scale economies are common in fresh produce supply chain systems and
shape the optimal network configuration. Empirical evidence shows that the
system cost function responds to quantity handled at hubs and rewards high
quantity with a lower marginal cost (Cook 2011, Ge et al. 2015, 2018b). The
lack of scale effects in earlier models means solutions likely deviate from
actual market outcomes. Second, earlier studies use annual production data
and ignore the seasonality in production that not only affects hub operational
strategies but also creates heterogeneous costs across marketing seasons.
Our study relaxes these assumptions.
To assess the role of scale economies in determining the structure of fresh

produce aggregation hubs in a nationally coordinated system, we first
estimate their cost functions using county-level cost and sales data of fresh
fruit and vegetable wholesale establishments. Subsequently, we design four
scenarios with different levels of scale effects and solve for optimal locations
and scales of hubs at county-level. These optimal solutions are then
visualized and analyzed. We then discuss implications of our findings on
empirical approaches to model hub operations in applied food systems analysis.

The Effect of Scale Economies

Economies of scale play a fundamental role in network design and operations
decisions, and thus affects network performance (Camargo et al. 2009). Hubs
operating on a large scale enjoy lower operating costs compared with
smaller-scale hubs (King 1973, Jacobsen 2013). Large-scale operations
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experience more efficient aggregation, storage, distribution, and marketing of
products from local producers to consumers (Matson et al. 2013). As a result,
smaller hubs face challenges, such as inefficiency in operating those hub
agribusiness services for local producers which allow for an increase in their
operating costs and thus limit their ability to supply larger markets
(Pressman and Lent 2013). If economies of scale are ignored in empirical
estimates of the benefits from food system infrastructure investment and
food system operations, the empirically generated optimal hub network
solution could be misleading (Ippolito 1975).
In this study, the characteristics and functionalities of modeled aggregation

hubs are more similar to those mainstream and conventional aggregation and
distribution facilities such as merchant wholesalers. The operation pattern of
those counterparts in reality provides valuable information to build a model
that mirrors the actual system. To measure scale effects inherent in fresh
produce aggregation hub operations, we first compiled 2012 Economic
Census data on annual sales and operating costs of fresh fruit and vegetable
wholesale establishments (U.S. Census Bureau 2012). In many states, a subset
of the counties are not reported for reasons of disclosure, so in these cases,
we compile multicounty data by taking the difference between statewide
totals and published county totals.3 The resulting dataset is comprised of 114
county observations and 38 multicounty observations for (i) total annual
operating costs, and (ii) total annual product sales.
Our hypothesis is that for a county (s) with a specific annual capacity (c) (the

quantity handled at a county in a given year), annual operating costs (TCs)
include a fixed component (h0c ) that is independent of product volume
handled, and a variable component (h1c ) that varies with volume handled (Qs).
We consider sizes of regional aggregation hub operations C ¼ 1 to c, where 1
is the smallest and c is the largest. Then the relationship between annual
operating costs and county throughput of fresh produce is:

TCs ¼ h0c þ h1c :Qs(1)

From the 152 county-wide observations of annual operating costs and
throughput or hub sales, we convert the latter from dollars to pounds by
dividing by the national weighted average 2012 wholesale price of 44.01

3 We take the Arizona State data as an example. The Economic Census provides the total annual
product sales and the total annual operating costs of wholesalers in the state (state-wide totals).
The Economic Census only provides data for three individual counties (county totals),
i.e., Maricopa County, Pima County, and Santa Cruz County, although more than three counties
in Arizona operate wholesalers. To obtain more data samples to facilitate the cost estimation,
we regard the remaining counties as a multicounty observation. The sales and costs for the
multicounty observation are just the difference between statewide totals and published totals
for the three counties. The same procedure is applied to the other 37 states where the same
situation exists.
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cents per pound for all fresh produce marketed in the United States
(USDA National Agricultural Statistics Service 2018).
To represent the actual cost of hub operations in the model, we measure the

effect of economies of scale inherent in hub operations based on our
observations. Due to the limited number of observations, we disaggregate
them into four groupings. After conducting sensitivity analyses with
numerous groupings of the 152 observations, we identified and defined the
four hierarchy groupings that provide the best empirical fit for the
regression. The aggregation allows for the appropriate scale level for each
grouping, which is based on the range of handled product quantity for
observations in each grouping,

C1: 130,000 units and below (36 lowest counties or equivalents by total
annual throughput)

C2: 130,001–450,000 units (next 39 counties by total annual throughput)

C3: 450,001–1,500,000 units (next 39 counties by total annual throughput)

C4: 1,500,001 units and above (highest 38 counties by total annual
throughput)

To assess whether the mean values for the dependent variable (operating
costs) differ between any two of the four groupings, we conduct two-tail
t-tests between every two groupings. The absolute value of t-statistic ranges
from 6.37 to 11.21. There is a statistically significant difference in the means
of operating costs between groupings. We reject the null hypothesis that any
two of the four groupings are equal.
For each grouping, the relationship between total operating cost (TC) and

sales volume (Q) is obtained using OLS and shown in Table 1. The cost
estimations will be used later to build the base scenario of the model.
The regression results demonstrate a noticeable scale effect in hub

operations. While fixed costs (intercept) increase with hub size, the marginal
costs decrease with hub size. Specifically, the larger the hub size, the lower
the marginal cost per unit (one thousand pounds) handled. In this manner,
handling costs of an aggregation hub are based on the amount of product
flow carried by the hub and endogenously respond to flow by rewarding the
shipper for greater volumes shipped. Under cost minimization principles, the
numbers and scale of facilities to be established typically are endogenously
determined.
Each of the four marginal cost parameter estimates exhibits a highly

significant t-statistic. While the fixed cost parameters are consistent with
expectations and contribute to the overall goodness of fit in all four hub size
equation estimates, they are also statistically significant at certain levels.
Building on these results, the cost estimates in Table 1 are incorporated into
the hub location model to demonstrate how they affect spatial network
structures.
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Data

USDA’s National Agricultural Statistics Service (NASS) reports state-level
annual production statistics for 21 different fresh market vegetable crops
across 37 states (USDA National Agricultural Statistics Service 2018). The
2012 statistics are allocated to counties in these states based on harvested
acreage by county, using the 2012 Census of Agriculture for total fresh
market vegetables (USDA National Agricultural Statistics Service 2018). For
states that are not covered in the annual NASS reports but are covered in the
Census, harvested acreage data from the Census are multiplied by yield per
acre data in nearby states to impute production.
In the Census data, harvested acreage of some counties is suppressed in order

to protect the confidentiality of individual responders. To overcome data
suppressions in the Census data, a constrained maximum likelihood
mathematical programming model is used. The model minimizes adjustments
to the variance-weighted initial estimates of suppressed county harvested
acreage statistics to align these estimates with the adding up requirements of
the hierarchical data in the 2012 Census. This hierarchy includes
requirements that the sum of harvested acreage across all commodities
equals the published county-wide total harvested acreage across all covered

Table 1. Regression Results for Economies of Scale Effect Based on 2012
Economic Census Data

Levels Variables Coefficients t Stat p-value F R2 Obs.

Level 1 (C1) h01 760,131** 2.33 0.03 77.63 0.69 36

h11 55.74** 8.81 0.00

Level 2 (C2) h02 3,902,711 1.29 0.20 22.95 0.38 39

h12 49.71** 4.79 0.00

Level 3 (C3) h03 15,871,740* 1.69 0.10 12.57 0.25 39

h13 38.67** 3.54 0.00

Level 4 (C4) h04 35,352,680** 2.08 0.04 51.56 0.59 38

h14 36.89** 7.18 0.00

Note: A single asterisk indicates significance at a 5 percent level, and a double asterisk indicates
significance at a 10 percent level. These are county-level, not establishment-level hubs.4

Source: Compiled by Authors based on U.S. Census Bureau (2012)

4 In U.S. fresh produce supply chain systems, counties where hubs (merchant wholesalers or
local food hubs) are located may contain varying numbers of individual hubs called
establishments. The number of establishments in these counties ranges from 1 to 397 (U.S.
Census Bureau 2012). A county-level hub represents the sum of all establishments in the same
county. This study identifies the county-level hub location so cost estimates are based on
county-level hub operating data.
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crops, and that the sum of harvested acreage for specific crops across all
counties in a State equals the published statewide total for each crop. By
simultaneously solving a state/county model and a national/state model for
the same commodities, the model produces maximum likelihood estimates of
all suppressed county harvested acreage statistics using the method
described in Canning (2011). The same approach was used for estimates of
both fresh market fruit production and fresh market vegetable production in
US counties. Combined production for the subset of these 55 crops produced
in each county is converted to a common unit (one thousand pounds) and
summed to a single production statistic per county. Production estimated
from suppressed county harvested acreage only accounts for a very small
proportion of annual domestic production (1 percent) so the estimation error
should have very limited influence on the aggregation hub location solution.
County-to-county shipping distances are based on the Oak Ridge National

Laboratory multimodal impedance network data product, and average
shipping cost statistics are reported by USDA Agricultural Marketing Service
(2010).
According to 2012 USDA National Agricultural Statistics Service data, 2,467

counties, or 75 percent of all counties in the contiguous US, grew vegetables or
fruits. Annual production statistics are disaggregated into seasonal marketing
segments to more accurately account for the highly variable geographic
disposition of annual fresh produce production. This is achieved by identifying
the beginning and ending dates for the marketing seasons of each fresh
produce crop in each state (USDA National Agricultural Statistics Service 2006,
2007). Many states have multiple growing regions with different marketing
seasons for the same crop, and in some cases, a single crop may have two
marketing seasons. Annual production data by county is allocated to each day
of the identified marketing season(s) according to a normal distribution under
the assumption that 100 percent of available product is marketed within 4
standard deviations of the marketing season midpoint. This imputed daily
marketing data is then aggregated into four marketing seasons: January to
March; April to June; July to September; October to December.
Monthly 2012 fresh produce import data by county of unlading5 are compiled

from U.S. Census Bureau (2012) sources. 81 counties in 30 states import fresh
produce. Statistics reported in metric tons are converted to 1,000-pound units
and aggregated into the same four marketing seasons as domestic production.
Figure 1 shows continental US fresh produce production plus imports

mapped across four seasons. Production and imports are unevenly
distributed across seasons, and the main production/import areas are on the
West Coast and Florida. Among them, California has the highest production
and import levels, followed by Florida and Washington. The Northeast and

5 County of unlading is the county where produce commodities are unloaded from the importing
vehicle, vessel, or aircraft.
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Upper Midwest also have high production and import levels, while production
and imports in some Rocky Mountain States and Plains States are low.

Market Setting and Optimization Model

Produce assembly at aggregation hub s involves shipment from surrounding
production and import regions (or nodes) via a domestic freight network that
connects all nodes and aggregation hubs. Volpe, Roeger, and Leibtag (2013)
show that domestic shipments for produce commodities are almost
exclusively by truck. It is assumed in this study all shipments are transported
to regional hubs by truck. Transportation costs between node-hub pairs are
often defined to be proportional to the distance between them. However,
transportation costs are also subject to constraints, such as road condition,

Figure 1. Distribution of fresh produce production in the U.S. across seasons.
(a). Production in Season 1 (January–March). (b). Production in Season 2
(April–June). (c). Production in Season 3 (July–September). (d). Production
in Season 4 (October–December).
Source: USDA/NASS (2012) and author calculations.

Agricultural and Resource Economics Review372 December 2019

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
9.

10
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2019.10


speed reduced on evening commute, and traffic congestion which influences
travel time and speed (Novaco et al. 1990). To model transportation costs
between production nodes and aggregation hubs, each link in the network is
assigned an impedance value other than actual mileage. Impedance
represents a measure of the amount of resistance, or cost, required to
traverse a path in a network or to move from one element in the network to
another. High impedance values indicate more resistance to movement. For
this study, we use a national average shipping rate per impedance mile (the
average cost of transporting 1,000 pounds of products for one impedance
mile). If the shipping rate per impedance mile is converted to the shipping
rate per highway mile, the latter is higher in more congested areas, and vice
versa. We use county-to-county highway impedance measures from version 3
of the national multimodal impedance network database developed by Oak
Ridge National Laboratory (2011), which is based on population weighted
centroids.
Establishment home regions (business addresses) of fresh produce first-

handlers6 are increasingly based in key production areas, but they source
from shifting production regions that follow climate-determined seasonal
patterns throughout the year (Cook 2011). To stay profitable, an
establishment seeking to source from outside its home region must assemble
and handle the produce at least as efficiently as establishments based in the
originating region. Our approach is to design a national “home field” hub
system where aggregation hubs built to one of the four scales reported in
Table 1 are located throughout select growing/import regions in order to
minimize total assembly and first-handler costs across all seasons and
growing/import regions.
Whether the same hub locations and sizes would result from a model that

allows for individual establishments to operate several “virtual hubs” in
multiple locations is beyond the scope of this study. Such a model would
require operating cost and throughput data that distinguishes between “home
field” and “virtual” hub operations to calibrate the cost functions. Such data
was not available for this study. We recognize that both types of operations
exist in practice.
Our approach is realistic provided the cost structure of operating either hub

type for a given annual throughput is similar. We are not aware of data or
compelling arguments that suggest, a priori, a systematic bias is introduced
by our assumption of similar cost structures. This issue does merit further
investigation in future research. A practical limitation of our approach is the
disconnect between the model results which report the physical location
(county), cost, and throughput of all aggregation hubs, and the published
Economic Census data which reports total costs and throughput reported by

6 An intermediary who takes possession of fresh produce from growers and acts as the market
agent for them is called a first-handler (Cook 2011).
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all establishments with business mailing addresses in each county. It is
important that we be mindful of this difference when comparing the model
results with the published data.
While the classic facility location model considers only a trade-off between

facility fixed cost and transportation cost, this hub network design problem
considers trade-offs between facility fixed cost, transportation cost, and
operation cost (Teo and Shu 2004). We formulate this national hub system
optimization problem as a mixed integer linear programming (MILP
hereafter) model with the objective of minimizing total costs associated with
product assembly and aggregation hub setups and operations. The
optimization problem requires a definition of restrictions to ensure that total
production and imports by county and average per unit supplier and
shipping costs meet observed statistics. The following notation is introduced
for the model:
Sets:

I¼ {1,…,i} denotes marketing seasons in a year;

F¼ {1,…,f} denotes a set of production locations;

S¼ {1,…,s} denotes a set of aggregation hub candidate locations;

C¼ {1,…,c} denotes capacity level of aggregation hubs; each capacity level
has an interval span;

Parameters:

pi,f denotes production plus imports at location f in marketing season i;

df ,s denotes distance between node location f and aggregation hub location s
(impedance miles);

t denotes fixed transportation cost ($ per thousand-pound impedance mile);

h0c denotes fixed annual handling cost of a c level aggregation hub;

h1c denotes marginal handling cost per unit of annual throughput of a c level
aggregation hub;

V1
c denotes maximum annual throughput of a c level aggregation hub;

V2
c denotes minimum annual throughput of a c level aggregation hub;

Variables:

xi,f ,s denotes quantity shipped from node f to aggregation hub s in marketing
season i;

Zc,s denotes an integer variable ¼ 1 if location s has an aggregation hub with
capacity c, and 0 otherwise;

Qs denotes annually assembled throughput for aggregation hub s;

Agricultural and Resource Economics Review374 December 2019
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Functions:

TC denotes system-wide total assembly plus first-handler costs.

The objective function and system constraints of a model to solve this
problem are given in equations 2–9.
Minimize:

TC ¼ (
X

c∈C

X

s∈S

{h0c � Zc,s þ h1c � Qs} )þ (
X

i∈I

X

f∈F

X

s∈S

{xi,f ,s � d f ,s � t}(2)

Subject to:

X

s∈S

xi,f ,s ¼ pi,f ∀ i, f(3)

X

i∈I

X

f∈F

xi,f ,s ¼ Qs ∀ s(4)

Zc,s ∈ {1, 0} ∀ c, s(5)
X

s∈S

Zc,s � 1 ∀ s(6)

Qs � Zc,sV
1
c,s ∀ c, s(7)

Qs � Zc,sV
2
c,s ∀ c, s(8)

xi,f ,s � 0 ∀ i, f , s(9)

The objective function (Equation 2) minimizes the total cost, which includes
fresh produce transportation (expression in second outer brackets) plus first-
handler services (expression in first outer brackets). Equation 3 ensures that
in each marketing season the total quantity transported from county f to all
aggregation hubs S are equal to total quantity produced and imported in
county f in the season. That is, all products must be assembled into
aggregation hubs across marketing seasons. Equation 4 is an accounting
identity, equation 5 provides the binary condition-build/not-build, and
equation 6 ensures that 0 or 1 aggregation hub of scale c is built in county s.
Equations 7 and 8 define the quantity-handling thresholds and limits for an
aggregation hub of each capacity level. Together, equations 7 and 8 require
that aggregation hubs of size c, for c ¼ 1 to 4, will only be constructed in
county s if it attracts enough shipments to meet its handling threshold (V2

c,s)
and does not attract shipments in excess of its handling limit (V1

c,s). Equation 9
ensures that shipments only flow from nodes to aggregation hubs and not
vice versa.
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The model defined in equations 2–9 describes a national system of regional
fresh produce aggregation hubs that seek to aggregate all available fresh
produce sourced from US farms and US custom ports spanning vast
geography. Any candidate hub location can offer lower per-unit operating
costs as it reaches each of four handling thresholds with per-unit operating
costs decreasing as each higher threshold is reached. But to reach each of the
increasing threshold targets, a candidate hub location must aggregate
produce from a larger geographic area. Achieving each higher level of
aggregation will result in higher transportation costs. Candidate hub locations
that can achieve these thresholds with lower transportation costs will be
favored. For a solution to the model defined in equations 2–9 to be optimal,
fresh produce originating across all locations cannot decrease its combined
aggregation (transportation) and handling costs by redirecting any product to
a different aggregation hub location in any marketing season.

Model Setting

In this study, the handling capacity of an aggregation hub is the quantity that can
be managed at the aggregation hub during a given year. To incorporate scale
effects inherent in aggregation hub operations into the model, we use the
operating cost estimates reported in Table 1. The handling capacity of hubs
defined for our regression analysis also defines the four different annual
thresholds for the quantity of products handled at aggregation hubs over the
four marketing seasons. Following the regression pattern of operating costs
reported in Table 1, when the scale effect is present, an aggregation hub
handling a higher quantity of products enjoys lower marginal costs. An
aggregation hub must handle a minimal level of product quantity to achieve a
certain level of scale effect, and this motivates the construction of large
capacity aggregation hubs.
In reality, factors influencing hub operations and maintenance are complex.

The food system has experienced significant changes over the past decades
and today’s food system has been shaped historically by a range of internal
and external social and economic drivers that have evolved with time as well.
In this study, the regression results for fixed costs and marginal costs
quantitatively reflect the effects of different influential factors at an
aggregation level. Fresh produce facility operating data from the 2012
Economic Census indicate the increased dominance of large-scale facilities in
fresh produce assembly and distribution across the US when compared with
data from the 2007 Economic Census. The marginal cost margin in
regressions of 2012 data increases when compared with the regression
results using 2007 annual sales and operating costs data (see Table A1 in
Appendix I). Here the marginal cost margin is defined as the marginal cost
difference between two adjacent aggregation hub levels. The difference
between sets of results indicates a possible trend of a more pronounced scale
effect stemming from scaling up hubs in the future. In order to identify the
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effect of scale economies on the optimal solutions of the problem, we design
four scenarios in which different values of the marginal handling costs are
assumed.
We set Scenario 1 as a scenario in which the marginal cost is not related to

economies of scale. The cost remains constant across aggregation hub levels,
that is, $55.74, which is the marginal cost of Level 1 aggregation shown in
Table 1. Scenario 1 captures the incremental costs of building to a larger
scale while omitting the incremental efficiencies realized by scaling up. We
will demonstrate how the modeling results in Scenario 1 will differ from
those of the base scenario (Scenario 2) as the existing scale effect is ignored.
Scenario 2 is designed as the base scenario in which the marginal costs to

handle 1,000 pounds of product for four levels of aggregation hubs follow
the regression results shown in Table 1, that is, $59.74, $49.71, $38.67 and
$36.89 for aggregation hub Levels 1 to 4, respectively. The marginal cost
margin between Level 1 and Level 2 aggregation hubs is $10.03. This value is
$11.04 between Level 2 and Level 3 aggregation hubs, and is $1.78 between
Level 3 and Level 4 aggregation hubs. Empirical estimation of operating costs
based on more recent observations are more likely to appropriately reflect
the current operational environment for hubs, so the solution of Scenario 2
can provide empirical implication for the optimal structure of a hub network
in the current situation.
To allow for the possible trend of more pronounced scale effect in the future,

two additional scenarios are designed. Based on the base scenario, we increase
the marginal cost margins between aggregation hub sizes by 20 percent to
generate new marginal costs for the four aggregation hub sizes in Scenario 3,
and increase the margins by 40 percent for setting up Scenario 4. Eventually,
the fixed and marginal costs for each aggregation hub size in each scenario
are listed in Table 2. The magnitude of scale effect increases from Scenario 1
to Scenario 4.

Table 2. Fixed Costs and Marginal Costs for Hubs

Levela
Fixed Costs (US$) MarginalCosts (US$/1,000 lbshandledbyaggregationhub)

Scenario 1–4b Scenario 1 Scenario 2 Scenario 3 Scenario 4

C1 760,131 55.74 55.74 55.74 55.74

C2 3,902,711 55.74 49.71 48.50 47.30

C3 15,871,740 55.74 38.67 35.26 31.84

C4 35,352,680 55.74 36.89 33.12 29.35

aNote: C1: 130,000 units and below; C2: 130,001–450,000 units; C3: 450,001–1,500,000 units; C4:
1,500,001 units and above (unit: one thousand pounds).
bNote: Scenario 1- no scale effect on marginal cost; Scenario 2- base scenario; Scenario 3–20 percent
increase in marginal cost margin; Scenario 4–40 percent increase in marginal cost margin.
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Results and Analysis

A heuristic algorithm is designed to determine the optimal solutions of the
model. The heuristic procedure is iterative, starting with an arbitrarily chosen
set of random initial locations for given numbers of aggregation hubs with
varying handling capacity levels, and then allocating production nodes to
these aggregation hubs. The iterative procedure of the optimization model is
repeated to gradually improve these locations and leads to the minimum
total costs. The optimal-seeking procedure will be terminated as soon as an
effective solution is obtained. The optimization problem is compiled using
GAMS and solved using CPLEX. All computational executions were performed
on a High-Performance Computing System.
The aggregation hub numbers at each level across scenarios change

significantly due to the scale effect. While the higher fixed cost of operating
an aggregation hub with large capacity and shipping costs reduces incentives
to build a large-capacity aggregation hub, the cost advantages of a large-
capacity aggregation hub over a small-capacity aggregation hub provide
incentives for sourcing products farther away in order to build a large
aggregation hub. There is a trade-off between the increase in fixed costs and
shipping costs to build a large aggregation hub and saved variable costs
stemming from operating a large aggregation hub. If the latter outweighs the
former, building a large aggregation hub at a hub location will be more
profitable. The model is designed to determine the optimal balance between
these cost components. As shown in Table 3, the numbers of smaller-scale
aggregation hubs (Level 1 and 2) are negatively related to the marginal cost
margin and, conversely, the numbers of larger scale aggregation hubs (Level
3 and 4) are positively related to the cost margin. Obviously, the presence of
a more pronounced scale effect discourages small-scale aggregation hubs and
encourages larger-scale aggregation hubs.2
The locations and scales (annual handling capacity) of these aggregation hubs

in each scenario are shown in Figure 2. For each scenario, counties served by
aggregation hubs at different levels are marked in different colors on the
map. The optimal solutions of Scenarios 1 to 4 are sensitive to the change in
marginal handling costs for aggregation hub levels. If the marginal cost
margin between levels changes, a new solution is required to meet a new
optimum that takes advantage of the comparative costs. There are significant
changes in aggregation hub location solutions in response to the change in
the magnitude of scale effect. Also, product assembly patterns for aggregation
hubs at each level differ significantly across scenarios.
The model captures production seasonality and thus introduces more

flexibility in choosing the values of control variables involved in the model
(i.e., the volume of seasonal product transported from production and import
nodes to aggregation hubs) than a model ignoring production seasonality. To
utilize the hub capacity efficiently and take advantage of scale effects, hub
operators need to adjust assembly practices to match the production and
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import seasonality. The model displays the most efficient strategies for
allocating production and imports in different counties into different
aggregation hubs in different seasons. Consequently, solutions generated by
the seasonal model are more consistent with actual aggregation hub practices
and lead to 0.91 percent lower systematic costs than a model ignoring
seasonality. Hence, the seasonal model solution is practical and effective for
informing investment and policy decision makers regarding developing
regional and local food systems.
As shown in Figure 2, while there is a divergence between aggregation hub

locations in different scenarios, there are also some overlaps of optimal hub
locations between scenarios. A possible explanation is that whenever
operational conditions change, counties that enjoy high production plus
import levels, or that can source products easily from surrounding counties,
are ideal candidates for aggregation hubs. Table 4 shows the number of
overlaps of aggregation hub locations between scenarios. Cells in the 4 × 4
matrix in Table 4 indicate the number of aggregation hub location overlaps
between scenarios and the relative ratio of overlap. The main diagonal of
the matrix shows the total number of aggregation hubs for each specific
scenario.
Even if these aggregation hubs use the same locations in different scenarios,

as shown in Figure 2, the aggregation hubs may differ in scale and sourcing
counties from where they assemble. The varying magnitudes of economies of
scale provide varying levels of incentives to adjust the hub network structure
for accommodating changes in operational conditions and achieving the
minimum handling costs.
With the scale effect, aggregation hubs handling a larger quantity of products

enjoy lower marginal handling costs. The merging of smaller aggregation hubs
into larger aggregation hubs leads to handling cost savings. Hence, as the
marginal cost margin between levels increases, the incentives to establish
more aggregation hubs with larger capacity increase. To obtain the full
benefit of economies of scale, the distribution of products among aggregation
hubs becomes strategic in order to reduce handling costs. Just as Figure 3
shows, the total quantity handled in Level 2 aggregation hubs decreases with

Table 3. The Number of Aggregation Hubs at Each Level Across Scenarios

Level Scenario 1 Scenario 2 Scenario 3 Scenario 4

1 124 9 20 11

2 147 63 26 9

3 4 22 29 36

4 16 22 23 25

Total 291 116 98 81
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the magnitude of scale effect while the total quantity handled in Level 3–4
aggregation hubs increases with the magnitude of scale effect. We noticed
that the change in quantity handled in Level 1 aggregation hubs remains
ambiguous when the marginal cost margin increases. But our results show
that the total quantity handled at Level 1 facilities in Scenario 2–4 is less
than 2 percent, meaning that the Level 1 facilities play a minimal role in
explaining the effect of scale of economics on the optimal solution of
aggregation hub locations.
The marginal cost between aggregation hub levels provides incentives for

transporting products longer distances in order to build upper-level
aggregation hubs which take advantage of the scale effect. As shown in
Table 5, transportation costs increase with the marginal cost margin between
aggregation hub levels, implying that the accumulated total transport miles
increase from Scenario 1 to Scenario 4. As a result, average transportation
distance for one unit of product is 45, 50, 52, and 58 miles for Scenarios 1–4,
respectively.

Figure 2. Model Solutions. (a). Solution for Scenario 1. (b). Solution for
Scenario 2. (c). Solution for Scenario 3. (d). Solution for Scenario 4.
Source: Author calculations.
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Conclusion and Discussion

The presence of significant economies of scale in the fresh produce value chain
complicates the aggregation hub location problem. Allowing for the effect of
economies of scale inherent in hub operations for both present and future
situations, this study designs several scenarios to assess the scale effect of
economies on the solution of optimal aggregation hub locations. As expected,
economies of scale play an essential role in shaping the food network
structure. Our results provide strong evidence that scale effects have a
significant impact on aggregation hub location solutions. Under different
marginal cost assumptions, produce transportation is re-routed to take
advantage of cost saving, and thus the structure of the network is reshaped.
When the marginal handling cost margin increases, more aggregation hubs
with large capacity emerge while the number of small capacity aggregation
hubs diminishes. If economies of scale inherent in hub operations are
ignored, the generated hub location solution could be misleading. Our
modeling methodology and model solutions may provide valuable
information to make improvements in the overall efficiency of the logistics of
the networks as they adapt to possibly changed conditions of their economic
environment. This study generates several products that will be of interest to
researchers, industry practitioners, and government officials concerned with
strategy and policy issues. Those issues include investing in regional food
hub infrastructure, developing policies and programs promoting regional and
local food systems, and increasing efficiency in hub operation to remain
viable and competitive.
Larger farms are realizing better economic returns than smaller farms in the

United States, where a doubling of farm size has occurred over the past 20 to 25
years (MacDonald et al. 2013). In this setting, we observe dominant US
produce-growing regions serving consumer markets in lesser US produce-
growing regions. Fresh produce first-handlers in key production areas are
sourcing from other production regions (Cook 2011), and our research
establishes the presence and importance of scale economies in this
intermediate industry. Our research indicates that distributional implications
of this market setting are an outstanding empirical question. The modeling

Table 4. Comparative Hub Location Overlap Matrix

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Scenario 1 291(100%) 104(90%) 84(86%) 69(85%)

Scenario 2 104(36%) 116(100%) 65(66%) 60(74%)

Scenario 3 84(29%) 65(56%) 98(100%) 54(66%)

Scenario 4 69(24%) 60(52%) 54(55%) 81(100%)
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approach used in this study informs both analytical and empirical approaches
to assessing the possible welfare and policy implications of the current
spatial and vertical market structures among the broad spectrum of fresh
produce that is grown, imported, exported, and marketed throughout the
United States.
The model has several limitations that suggest topics for future investigation.

Addressing the effects of scale economies by explicitly considering them as a
cost in the objective function is a more realistic modeling approach. But
specifying a suitable cost function that allows for scale effects is not a simple
matter. Our efforts to assess the impact of economies of scale suffer from
insufficient data necessary for a complete evaluation. In this study, the
assumption of fixed and per unit marginal handling costs for each capacity
choice are informed by regression analysis of data based on a limited number
of observations and a rough, initial classification. To fully advance the
modeling of these types of economic issues, more investigation is needed to
better understand the pattern of scale effects and its influence on hub
operation costs.
The model is based on an assumption that first-handlers seek to aggregate all

seasonal produce as quickly and efficiently as possible in order to offer the best
free-on-board price (price that excludes the cost of shipment to the buyer) to all
potential buyers. An alternative model could also factor in the demand side by
coordinating aggregation and distribution functions for locally or regionally
sourced produce. Aggregated products in these aggregation hubs will be in
greater proximity to distribution centers or points of retail purchase. But
whether this consideration influences optimal aggregation locations is an
empirical question. Just as production volumes by geographic location are
uncertain due to factors such as weather, crop diseases, and pest infestations,
the consumer markets served by each aggregation hub can be highly

Figure 3. Total quantity handled at each level across scenarios.

Agricultural and Resource Economics Review382 December 2019

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
9.

10
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2019.10


uncertain due to these same factors on a worldwide scale. Such uncertainty is
also intensified by the increasing share of the consumer produce market
being served by very large volume buyers representing large retail and
foodservice chains. Existing data on fruit and vegetable wholesalers do not
distinguish between first-handlers and establishments sourcing their produce
from someone other than the growers, so empirical tests of demand side
factors on optimal aggregation locations are difficult. Other perishable foods
with more readily identifiable node-to-hub transactions, such as the
numerous fresh meat value chains, may allow empirical hypothesis testing of
these competing models.
Finally, in this study, the hub location problem involves a large-scale

optimization model. The amount of memory and the computational effort
needed to solve such problems grow significantly with the number of
variables and constraints. To solve the model with a reasonable computation
time, we avoid extensive identification of the varieties of fresh produce
commodities at the county-level. Actually, a consumer’s consumption of
produce products differs across varieties. Once the influence of retail markets
on hub locations is taken into consideration in a model, it is necessary that
different hubs apply different assembly strategies regarding different
varieties of imported or domestically grown produce. Further studies should
allow for produce category differentials instead of assuming all products are
homogenous. Overcoming these limitations can make the model generate
more realistic solutions that capture actual assembly patterns of the system.
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Table 5. Relative Costs Across Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fixed costs 1,297,084,601 1,379,649,212 1,390,065,206 1,498,685,480

Variable costs 8,315,073,836 5,929,611,136 5,262,210,636 4,573,456,605

Transportation 540,664,626 599,909,849 616,327,749 686,619,135

Total ($) 10,152,823,063 7,909,170,197 7,268,603,591 6,758,761,220
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Appendix I Scale Effect Regression Using 2007 Data Samples

We collected and compiled 2007 Economics Census data (U.S. Census Bureau
2010). From the 108 county-wide observations of annual operating costs and
throughput or hub sales, we convert the latter from dollars to pounds by
dividing by the national weighted average 2007 wholesale price of 31.3 cents
per pound for all fresh produce marketed in the United States
(USDA National Agricultural Statistics Service 2009a, 2009b, 2009c, 2009d).
The aggregation allows for the appropriate scale level for each grouping,

C ¼ 1: 130,000 units and below (27 lowest counties or equivalents by total
annual throughput)

C ¼ 2: 130,001–450,000 units (next 34 counties by total annual throughput)

C ¼ 3: 450,001–1,500,000 units (next 26 counties by total annual
throughput)

C ¼ 4: 1,500,001 units and above (highest 21 counties by total annual
throughput)

Again, we conduct two-tail t-tests between each two of the two groupings.
The absolute value of t-statistic ranges from 6.37 to 11.21. We reject the null
hypothesis that any two of the four groupings are equal. For each grouping,
the relationship between total operating cost (TC) and sales volume (Q) is
obtained using OLS (Table A1).
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Table A1. Regression Results for Scale Effect of Economies (Fresh
Produce)

Quartiles Variables Coefficients t Stat p-value F R2 Obs.

Quartile 1 Intercept 1,068,445 0.235 0.816 48.35 0.659 27

X Variable 67.87** 6.954 0.000

Quartile 2 Intercept 2,424,287 0.176 0.861 22.36 0.411 34

X Variable 64.46** 4.729 0.000

Quartile 3 Intercept 11,272,420 0.347 0.732 17.33 0.419 26

X Variable 56.37** 4.163 0.0003

Quartile 4 Intercept 25,760,790 1.041 0.311 1191.3 0.984 21

X Variable 55.17** 34.52 0.000

Note: **significant at 5 percent level.
Source: Compiled by Authors based on U.S. Census Bureau (2007).
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